2023 Vol. 50, No. 4
Article Contents

HE Jianhua, CAO Feng, DENG Hucheng, WANG Yuanyuan, LI Yong, XU Qinglong. 2023. Evaluation of in-situ stress in dense sandstone reservoirs in the second member of Xujiahe Formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development[J]. Geology in China, 50(4): 1107-1121. doi: 10.12029/gc20220107003
Citation: HE Jianhua, CAO Feng, DENG Hucheng, WANG Yuanyuan, LI Yong, XU Qinglong. 2023. Evaluation of in-situ stress in dense sandstone reservoirs in the second member of Xujiahe Formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development[J]. Geology in China, 50(4): 1107-1121. doi: 10.12029/gc20220107003

Evaluation of in-situ stress in dense sandstone reservoirs in the second member of Xujiahe Formation of the HC area of the Sichuan Basin and its application to dense sandstone gas development

    Fund Project: Supported by the Open Found from Key Lab of Deep Earth Science and Engineering, Ministry of Education (No. DESEYU202002), Sichuan Provincial Science and Technology Department Key Seedling Project (No. 2022JDRC0103)
More Information
  • Author Bio: HE Jianhua, male, born in 1990, associate professor, mainly engaged in the mechanism and quantitative characterization of natural fractures in unconventional oil and gas reservoirs and the fine description of the in-situ stress field; Email: hejianhuadizhi@163.com
  • This paper is the result of oil and gas exploration engineering.

    Objective

    The second member of Xujiahe formation of the HC area in the Sichuan Basin has great potential for exploration and development, but it is a typical low-porosity and low-permeability tight gas reservoir, which requires in-situ stress refined evaluation to recommend the optimal selection of engineering sweet spots for later vertical fracturing and plane fracturing to increase production.

    Methods

    Based on experimental test analysis such as 25 groups of acoustic emission and 13 groups of differential strain, combined with hydraulic fracturing, conventional and special logging data, we analyze the applicability of different experimental test methods in tight sandstone reservoirs by performing a fine-scale evaluation of in-situ stress and identified layers and sweet spots conducive to engineering modifications.

    Results

    The results of the experimental tests of the second member of Xujiahe formation in the HC area showed that the maximum horizontal principal stress values ranged from 50.77 to 75.65 MPa, with a mean value of 59.71 MPa; the minimum horizontal principal stress values ranged from 45.37 to 54.31 MPa, with a mean value of 49.31 MPa; and the vertical stress values ranged from 48.11 to 65.62 MPa, with a mean value of 56.53 MPa. The simulation results show that the smaller the thickness of the stress barrier within the reservoir and the differential coefficient of in-situ stress in both directions, the more favorable the fracture modification. The comparison of the three-dimensional stress relationships between the minor layers indicates that the second member of Xujiahe Formation is in a strike-slip stress state. The dense sandstone in the second member of the Xujiahe Formation is more homogeneous, the acoustic emission test results are more inaccurate. The results of the differential strain test are in better agreement with the results of the in-situ stress magnitude interpretation, making the test method more suitable for more homogeneous sandstone formations.

    Conclusions

    In combination with the magnitude of in-situ stress, it is recommended vertically that the more favorable combination of compartments, upper middle of the second subsection of Xu-Ⅱ, be selected as the target layer for fracturing. To achieve a better volume fracturing network, it is recommended to avoid areas near faults with a large differential coefficient of two-dimensional stress. The area of HC102-HC111 well in the central part of the HC area, where high-quality reservoirs are developed and two-dimensional stress difference factor is relatively small, should be selected.

  • 加载中
  • Cai Meifeng. 1993. Review of principles and methods for rock stress measurement[J]. Chinese Journal of Rock Mechanics and Engineering, 12(3): 275-283 (in Chinese with English abstract).

    Google Scholar

    Cao Hui, Sun Dongsheng, Yuan Kun, Li Awei, Zhang Guanghan. 2020. In-situ stress determination of 3 km oil-gas deep hole and analysis of the tectonic stress field in the southern Guizhou[J]. Geology in China, 47(1): 88-98 (in Chinese with English abstract).

    Google Scholar

    Chen Nian, Wang Chenghu, Gao Guiyun, Wang Pu. 2021. Characteristics of in-situ stress field in the powerhouse area on the right bank of Baihetan based on stress polygon and borehole breakout method[J]. Rock and Soil Mechanics, 42(12): 3376-3384 (in Chinese with English abstract).

    Google Scholar

    Ding Wenlong, Wang Xinghua, Hu Qiujia, Yin Shuai, Cao Xiangyu, Liu Jianjun. 2015. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 30(7): 737-750 (in Chinese with English abstract).

    Google Scholar

    Fraser D, Gholami R, Sarmadivaleh M. 2021. Deformation rate analysis: How to determine in-situ stresses in unconventional gas reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 146(7/8): 104892.

    Google Scholar

    Guo Weijie, Gong Cheng, Li Jing. 2010. The measurements of geostress and the problems of geo-stress measurement[J]. Value Engineering, 29(25): 136-137 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-4311.2010.25.095

    CrossRef Google Scholar

    Han Jun, Liu Hongtao. 2005. Application of differential strain analysis method on the study of in-situ stress direction[J]. Journal of Oil and Gas Technology, 27(2): 87-88, 95, 8(in Chinese with English abstract).

    Google Scholar

    He Xiaodong, Ma Junxiu, Shi Shanzhi, Liu Gang, Tan Qiang. 2020. Core differential strain test of tight glutinite reservoir in Mahu oilfield[J]. China Offshore Oil and Gas, 32(3): 86-93 (in Chinese with English abstract).

    Google Scholar

    Jayanthu S. 2019. Estimation of in-situ stress-experiemtnal trials on Kaiser effect and hydrofracturing tests[J]. Journal of Mines, Metals and Fuels, 67(6): 311-315.

    Google Scholar

    Ji Zhijiu, Lu Guobin, Li Lan, 2009. Study on in-situ stress measurement method and engineering application[J]. Modern Mining, 25(11): 67-69 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-6082.2009.11.020

    CrossRef Google Scholar

    Jiang Yongdong, Xian Xuefu, Xu Jiang. 2005. Research on application of Kaiser effect of acoustic emission to measuring initial stress in rock mass[J]. Rock and Soil Mechanics, 26(6): 946-950 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2005.06.025

    CrossRef Google Scholar

    Jing Feng, Liang Hecheng, Bian Zhihua, Liu Yuankun. 2008. Review of geo-stress measurement method and study[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 29(2): 71-75 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-5634.2008.02.023

    CrossRef Google Scholar

    Lehtonen A, Cosgrove J W, Hudson J A, Johansson E. 2011. An examination of in situ rock stress estimation using the Kaiser effect[J]. Engineering Geology, 124: 24-37 doi: 10.3969/j.issn.1000-3665.2011.03.005

    CrossRef Google Scholar

    Li Guohui, Li Nan, Xie Jirong, Yang Jiajing, Tang Dahai. 2012. Basic features of large gas play fairways in the upper Triassic Xujiahe Formation of the Sichuan Foreland Basin and evaluation of favorable exploration zones[J]. Natural Gas Industry, 32(3): 15-21, 122-123 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2012.03.003

    CrossRef Google Scholar

    Liang Chen. 2020. Theory and Numerical Analysis of a New Method of In-Situ Stress Measurement[D]. Wuhan: Hubei University of Technology (in Chinese with English abstract).

    Google Scholar

    Liu R, Hao F, Engelder T, Shu Z, Yi J, Xu S, Teng C. 2019. Stress memory extracted from shale in the vicinity of a fault zone: Implications for shale-gas retention[J]. Marine and Petroleum Geology, 102: 340-349. doi: 10.1016/j.marpetgeo.2018.12.047

    CrossRef Google Scholar

    Liu Yaqun, Li Haibo, Jing Feng, Luo Chaowen, Chen Bingrui, Li Junru, Zhou Qingqing. 2007. Determination of in-situ stress by hydraulic fracturing tests on preexisting fractures considering stress gradient and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 26(6): 1145-1149 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.06.007

    CrossRef Google Scholar

    Liu Zekai, Chen Yaolin, Tang Ruzhong. 1994. Application of in-situ stress technology in oilfield development[J]. Petroleum Geology and Recovery Efficiency, 1(1): 48-56, 85(in Chinese).

    Google Scholar

    Ma Rui. 2014. Application of ground stress in oil and gas exploration and development[J]. Science & Technology Information, 12(31): 55-58(in Chinese).

    Google Scholar

    Mao H, Luo T, Lai F, Zhang G, Zhong L. 2019. Experimental analysis and logging evaluation of in-situ stress of mud shale reservoir——Taking the deep shale gas reservoir of Longmaxi Formation in western Chongqing as an example[C]//IOP Conference Series: Earth and Environmental Science, 384: 012129.

    Google Scholar

    Mayerhofer M J, Lolon E P, Warpinski N R, Cipolla C L, Walser D, Rightmire C M. 2010. What is stimulated reservoir volume?[J]. SPE Production & Operations, 25(1): 89-98.

    Google Scholar

    Nie Zhou. 2018. Study on the Reservoir Characteristics of the Second Member of Xujiahe Formation in the Central Sichuan Area[D]. Chengdu: Chengdu University of Technology (in Chinese with English abstract).

    Google Scholar

    Ning Wenxiang, He Bai, Li Fengxia, Xie Lingzhi, Shi Aiping, He Qiang. 2021. Experimental study on fractures morphology of hydraulic fracturing in continental shale oil reservoir[J] Science Technology and Engineering, 21(18): 7505-7512 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2021.18.015

    CrossRef Google Scholar

    Renshaw C E, Pollard D D. 1994. Are large differential stresses required for straight fracture propagation paths?[J]. Journal of Structural Geology, 16(6): 817-822. doi: 10.1016/0191-8141(94)90147-3

    CrossRef Google Scholar

    Schmitt D R, Currie C A, Zhang L. 2012. Crustal stress determination from boreholes and rock cores: Fundamental principles[J]. Tectonophysics, 580: 1-26. doi: 10.1016/j.tecto.2012.08.029

    CrossRef Google Scholar

    Shen Haichao, Cheng Yuanfang, Wang Jingyin, Zhao Yizhong, Zhang Jianguo. 2008. Principal direction differential strain method for in-situ stress measurement and application[J]. Xinjiang Petroleum Geology, 29(2): 250-252 (in Chinese with English abstract).

    Google Scholar

    Shi Can, Lin Botao. 2021. Principles and influencing factors for shale formations[J]. Petroleum Science Bulletin, 6(1): 92-113 (in Chinese with English abstract).

    Google Scholar

    Wang Chenghu, Gao Guiyun, Wang Hong, Wang Pu. 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests[J]. Journal of Geomechanics, 26 (2): 167-174 (in Chinese with English abstract).

    Google Scholar

    Wang Chenghu. 2014. Brief review and outlook of main estimate and measurement methods for in situ stresses in rock mass[J]. Geological Review, 60(5): 971-991, 996, 992-995 (in Chinese with English abstract).

    Google Scholar

    Wang Hongwei. 2007. Study On Comprehensive Interpretation Method of Earth Stress In Different Tracts In Hailaer Oilfield[D]. Daqing: Daqing Petrolum Institute(in Chinese with English abstract).

    Google Scholar

    Wang Pu, Wang Chenghu, Yang Ruhua, Hou Zhengyang, Wang Hong. 2019. Preliminary investigation on the deep rock stresses prediction method based on stress polygon and focal mechanism solution[J]. Rock and Soil Mechanics, 40(11): 4486-4496 (in Chinese with English abstract).

    Google Scholar

    Wang S, Han F, Bing Q. 2021. Application of In-situ Stress Calculation in Engineering[C]//IOP Conference Series: Earth and Environmental Science, 660(1): 012040.

    Google Scholar

    Zeng Zhiping, Liu Zhen, Ma Ji, Zhang Chunlei, Li Jing, Liu Zhen, Sun Luning. 2019. A new method for fracrability evaluation in deep and tight sandstone reservoirs[J]. Journal of Geomechanics, 25(2): 223-232 (in Chinese with English abstract).

    Google Scholar

    Zhang R, Hou B, Han H, Fan M, Chen M. 2019. Experimental investigation on fracture morphology in laminated shale formation by hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 177: 442-451. doi: 10.1016/j.petrol.2019.02.056

    CrossRef Google Scholar

    Zhang Zhongyuan, Wu Manlu, Chen Qunce, Liao Chunting, Feng Chengjun. 2012. Review of in-situ stress measurement methods[J]. Journal of Henan Polytechnic University (Natural Science), 31(3): 305-310 (in Chinese with English abstract).

    Google Scholar

    Zhao Gang, Dong Shier. 2009. The theory of the measurement of ground stress by hydraulic fracturing method and its application[J]. Shanxi Architecture, 35(36): 77-78 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6825.2009.36.048

    CrossRef Google Scholar

    Zhao Jinghui, Gao Yuqiao, Chen Zhenlong, Guo Tao, Gao Xiaokang. 2021. Stress state of deep seam and its influence on development performance of CBM wells in South Yanchuan Block, Odors Basin[J]. Geology in China, 48(3): 785-793 (in Chinese with English abstract).

    Google Scholar

    Zhao Jinzhou, Li Yongming, Wang Song, Jiang Youshi, Zhang Liehui. 2014. Simulation of a complex fracture network influenced by natural fractures[J]. Natural Gas Industry, 34(1): 68-73 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2014.01.010

    CrossRef Google Scholar

    Zhao Yajun, Meng Nannan. 2015. Review of in-situ stress measurement methods[J]. Inner Mongolia Coal Economy, (5): 209-210(in Chinese). doi: 10.3969/j.issn.1008-0155.2015.05.126

    CrossRef Google Scholar

    Zhao Zhengwang, Li Nan, Liu Min, Wang Xiaojuan, Wu Changjiang, Li Li. 2019. Origin of gas accumulation and high yield in tight gas reservoirs of Xujiahe Formation, Sichuan Basin[J]. Natural Gas Exploration and Development, 42(2): 39-47 (in Chinese with English abstract).

    Google Scholar

    Zheng Herong, Liu Zhongqun, Xu Shilin, Liu Zhenfeng, Liu Junlong, Huang Zhiwen, Huang Yanqing, Shi Zhiliang, Wu Qingzhao, Fan Lingxiao, Gao Jinhui. 2021. Progress and key research directions of tight gas exploration and development in Xujiahe Formation, Sinopec exploration areas, Sichuan Basin[J]. Oil & Gas Geology, 42(4): 765-783 (in Chinese with English abstract).

    Google Scholar

    Zhu Hongquan, Zhang Zhuang, Nan Hongli, Ye Sujuan, Zhang Shihua, Wang Linghui. 2019. Reservoir formation and enrichment rules and exploration practices in overlying dense sandstone gas zones[J]. Natural Gas Industry, 39(S1): 9-16 (in Chinese).

    Google Scholar

    蔡美峰. 1993. 地应力测量原理和方法的评述[J]. 岩石力学与工程学报, 12(3): 275-283.

    Google Scholar

    曹慧, 孙东生, 苑坤, 李阿伟, 张光晗. 2020. 黔南地区~3 km油气深孔地应力测量与构造应力场分析[J]. 中国地质, 47(1): 88-98.

    Google Scholar

    陈念, 王成虎, 高桂云, 王璞. 2021. 基于应力多边形与钻孔崩落的白鹤滩右岸厂房区地应力场特征研究[J]. 岩土力学, 42(12): 3376-3384.

    Google Scholar

    丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 2015. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 30(7): 737-750.

    Google Scholar

    郭伟杰, 龚成, 李晶. 2010. 地应力测量方法及其需要注意的问题[J]. 价值工程, 29(25): 136-137.

    Google Scholar

    韩军, 刘洪涛. 2005. 差应变分析法在地应力方向研究中的应用[J]. 石油天然气学报(江汉石油学院学报), 27(2): 87-88, 95, 8.

    Google Scholar

    何小东, 马俊修, 石善志, 刘刚, 谭强. 2020. 玛湖油田致密砂砾岩储层岩心差应变实验[J]. 中国海上油气, 32(3): 86-93.

    Google Scholar

    纪志久, 卢国斌, 李岚. 2009. 地应力测量方法及工程应用研究[J]. 现代矿业, 25(11): 67-69.

    Google Scholar

    姜永东, 鲜学福, 许江. 2005. 岩石声发射Kaiser效应应用于地应力测试的研究[J]. 岩土力学, 26(6): 946-950.

    Google Scholar

    景锋, 梁合成, 边智华, 刘元坤. 2008. 地应力测量方法研究综述[J]. 华北水利水电学院学报, 29(2): 71-75.

    Google Scholar

    李国辉, 李楠, 谢继容, 杨家静, 唐大海. 2012. 四川盆地上三叠统须家河组前陆大气区基本特征及勘探有利区[J]. 天然气工业, 32(3): 15-21, 122-123.

    Google Scholar

    梁晨. 2020. 一种新的地应力测量方法理论及数值分析[D]. 武汉: 湖北工业大学.

    Google Scholar

    刘亚群, 李海波, 景锋, 罗超文, 陈炳瑞, 李俊如, 周青春. 2007. 考虑应力梯度的原生裂隙水压致裂法地应力测量的原理及工程应用[J]. 岩石力学与工程学报, 26(6): 1145-1149.

    Google Scholar

    刘泽凯, 陈耀林, 唐汝众. 1994. 地应力技术在油田开发中的应用[J]. 油气采收率技术, 1(1): 48-56, 85.

    Google Scholar

    马睿. 2014. 地应力在油气勘探开发中的应用[J]. 科技资讯, 12(31): 55-58.

    Google Scholar

    聂舟. 2018. 川中地区须家河组二段储层特征研究[D]. 成都: 成都理工大学, 1-4.

    Google Scholar

    宁文祥, 何柏, 李凤霞, 谢凌志, 史爱萍, 何强. 2021. 陆相页岩油储层水力压裂裂缝形态的试验[J]. 科学技术与工程, 21(18): 7505-7512.

    Google Scholar

    沈海超, 程远方, 王京印, 赵益忠, 张建国. 2008. 主方向差应变地应力测量方法[J]. 新疆石油地质, 29(2): 250-252.

    Google Scholar

    史璨, 林伯韬. 2021. 页岩储层压裂裂缝扩展规律及影响因素研究探讨[J]. 石油科学通报, 6(1): 92-113.

    Google Scholar

    王成虎. 2014. 地应力主要测试和估算方法回顾与展望[J]. 地质论评, 60(5): 971-991, 996, 992-995.

    Google Scholar

    王成虎, 高桂云, 王洪, 王璞. 2020. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度[J]. 地质力学学报, 26(2): 167-174.

    Google Scholar

    王宏伟. 2007. 海拉尔油田不同区块地应力综合解释方法研究[D]. 大庆: 大庆石油学院, 1-5.

    Google Scholar

    王璞, 王成虎, 杨汝华, 侯正阳, 王洪. 2019. 基于应力多边形与震源机制解的深部岩体应力状态预测方法初探[J]. 岩土力学, 40(11): 4486-4496.

    Google Scholar

    曾治平, 刘震, 马骥, 张春磊, 李静, 刘振, 孙鲁宁. 2019. 深层致密砂岩储层可压裂性评价新方法[J]. 地质力学学报, 25(2): 223-232.

    Google Scholar

    张重远, 吴满路, 陈群策, 廖椿庭, 丰成君. 2012. 地应力测量方法综述[J]. 河南理工大学学报(自然科学版), 31(3): 305-310.

    Google Scholar

    赵刚, 董事尔. 2009. 水压致裂法测量地应力理论与应用[J]. 山西建筑, 35(36): 77-78.

    Google Scholar

    赵景辉, 高玉巧, 陈贞龙, 郭涛, 高小康. 2021. 鄂尔多斯盆地延川南区块深部地应力状态及其对煤层气开发效果的影响[J]. 中国地质, 48(3): 785-793.

    Google Scholar

    赵金洲, 李勇明, 王松, 江有适, 张烈辉. 2014. 天然裂缝影响下的复杂压裂裂缝网络模拟[J]. 天然气工业, 34(1): 68-73.

    Google Scholar

    赵亚军, 孟楠楠. 2015. 地应力测量方法综述[J]. 内蒙古煤炭经济, (5): 209-210.

    Google Scholar

    赵正望, 李楠, 刘敏, 王小娟, 吴长江, 李莉. 2019. 四川盆地须家河组致密气藏天然气富集高产成因[J]. 天然气勘探与开发, 42(2): 39-47.

    Google Scholar

    郑和荣, 刘忠群, 徐士林, 刘振峰, 刘君龙, 黄志文, 黄彦庆, 石志良, 武清钊, 范凌霄, 高金慧. 2021. 四川盆地中国石化探区须家河组致密砂岩气勘探开发进展与攻关方向[J]. 石油与天然气地质, 42(4): 765-783.

    Google Scholar

    朱宏权, 张庄, 南红丽, 叶素娟, 张世华, 王玲辉. 2019. 叠覆型致密砂岩气区成藏富集规律与勘探实践[J]. 天然气工业, 39(S1): 9-16.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(1256) PDF downloads(74) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint