2022 Vol. 49, No. 1
Article Contents

ZHANG Yanfei, AN Zhengzhen, LIANG Shuai, ZHAI Furong, ZHANG Sen, JU Nan, JIANG Ping, JIN Xiuying, XIAO Rongge. 2022. Distribution characteristics, genetic types and prospecting progress of graphite deposits[J]. Geology in China, 49(1): 135-150. doi: 10.12029/gc20220109
Citation: ZHANG Yanfei, AN Zhengzhen, LIANG Shuai, ZHAI Furong, ZHANG Sen, JU Nan, JIANG Ping, JIN Xiuying, XIAO Rongge. 2022. Distribution characteristics, genetic types and prospecting progress of graphite deposits[J]. Geology in China, 49(1): 135-150. doi: 10.12029/gc20220109

Distribution characteristics, genetic types and prospecting progress of graphite deposits

    Fund Project: Supported by the project of China Geological Survey (No.DD20190438)
More Information
  • Author Bio: ZHANG Yanfei, male, born in 1983, doctor, senior engineer, engaged in the survey and research of foreign geology; E-mail: zhangyanfei1234@163.com
  • Corresponding author: LIANG Shuai, male, born in 1986, doctor, senior engineer, engaged in regional geological survey and potentiality assessment of mineral resources; E-mail: ls476476@163.com 
  • This paper is the result of mineral exploration engineering.

    Object

    Graphite has become an important raw material for emerging technology industries, and It is also an important key mineral resource for future high-tech development. China is not only a big country of graphite resources, but also a big country of production and consumption. It is of great significance to find out the distribution status of graphite mineral resources and summarize the geological characteristics and metallogenic regularity of different genetic types of graphite deposits to ensure the effective supply of graphite.

    Methods

    Collect published or published data of graphite minerals, and systematically summarize the geological characteristics, material sources and genesis of graphite deposits.

    Results

    Graphite mining areas are mainly distributed in East Asia-South Asia, East Africa, Eastern Europe-Central Europe, North America, South America and Oceania, and each mining area has its own characteristics in resource endowment, deposit genesis and metallogenic geological characteristics. China, Madagascar, Mozambique, Tanzania and other countries in East Africa, have achieved remarkable prospecting results in recent years, and many graphite deposits with resources of 100 million tons have been discovered. China, Mozambique and Brazil are the main producers of graphite ore, and the graphite output of these three countries will account for about 80% of the total output in 2020.

    Conclusion

    There are four types of graphite deposits: regional metamorphic type, hydrothermal type, magmatic type and contact metamorphic type. Among them, the carbon source of regional metamorphic type, contact metamorphic type, magmatic hydrothermal type and plutonic type graphite deposits is mainly organic matter, while that of metamorphic hydrothermal type and igneous carbonate type graphite deposits is mainly mantle magma carbon.

  • 加载中
  • Ai Jiang, Lü Xinbiao, Li Zuowu, Wu Yalun. 2018. A super-large graphite deposit discovered in granite rocks at Huangyangshan, Xinjiang, China[J]. China Geology, 1, 164-166. doi:10.31035/cg2018016.

    CrossRef Google Scholar

    Ai Jiang, Lü Xinbiao, Li Zuowu, Wu Yalun. 2020. Geological characteristics and diagenetic geochronology of the Huangyangshan graphite deposit[J]. Geology in China, 47(2): 334-347(in Chinese with English abstract).

    Google Scholar

    Alling H L. 1918. The Adirondack Graphite Deposits[M]. Albany, N.Y., New York State Museum Bulletin, 152.

    Google Scholar

    An Tong, Li Jianwu. 2017. Analysis of the present supply-demand situation and the trend of global graphite resource[J]. China Mining Magazine, 26(9): 11-15, 20(in Chinese with English abstract).

    Google Scholar

    Atrassi F E L, Brunet F, Bouybaouene M L, Chopin C, Chazot G. 2011. Melting textures and microdiamonds preserved in graphite pseudomorphs from the Beni Bousera peridotite massif, Morocco[J]. European Journal of Mineralogy, 23(2): 157-168. doi: 10.1127/0935-1221/2011/0023-2094

    CrossRef Google Scholar

    Bai Jianke, Chen Junlu, Peng Suxia. 2017. Characteristics and metallogeny regulation of graphite resources in Xinjiang[J]. Acta Geologica Sinica, 12(91): 2828-2840(in Chinese with English abstract).

    Google Scholar

    Bai Jianke, Chen Juanlu, Peng Suxia. 2018. Geochronology and geochemistry of ore-bearing intrusions from Huangyangshan magmatic hydrothermal graphite deposit in Qitai County, Xinjiang[J]. Acta Petrologica Sinica, 34(8): 2327-2340(in Chinese with English abstract).

    Google Scholar

    Barrenechea J F, Luque F J, Rodas M, Pasteris J D. 1997. Vein-type graphite mineralization in Jurassic volcanic rocks of the external zone of the Betic Cordillera (southern Spain)[J]. The Canadian Mineralogist, 35: 1379-1390.

    Google Scholar

    Barrenechea J F, Luque F J, Millward D, OrtegaL, Beyssac O, Rodas M. 2009. Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data[J]. Contributions to Mineralogy and Petrology, 158: 37-51. doi: 10.1007/s00410-008-0369-y

    CrossRef Google Scholar

    Bastin E S. 1912. The graphite deposits of Ceylon, with a description of a similar graphite deposit near Dillon, Montana[J]. Economic Geology, 7: 419-443. doi: 10.2113/gsecongeo.7.5.419

    CrossRef Google Scholar

    Blereau E, Clark C, Taylor R, Johnson T, Fitzsimons I, Santosh M. 2016. Constraints onthe timing and conditions of high-grade metamorphism, charnockite formation and fluid-rock interaction in the Trivandrum Block, southern India[J]. Journal of Metamorphic Geology, 34(6): 527-549. doi: 10.1111/jmg.12192

    CrossRef Google Scholar

    Cai Wenchun, Zeng Zhongcheng, Song Shuguang, Li Jingchen, Wu Hao, Chen Yan. 2020. Geological characteristics and genesis of the Xianghe crystalline graphite deposit in Shangnan County of Shaanxi Province[J]. Northwestern Geology, 53(3): 220-232.

    Google Scholar

    Cao Yijia, Qi Dong, Zhang Dongxia, Chai Lijie, Jiao Yang. 2019. Geochemical characteristics and metallogenic study of the Bambarawe graphite deposit in Morogoro, Tanzania[J]. Mineral Exploration, 10(2): 333-343(in Chinese with English abstract).

    Google Scholar

    Chacko T, Kumar G R R, Newton R C. 1987. Metamorphic P-T conditions of the Kerala (South India) khondalite belt, a granulite facies supracrustal terrain[J]. The Journal of Geology, 95(3): 343-358. doi: 10.1086/629134

    CrossRef Google Scholar

    Chen Chao, Li Taisheng, Wang Ru. 2018. Geological Characteristics and prospecting criteria of graphite deposit in the Angónia District, Tete Province of Mozambique[J]. Resources Environment & Engineering, 32(3): 379-381, 429(in Chinese with English abstract).

    Google Scholar

    Chen Yanjing, Liu Congqing, Chen Huayong, Zhang Zengjie, Li Chao. 2000. Carbon isotope geochemistry of graphite deposits and ore-bearing khondalite series in North China implications for several geoscientific problems[J]. Acta Petrologica Sinica, 16(2): 233-244(in Chinese with English abstract).

    Google Scholar

    Coats R R. 1944. Graphite Deposits on the North Side of the Kigluaik Mountains, Seward Peninsula, Alaska[J]. U.S. Geological Survey Open-File Report, 10: 8.

    Google Scholar

    Crespo E, Luque F J, Rodas M, Wada H, Gervilla F. 2006. Graphite sulfide deposits in Ronda and Beni Bousera peridotites(Spain and Morocco)and the origin of carbon in mantle-derived rocks[J]. Gondwana Research, 9(3): 279-290. doi: 10.1016/j.gr.2005.10.003

    CrossRef Google Scholar

    Dharmapriya P L, Malaviarachchi S P, Kriegsman L M, Galli A, Sajeev K, Zhang C. 2017. New constraints on the P-T path of HT/UHT metapelites from the Highland Complex of Sri Lanka[J]. Geoscience Frontiers, 8: 1405-1430. doi: 10.1016/j.gsf.2016.12.005

    CrossRef Google Scholar

    Doroshkevich A G, Wall F, Ripp G S. 2007. Magmatic graphite in dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia[J]. Contributions to Mineralogy Petrology, 153: 339-353. doi: 10.1007/s00410-006-0150-z

    CrossRef Google Scholar

    Duan Liuan, Wei Youfeng, Liu Qiyao, Yang Xiaoyong, 2020. Discovery of the Dahongshan ultra-large crystalline graphite deposit, Urad Zhongqi of Inner Mongolia[J]. China Geology, 3: 182-183. doi:10.31035/cg2020019.

    CrossRef Google Scholar

    Ford R B. 1954. Occurrence and origin of the graphite deposits near Dillon, Montana[J]. Economic Geology, 49: 31-43. doi: 10.2113/gsecongeo.49.1.31

    CrossRef Google Scholar

    Gao Zhaoguo, Liu Hongzhao, Yang Huipeng, Cao Yaohua, Zhang Bo, Wang Hongliang, Wang Wei. 2018. General distribution and demand-supply tendency for worldwide graphite resources[J]. Multipurpose Utilization of Mineral Resources, (3): 26-29(in Chinese with English abstract).

    Google Scholar

    Gellatly D C. 1966. Graphite in Natural and Experimental Carbonate Systems[J]. Mineralogical Magazine, 35(275): 963-970. doi: 10.1180/minmag.1966.035.275.08

    CrossRef Google Scholar

    Hao Ziguo, Fei Hongcai, Hao Qingqing, Liu Lian. 2016. "Three Rare Mineral Resources" and crystalline graphite have become prospecting focuses in China[J]. Acta Geologica Sinica(English Edition), 90(5): 1905-1906. doi: 10.1111/1755-6724.12825

    CrossRef Google Scholar

    He Liang, Dai Shunjun, Shao Rui, Du Qiu, De Yang, Zhaxi Pingcuo, Zunzhu Sangmu, Basang Duoji, Zhang Qizhi. 2020. Ore-Bearing Granite Age and Genesis of Diguo Lage-Scale Graphite Deposit in Leiwuqi-Zuogong Metallogenic Belt, Eastern Tibet[J]. Earth Science, 45(8): 2932-2944(in Chinese with English abstract).

    Google Scholar

    Hiroi Y, Yanagi A, Kato M, Kobayashi T, Prame B, Hokada T, Satish-Kumar M, Ishikawa M, Adachi T, Osanai Y, Motoyoshi Y, Shiraishi K. 2014. Supercooled melt inclusions in lower-crustal granulites as a consequence of rapid exhumation by channel flow[J]. Gondwana Research, 25(1): 226-234. doi: 10.1016/j.gr.2013.04.001

    CrossRef Google Scholar

    Hoefs J, Frey M. 1976. The isotopic composition of carbonaceous matter in a metamorphic profile from the Swiss Alps[J]. Geochimica et Cosmochimica Acta, 40: 945-951. doi: 10.1016/0016-7037(76)90143-5

    CrossRef Google Scholar

    Huang Guoping, Hu Qingle, Chen Dongming, Li Liang, Zhang Zhong, Zhu An'an, Xu Haibo. 2014. General situation of geology and mineral resources in Madagascar[J]. Resources Environment & Engineering, 28(5): 626-632(in Chinese with English abstract).

    Google Scholar

    Jiao Xuan, Qiu Yangshuai, Zhang Lingyan, Guan Junfang, Ouyang Zhijun. 2016. Experimental Research on Beneficiation of Graphite in Nicanda Hill of Mozambique[J]. Bulletin of the Chinese Ceramic Society, 35(6): 1940-1945, 1957(in Chinese with English abstract).

    Google Scholar

    Kehelpannala K W. 1999. Epigenetic vein graphite mineralization in the granuliteterrain of Sri-Lanka[J]. Gondwana Research, 4: 654-657.

    Google Scholar

    Kehelpannala K W, Francis M D L. 2001. Vein graphite deposits of the Kegalle District, Sri Lanka: further evidence for post-metamorphic, fluid-deposited graphite[J]. Gondwana Research, 4: 655-656. doi: 10.1016/S1342-937X(05)70454-8

    CrossRef Google Scholar

    Khanchuk A I, Plyusnina L P, Berdnikov N V. 2015. Noble metal and graphite formation in metamorphic rocks of the Khanka terrane, Far East Russia[J]. Journal of Asian Earth Sciences, 99: 30-40. doi: 10.1016/j.jseaes.2014.12.001

    CrossRef Google Scholar

    Kröner A, Santosh M, Henger E, Shaji E, Geng H, Wong J, Xie H, Wan Y, Shang C K, Liu D, Sun M, Nanda-Kumar V. 2015. Palaeoproterozoic ancestry of Pan-Africanhigh-grade granitoids in southernmost India: Implications for Gondwana reconstructions[J]. Gondwana Research, 27(1): 1-37. doi: 10.1016/j.gr.2014.07.001

    CrossRef Google Scholar

    Lamb W, Valley J W. 1984. Metamorphism of reduced granulites in low-CO2 vapor freeenvironment[J]. Nature(London), 312(1): 56-58.

    Google Scholar

    Li Chao, Wang Denghong, Zhao Hong, Pei Haoxiang, Li Xinwei, Zhou Limin. 2015. Minerogenetic regularity of graphite deposit in China[J]. Mineral Deposits, 34(6): 1223-1236(in Chinese with English abstract).

    Google Scholar

    Li Yuanbai, Yang Xinjie, Wang Yanyun, Wang Lei, Li Shucai. 2021. Discussion on genetic types and prospecting markers of graphite deposits in Ulan Area of Inner Mongolia[J]. Northwestern Geology, 54(2): 227-238.

    Google Scholar

    Liang Shuai. 2015. Genisis Studies of Typical Crystalline Graphite Deposites, in the North China[D]. Fuxin: Liaoning Techenical University(in Chinese with English abstract).

    Google Scholar

    Liu Jingdang, Xiao Rongge, Zhang Yanfei, Liang Shuai, Zhao Qing, Bai Fengjun, ZhangYongxing, Wang Jichun, Yang Peiqi, Liu Jian. 2017. The Crystalline Graphite Deposit in North China[M]. Beijing: Science Press, 300-328(in Chinese).

    Google Scholar

    Liu Songbai, Yang Meizhen, Wu Hong'en, Zhao Wenping, Zhang Lianlian. 2011. Metallogenic model of graphite deposit from Sujiquan, Eastern Junggaer[J]. Xinjiang Geology, 29(2): 178-182(in Chinese with English abstract).

    Google Scholar

    Luo Qingwei, Zhang Kechuan, Qin Deyou, Quan Cheng. 2018. Geological characteristics and prospecting potential of graphite deposit in Tanzania[J]. Resources Environment & Engineering, 32(1): 51-54, 73(in Chinese with English abstract).

    Google Scholar

    Luque F J, Crespo F E, Barrenechea J F, Ortega L. 2012. Carbon isotopes of graphite: Implications on fluid history[J]. Geoscience Frontiers, 3(2): 197-207. doi: 10.1016/j.gsf.2011.11.006

    CrossRef Google Scholar

    Luque F J, Huizenga J M, Crespo F E, Wada H, Ortega L, Barrenechea J F. 2014. Vein graphite deposits: geological settings, origin, and economic significance[J]. Mineralium Deposita, 49(2): 261-277. doi: 10.1007/s00126-013-0489-9

    CrossRef Google Scholar

    Ma Jinhu, Liu Yang, Ma Xiaohui, Ti Yunsheng, Ma Yuwei, Zhao Gan, Zhang Xiangning, Zhang Jian, Li Yanxiang, Zhao Liang. 2020. Geological characteristics and genetic analysis of graphite deposits in Madagascar[J]. Geology and Exploration, 56(4): 878-888(in Chinese with English abstract).

    Google Scholar

    Manoel T N, Leite J D. 2018. On the origin of the Neoproterozoic Peresopolis graphite deposit, Paraguay Belt, Brazil[J]. Journal of South American Earth Sciences, 84: 104-112. doi: 10.1016/j.jsames.2018.03.007

    CrossRef Google Scholar

    Ministry of Natural Resources, PRC. 2020. China Mineral Resources 2020[M]. Beijing: Geological Publishing House(in Chinese).

    Google Scholar

    Needham A B. 1946. Mining and Milling Operations of Southwestern Graphite Co., Burnet County, Texas[R]. U.S. Bureau of Mines Information Circular, 7339: 7.

    Google Scholar

    Newton R C. 1986. Fluids of Granulite Facies Metamorphism, in WaltherJVand WoodBJeds, Fluid-Rock Interactions during Metamorphism[J]. Berlin, Springer, 5: 36-59.

    Google Scholar

    Ortega L, Millward D, Luque F J, Barrenechea J F, Beyssac O, Huizenga J M, Rodas M, Clarke S M. 2010. The graphite deposit at Borrowdale (UK): A catastrophic mineralizing event associated with Ordovician magmatism[J]. Geochimica et Cosmochimica Acta, 74: 2429-2449. doi: 10.1016/j.gca.2010.01.020

    CrossRef Google Scholar

    Pallister H D, Thoenin J R. 1948. Flake graphite and vanadium investigations in Clay, Coosa, and Chilton Counties, Alabama[J]. U.S. Bureau of Mines Report of Investigations, 4366: 81.

    Google Scholar

    Palosaari J, Latonen R M, Smatt J H, Raunio S, Eklund O. 2020. The flake graphite prospect of Piippumäki-an exampleof a high-quality graphite occurrence in a retrograde metamorphic terrain in Finland[J]. Mineralium Deposita, 55: 1647-1660. doi: 10.1007/s00126-020-00971-z

    CrossRef Google Scholar

    Qi Dong, Zhang Dongxia, Cao Yijia, Chai Lijie, Chen Lulu, Huang Da. 2020. Contrastive study on Bambarawe graphite deposite in Tanzania with graphite deposits in typical areas of China[J]. Resources Environment & Engineering, 34(1): 36-40(in Chinese with English abstract).

    Google Scholar

    Radhika U P, Santosh M. 1996. Shear-zone hosted graphite in southern Kerela, India: implications for CO2 infifiltration[J]. Journal of Southeast Asian Earth Sciences, 14(3/4): 265-273.

    Google Scholar

    Ren Junping, Hu Peng, Wang Jie, Wang Jianxiong, Zhang Hang, Liu Jiangtao, Liu Xiaoyang, Zeng Guoping, Sun Kai, Jiang Junsheng, Gu Alei, Cheng Xiang, Chen Junqiang, Zhao Kai, Wu Xingyuan. 2021. Mining development status of Africa[J]. Acta Geologica Sinica, 95(4): 945-961.

    Google Scholar

    Santosh M, Yokoyama K, Biju S S, Rogers J J W. 2003. Multiple tectonothermal events in the granulite blocks of southern India revealed from EPMA dating: Implications on the history of supercontinents[J]. Gondwana Research, 6(1): 29-63. doi: 10.1016/S1342-937X(05)70643-2

    CrossRef Google Scholar

    Sanyal P, Acharya B C, Bhattacharya S K, Sarkar A, Agrawal S, Bera M K. 2009. Origin of graphite, and temperature of metamorphism in Precambiran eastern Ghats Mobile Belt, Orissa, India: A carbon isotope approach[J]. Journal of Asia Earth Sciences, 36: 252-260. doi: 10.1016/j.jseaes.2009.06.008

    CrossRef Google Scholar

    Schulz K J, De Young J H, Seal R R, Bradley D C. 2017. Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply[R]. U.S. Geological Survey Professional Paper 1802, 797.

    Google Scholar

    Soman K, Lobzova R V, Sivadas K M. 1986. Geology, genetic types, and origin of graphite in south Kerela, India[J]. Economic Geology, 81: 997-1002. doi: 10.2113/gsecongeo.81.4.997

    CrossRef Google Scholar

    Sun Li, Xu Cuiping, Xiao Keyan, Zhu Yusheng, Yan Lingya, 2018. Geological characteristics, metallogenic regularities and the exploration of graphite deposits in China[J]. China Geology, 1: 425-434. doi:10.31035/cg2018044.

    CrossRef Google Scholar

    Taner M F, Drever C, Yakymchuk C, Longstaffe F J. 2017. Origin of Graphite in the Southwestern Grenville Province[J]. The Canadian Mineralogist, 55(6): 1041-1055. doi: 10.3749/canmin.1700029

    CrossRef Google Scholar

    Taylor R J M, Clark C, Fitzsimons I C W, Santosh M, Hand M, Evans M, Mcdonald B. 2014. Post-peak, fluid-mediated modifification of granulite facies zircon and monazite in the Trivandrum Block, southern India[J]. Contributions to Mineralogy and Petrology, 168: 1-17.

    Google Scholar

    Tsuchiya N, Suzuki S, Chida T. 2008. Origin of graphite in the Oshirabetsu gabbroic body, Hokkaido, Japan[J]. Journal of Mineralogical & Petrological Sciences, 86(6): 264-272.

    Google Scholar

    Touret J L R, Huizenga J M, Keheipannala K V W, Piccoli F. 2019. Vein-type graphite deposits in Sri Lanka: The ultimate fate of granulite fluids[J]. Chemical Geology, 508: 167-181. doi: 10.1016/j.chemgeo.2018.03.001

    CrossRef Google Scholar

    Wang Denghong. 2019. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 93(6): 1189-1209(in Chinese with English abstract).

    Google Scholar

    Wang Kuiliang, Wu Datian, Xu Fengming. 2020. Geological characteristics and resource potential of graphite deposits in Madagascar[J]. Geology and Resources, 29(5): 435-445, 410(in Chinese with English abstract).

    Google Scholar

    Wang Li, Fan Junlei, Li Lei, Kang Lei. 2017. Graphite resource and metallogenic regularities of crystalline graphite in China[J]. Journal of Geology, 41(2): 310-317(in Chinese with English abstract).

    Google Scholar

    Yan Lingya. 2014. Graphite Resources, Consumption and International Trade in the World[J]. China Non-metallic Minerals Industry, 2: 33-36(in Chinese with English abstract).

    Google Scholar

    Yan Lingya, Gao Shuxue, Chen Zhengguo, Jiao Lixiang, Sun Li, Liu Yanfei, Zhou Wen. 2018. Metallogenic characteristics and metallogenic zoning of graphite deposits in China[J]. Geology in China, 45(3): 421-440(in Chinese with English abstract).

    Google Scholar

    Zagnitko V N, Lugovaya I P, Proskurko L I. 1980. Features of graphite from Ukraine on isotopic data (in Russian)[J]. Abstracts of Soviet-Union Symposium on Stable Isotopes in Geochemistry, 314-315.

    Google Scholar

    Zhang Cun, Santosh M. 2019. Coupled Laser Raman spectroscopy and carbon stable isotopes of graphite from the khondalite belt of Kerala, Southern India[J]. Lithos, 334-335: 245-253. doi: 10.1016/j.lithos.2019.03.026

    CrossRef Google Scholar

    Zhang Guoxin, Hu Aiqin, Zhang Hongbin, Zhang Qianfeng, Shen Youlin. 1996. Carbon isotopic evidence for origin of the spherical graphite in a granite-hosted graphite deposit, Sujiquan, Xinjiang, China[J]. Geochimica, 25(4): 379-386(in Chinese with English abstract).

    Google Scholar

    Zhang Sujiang, Cui Liwei, Zhang Yanwen, Han Jian, Shang Lei. 2018. Summarize on the graphite mineral resources and their distribution at home and abroad[J]. China Mining Magazine, 27(10): 8-14(in Chinese with English abstract).

    Google Scholar

    Zhang Tianyu, Zhang Zhongliang, Li Jinqian. 2014. Summary of research status on regional metamorphic graphite deposit in China[J]. China Non-metallic Minerals Industry, 4: 36-38(in Chinese with English abstract).

    Google Scholar

    Zhang Yanfei, Liang Shuai, Zhao Qing, Liu Jingdang, Xiao Rongge. 2020a. Types of graphite deposits and metallogenic patterns of phanerocrystalline graphite deposits (Ⅰ): Metallogenic geological background[J]. Geology of Chemical Minerals, 42(1): 1-11, 18(in Chinese with English abstract).

    Google Scholar

    Zhang Yanfei, Liang Shuai, Zhao Qing, Liu Jingdang, Xiao Rongge. 2020b. Types of graphite deposits and metallogenic patterns of phanerocrystalline graphite deposits (Ⅱ): Ore minerals and mineralizing characteristics[J]. Geology of Chemical Minerals, 42(2): 97-105, 124(in Chinese with English abstract).

    Google Scholar

    Zhou Qizhong, Yan Weidong, Yin Liwen, Xu Guifen, Wang Wenli, Jiang Weihua. 2019. Overview and demand analysis of global graphite resource[J]. Land and Resources Information, 6: 28-32(in Chinese with English abstract).

    Google Scholar

    安彤, 李建武. 2017. 全球石墨资源供需现状及趋势分析[J]. 中国矿业, 26(9): 11-15, 20.

    Google Scholar

    艾江, 吕新彪, 李作武, 吴亚伦. 2020. 黄羊山石墨矿床地质特征及成岩年代研究[J]. 中国地质, 47(2): 334-347.

    Google Scholar

    白建科, 陈隽璐, 彭素霞. 2017. 新疆石墨资源特征及成矿规律[J]. 地质学报, 12(91): 2828-2840.

    Google Scholar

    白建科, 陈隽璐, 彭素霞. 2018. 新疆奇台县黄羊山岩浆热液型石墨矿床含矿岩体年代学与地球化学特征[J]. 岩石学报, 34(8): 2327-2340.

    Google Scholar

    蔡文春, 曾忠诚, 宋曙光, 李景晨, 吴昊, 陈艳. 2020. 陕西商南湘河晶质石墨矿床地质特征与成因探讨[J]. 西北地质, 53(3): 220-232.

    Google Scholar

    曹义甲, 祁东, 张冬霞, 柴丽洁, 焦杨. 2019. 坦桑尼亚莫罗戈罗地区班巴拉维石墨矿地球化学特征及成矿研究[J]. 矿产勘查, 10(2): 333-343. doi: 10.3969/j.issn.1674-7801.2019.02.025

    CrossRef Google Scholar

    陈超, 李太升, 王茹. 2018. 莫桑比克太特省安格尼亚区石墨矿地质特征及找矿标志[J]. 资源环境与工程, 32(3): 379-381, 429.

    Google Scholar

    陈衍景, 刘丛强, 陈华勇, 张增杰, 李超. 2000. 中国北方石墨矿床及赋矿孔达岩系碳同位素特征及有关问题讨论[J]. 岩石学报, 16(2): 233-244.

    Google Scholar

    高照国, 刘红召, 杨卉芃, 曹耀华, 张博, 王洪亮, 王威. 2018. 世界石墨资源分布概况及供求变化趋势[J]. 矿产综合利用, (3): 26-29. doi: 10.3969/j.issn.1000-6532.2018.03.004

    CrossRef Google Scholar

    焦玄, 邱杨率, 张凌燕, 管俊芳, 欧阳志军. 2016. 莫桑比克Nicanda Hill地区石墨矿选矿试验研究[J]. 硅酸盐通报, 35(6): 1940-1945, 1957.

    Google Scholar

    黄国平, 胡清乐, 陈冬明, 李亮, 张众, 祝安安, 徐海波. 2014. 马达加斯加地质矿产概况[J]. 资源环境与工程, 28(5): 626-632. doi: 10.3969/j.issn.1671-1211.2014.05.003

    CrossRef Google Scholar

    李超, 王登红, 赵鸿, 裴浩翔, 李欣尉, 周利敏, 杜安道, 屈文俊. 2015. 中国石墨矿床成矿规律概要[J]. 矿床地质, 34(6): 1223-1236.

    Google Scholar

    李沅柏, 杨欣杰, 汪艳芸, 王磊, 李树才. 2021. 华北克拉通北缘乌兰地区石墨矿地质特征及成因分析[J]. 西北地质, 54(2): 227-238.

    Google Scholar

    梁帅. 2015. 华北典型晶质石墨矿床成因研究[D]. 阜新: 辽宁工程技术大学.

    Google Scholar

    刘敬党, 肖荣阁, 张艳飞, 梁帅, 赵青, 白凤军, 张永兴, 王继春, 杨培奇, 刘剑. 2017. 华北显晶质石墨矿床[M]. 北京: 科学出版社, 300-328.

    Google Scholar

    刘松柏, 杨梅珍, 吴洪恩, 赵文平, 张练练. 2011. 新疆苏吉泉球状石墨矿床成矿模式[J]. 新疆地质, 29(2): 178-182. doi: 10.3969/j.issn.1000-8845.2011.02.012

    CrossRef Google Scholar

    罗清威, 张克川, 秦德雨, 权成. 2018. 坦桑尼亚石墨矿地质特征及找矿前景[J]. 资源环境与工程, 32(1): 51-54, 73.

    Google Scholar

    马金虎, 刘阳, 马晓辉, 提云生, 马玉伟, 赵淦, 张向宁, 张健, 李艳翔, 赵亮. 2020. 马达加斯加石墨矿地质特征及其成因分析[J]. 地质与勘探, 56(4): 878-888.

    Google Scholar

    祁东, 张冬霞, 曹义甲, 柴丽洁, 陈璐璐, 黄达. 2020. 坦桑尼亚班巴拉维石墨矿与中国典型地区石墨矿对比研究[J]. 资源环境与工程, 34(1): 36-40.

    Google Scholar

    任军平, 胡鹏, 王杰, 王建雄, 张航, 刘江涛, 刘晓阳, 曾国平, 孙凯, 姜军胜, 古阿雷, 程湘, 陈军强, 赵凯, 吴兴源. 2021. 非洲矿业发展概况[J]. 地质学报, 95(4): 945-961. doi: 10.3969/j.issn.0001-5717.2021.04.002

    CrossRef Google Scholar

    王登红. 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    CrossRef Google Scholar

    王奎良, 吴大天, 许逢明. 2020. 马达加斯加石墨矿床地质特征及资源潜力[J]. 地质与资源, 29(5): 435-445, 410.

    Google Scholar

    王力, 樊俊雷, 李雷, 康磊. 2017. 中国石墨资源概况及晶质石墨成矿规律[J]. 地质学刊, 41(2): 310-317. doi: 10.3969/j.issn.1674-3636.2017.02.022

    CrossRef Google Scholar

    颜玲亚. 2014. 世界天然石墨资源、消费及国际贸易[J]. 中国非金属矿工业导刊, 2: 33-36.

    Google Scholar

    颜玲亚, 高树学, 陈正国, 焦丽香, 孙莉, 刘艳飞, 周雯. 2018. 中国石墨矿成矿特征及成矿区带划分[J]. 中国地质, 45(3): 421-440.

    Google Scholar

    张国新, 胡霭琴, 张鸿斌, 张前锋, 申佑林. 1996. 新疆苏吉泉石墨矿床成因的碳同位素证据[J]. 地球科学, 25(4): 379-386.

    Google Scholar

    张苏江, 崔立伟, 张彦文, 韩健, 尚磊. 2018. 国内外石墨矿产资源及其分布概述[J]. 中国矿业, 7(10): 8-14.

    Google Scholar

    张天宇, 张忠良, 李金钱. 2014. 我国区域变质型石墨矿床研究现状综述[J]. 中国非金属矿工业导刊, 4: 36-38.

    Google Scholar

    张艳飞, 梁帅, 赵青, 刘敬党, 肖荣阁. 2020a. 石墨矿床类型及显晶质石墨矿床成矿模式(Ⅰ): 成矿地质背景[J]. 化工矿产地质, 42(1): 1-11, 18.

    Google Scholar

    张艳飞, 梁帅, 赵青, 刘敬党, 肖荣阁. 2020b. 石墨矿床类型及显晶质石墨矿床成矿模式(Ⅱ): 矿石矿物及矿化特征[J]. 化工矿产地质, 42(2): 97-105, 124.

    Google Scholar

    中华人民共和国自然资源部. 2020. 中国矿产资源报告2020[M]. 北京: 地质出版社.

    Google Scholar

    周起忠, 闫卫东, 尹丽文, 徐桂芬, 王文利, 江伟华. 2019. 世界石墨资源概况及需求分析[J]. 国土资源情报, 6: 28-32. doi: 10.3969/j.issn.1674-3709.2019.07.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(4177) PDF downloads(140) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint