2024 Vol. 51, No. 2
Article Contents

ZHAO Yuru, GAO Da, HU Mingyi, ZHENG Chao, LI Jia, XIE Wuren. 2024. Controls of paleoclimate and sea−level changes on the high−frequency sequence of shallow−water carbonates: A case study of the Longwangmiao Formation in the central Sichuan Basin[J]. Geology in China, 51(2): 577-591. doi: 10.12029/gc20210809001
Citation: ZHAO Yuru, GAO Da, HU Mingyi, ZHENG Chao, LI Jia, XIE Wuren. 2024. Controls of paleoclimate and sea−level changes on the high−frequency sequence of shallow−water carbonates: A case study of the Longwangmiao Formation in the central Sichuan Basin[J]. Geology in China, 51(2): 577-591. doi: 10.12029/gc20210809001

Controls of paleoclimate and sea−level changes on the high−frequency sequence of shallow−water carbonates: A case study of the Longwangmiao Formation in the central Sichuan Basin

    Fund Project: Supported by the National Natural Science Foundation of China (No.41502104), Natural Science Foundation of Hubei Province (No.2017CFB533), the Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education (No.K2018−06).
More Information
  • Author Bio: ZHAO Yuru, female, born in 1997, Ph.D. candidate, engaged in the research of sedimentology and sequence stratigraphy; E-mail: zhaoyuru97@qq.com
  • Corresponding author: GAO Da, male, born in 1988, associate professor, engaged in the research and teaching of carbonate sedimentology and sequence stratigraphy; E-mail: gaoda18@vip.163.com
  • This paper is the result of oil and gas exploration engineering.

    Objective

    Clarifying the control mechanisms of ancient climate and sea level changes on high−frequency sequences and favorable reservoirs of shallow water carbonate rocks is of great significance for clarifying the genesis and distribution patterns of reservoirs.

    Methods

    Microfacies and sequence stratigraphy analysis and geochemical analysis including carbon and oxygen isotopes, major and trace elements with core samples were used.

    Results

    The Four types of microfacies including dolomitic lagoon, inter−shoal, grain shoal and tidal flat were identified in the Longwangmiao Formation. The Formation was subdivided into two fourth-order sequences which was regionally correlated. The δ13C of the Longwangmiao Formation vertically shows two periodical changes, which indicates two episodes of sea-level changes. This trend of sea-level change is consistent with the change of water depth reflected by the variations of Al2O3, TiO2, B and V values. Using carbon and oxygen isotopes coupled with the well−correlated Mg and Ca values, the estimated Z values and seawater temperaturesduring the deposition of the Formation collectively reflect arid and hot climates and a subtropical marine environment. Systematic variations in MgO/CaO, MnO2, Fe2O3/MnO2, and Al2O3/MgO values indicate a brief transition to warm and humid conditions during the early stages of the two successions, and the Sr/Ba values reflect the marked increase in late−stage seawater salinity during deposition.

    Conclusions

    A warm and humid climatecoupled with a rapid rise in sea level, led to the formation of transgressive systems tracts. During the hot and arid climates, rapid deposition of grain shoals and dolomitic tidal flat constitutes the highstand systems tracts. The grain shoal and dolomitic tidal−flat deposits serves as the material basis for high−quality reservoirs. Early dissolution and dolomitization processes occurring during sea−level fall and a hot and arid climate are crucial for reservoir development.

  • 加载中
  • [1] Bao Zhidong, Zhu Jingquan, Jiang Maosheng, Xia Yong. 1998. Isotope and trace element evolution: Responding to sea−level fluction—An example of Ordovician in middle Tarim basin[J]. Acta Sedimentary Sinica, 16(4): 32−36 (in Chinese with English abstract).

    Google Scholar

    [2] Catuneanu O, Sweet A R. 1999. Maastrichtian–Paleocene foreland basin stratigraphies, Western Canada: A reciprocal sequence architecture[J]. Canadian Journal of Earth Sciences, 36: 685−703. doi: 10.1139/e98-018

    CrossRef Google Scholar

    [3] Das B K, Haake B G. 2003. Geochemistry of Rewalsar Lake sediment, Lesser Himalaya, India: Implications for source–area weathering, provenance and tectonic setting[J]. Geosciences Journal, 7(4): 299–312.

    Google Scholar

    [4] Derry L A, Brasier M D, Corfield R M. 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian Craton: A Paleoenvironmental Record during the ‘Cambrian Explosion’[J]. Earth and Planetary Science Letters, 128(3/4): 678−681.

    Google Scholar

    [5] Du Jinhu, Zhang Baoming, Wang Zecheng, Zou Caineng, Xu Chunchun, Shen Ping, Zhang Jian, Zhang Jing, Jiang Hua, Wen Long, Shan Xiuqin, Liu Jingjiang. 2016. Sedimentary model and reservoir genesis of dual grain banks at the Lower Cambrian Longwangmiao Fm. carbonate ramp in the Sichuan Basin[J]. Natural Gas Industry, 36(6): 1−10 (in Chinese with English abstract).

    Google Scholar

    [6] Epstein S, Mayeda T K. 1953. Variation of O18 content of waters from natural sources[J]. Geochimica et Cosmochimica Acta, 4P: 213.

    Google Scholar

    [7] Frébourg G, Hasler C A, Davaud E. 2012. Uplifted marine terraces of the Akamas Peninsula (Cyprus): Evidence of climatic conditions during the Late Quaternary highstands[J]. Sedimentology, 59(5): 1409−1425. doi: 10.1111/j.1365-3091.2011.01310.x

    CrossRef Google Scholar

    [8] Gao D, Lin C S, Yang H J, Zuo FF, Cai Z Z, Zhang L J, Liu J Y, Li H. 2014. Microfacies and depositional environments of the Late Ordovician Lianglitage Formation at the Tazhong Uplift in the Tarim Basin of northwest China[J]. Journal of Asian Earth Sciences, 83(4): 1−12.

    Google Scholar

    [9] Gao Da, Hu Mingyi, Li Anpeng, Yang Wei, Xie Wuren, Sun Chunyan. 2021. High–frequency sequence and microfacies and their impacts on favorable reservoir of the Longwangmiao Formation in the central Sichuan Basin[J]. Earth Science, 46(10): 3520−3534 (in Chinese with English abstract).

    Google Scholar

    [10] Gao Da, Lin Changsong, Hu Mingyi, Huang Lili. 2016. Using spectral gamma ray log to recognize high–frequency sequences in carbonate strata: A case study from the Lianglitage Formation from Well T1 in Tazhong area, Tarim Basin[J]. Acta Sedimentologica Sinica, 34(4): 707−715 (in Chinese with English abstract).

    Google Scholar

    [11] Gao Da, Wang Mingming, Tao Ye, Huang Lili, Sun Chunyan, Huang Xinmiao, Wu Jianwei. 2022. Control of sea level changes on high–frequency sequence and sedimentary evolution of Lianglitage Formation in the Tazhong Area[J]. Geology in China, 49(6): 1936−1950 (in Chinese with English abstract).

    Google Scholar

    [12] Gattolin G, Preto N, Breda A, Franceschi M, Isotton M, Gianolla P. 2015. Sequence stratigraphy after the demise of a high–relief carbonate platform (Carnian of the Dolomites): Sea–level and climate disentangled[J]. Paleogeography, Palaeoclimatology, Paleoecology, 423: 1–17.

    Google Scholar

    [13] Handford C R, Loucks R G. 1993. Carbonate depositional sequences and systems tracts—Responses of carbonate platform to relative sea–level changes[J]. Carbonate Sequence Stratigraphy: Recent Developments and Applications. Tulsa, Oklahoma: AAPG, 3–42.

    Google Scholar

    [14] Haq B U, Schutter S R. 2008. A chronology of Paleozoic sea–level changes[J]. Science, 322(5898): 64−69. doi: 10.1126/science.1161648

    CrossRef Google Scholar

    [15] Horacek M, Brandner R, Abart R. 2007. Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: Evidence for rapid changes in storage of organic carbon[J]. Paleogeography, Paleoclimatology, Paleoecology, 252(1/2): 347–354.

    Google Scholar

    [16] Hu Anping, Shen Anjiang, Yang Hanxuan, Zhang Jie, Wang Xin, Yang Liu, Meng Shaoxing. 2019. Dolomite genesis and reservoircap rock assemblage in carbonate–evaporite paragenesis system[J]. Petroleum Exploration and Development, 46(5): 916−928 (in Chinese with English abstract).

    Google Scholar

    [17] Ji Zhansheng, Yao Jianxin, Wu Guichun, Sun Qian, Shi Qiuyuan, Li Hao, He Jifu, Zhang Shaowen. 2018. Land submerged to carbonate platform by conodonts: Paleoenvironment reconstruction of the western Gangdese in Tibet during Triassic[J]. China Geology, 1(3): 450−452.

    Google Scholar

    [18] Jiang Gaolei, Wang Danang, Li Zhuolun, Li Meng, Su Xianbao, Ning Kai. 2022. Distribution pattern of saline minerals in surface sediments from lakes in the Badain Jaran desert and its implications for climate–environmental reconstruction [J/OL]. Geology in China.https://kns.cnki.net/kcms/detail/11.1167.P.20220524.1358.002.html (in Chinese with English abstract).

    Google Scholar

    [19] Jiang Wei, Gao Zhiqian, Hu Zongquan, Zhao Yongqiang, Chu Chenglin. 2021. Sedimentary filing evolution and hydrocarbon control of high frequency sequence in Yurtus Formation, Tarim Basin[J]. Geoscience, 35(2): 349−364 (in Chinese with English abstract).

    Google Scholar

    [20] Jin Lina, Shan Xin, Wang Zhe, Wang Rui. 2016. Progress on sequence stratigraphy of the Middle Cambrian in Beijing Western Mountain[J]. Marine Geology Frontiers, 32(12): 1–9(in Chinese with English abstract).

    Google Scholar

    [21] Jin Z D, Li F C, Cao J J. 2006. Geochemistry of Daihai Lake sediments, Inner Mongolia, North China: Implications for provenance, sedimentary sorting, and catchment weathering[J]. Geomorphology, 80(3/4): 147–163.

    Google Scholar

    [22] Keith M H, Weber J N. 1964. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 28: 1787–1816.

    Google Scholar

    [23] Kump L P. 1991. Interpreting Carbon–Isotope Excursions, Strangelove Oceans[J]. Geology, 19: 299–302.

    Google Scholar

    [24] Li Rufeng, Liu Benpei. 1996. Application of carbon and oxygen isotopes to carbonate sequence stratigraphy: Analysis of Maping Formation, Southern Guizhou Province[J]. Earth Science—Journal of China University of Geosciences, 21(3): 29−34 (in Chinese with English abstract).

    Google Scholar

    [25] Li Yucheng. 1998. The carbon isotope cyclostratigraphic responses to sea level change in upper Permian limestones from South China[J]. Acta Sedimentary Sinica, 16(3): 52–53, 55–57 (in Chinese with English abstract).

    Google Scholar

    [26] Liang Wenjun, Xiao Chuantao, Xiao Kai, Lin Wan. 2015. The relationship of Late Jurassic paleoenvironment and paleoclimate with geochemical elements in Amdo Country of northern Tibet[J]. Geology in China, 42(4): 1079−1091 (in Chinese with English abstract).

    Google Scholar

    [27] Liu Lin, Wang Dazhao, Chen Aizhang, Cai Xiongwei. 2024. Distribution, occurrence and exploration prospect of associated rare earth elements in Yichang phosphate deposit, Hubei Province [J]. Geology in China, 51(2): 526−547 (in Chinese with English abstract).

    Google Scholar

    [28] Luo Shunshe, Shang Fei, Lü Qiqi, Zhang Jiankun, Dan Weidong, Zhao Wendong. 2011. Sedimentary facies and geochemical features of Mesoproterozoic Gaoyuzhuang–Wumishan Formations in Xuanlong Depression, Yanshan[J]. Marine Origin Petroleum Geology, 16(4): 57−61 (in Chinese with English abstract).

    Google Scholar

    [29] Luo Shunshe, Wang Kaiming. 2010. The application of element geochemical characteristics to the recognition of carbonate sedimentary sequence boundary: A case study of the Mesoproterozoic Gaoyuzhuang Formation in northern Hebei depression[J]. Geology in China, 37(2): 430−437 (in Chinese with English abstract).

    Google Scholar

    [30] Petty D M. 2010. Sequence stratigraphy and sequence boundary characteristics for upper Tournaisian (Mississippian) strata in the greater Williston basin area: An analysis of a third–order cratonic carbonate–evaporite depositional cycle[J]. Bulletin of Canadian Petroleum Geology, 58(4): 375−402. doi: 10.2113/gscpgbull.58.4.375

    CrossRef Google Scholar

    [31] Prince J K G, Rainbird R H, Wing B A. 2019. Evaporite deposition in the mid–Neoproterozoic as a driver for changes in seawater chemistry and the biogeochemical cycle of sulfur[J]. Geology, 47(4): 375−379. doi: 10.1130/G45464.1

    CrossRef Google Scholar

    [32] Ren Dawei, Jiang Wei, Gao Da, Du Liu, Luo Xianfu. 2018. Control of sedimentary facies and high−frequency sequences on the reservoir of LongwangmiaoFormation in Moxi area, Central Sichuan basin[J]. Geology and Resources, 27(1): 77–82 (in Chinese with English abstract).

    Google Scholar

    [33] Ren Ying, Zhong Dakang, Liu Huilin, Liang Ting, Sun Haitao, Gao Chonglong, Zheng Xiaowei. 2018. Isotopic and elemental for Paleoenvironmental of Cambrian Stage 4 Longwangmiao Formation, East Chongqing, China[J]. Earth Science, 43(11): 4066−4095 (in Chinese with English abstract).

    Google Scholar

    [34] Shao Longyi. 1994. The radition of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc[J]. Journal of China University of Mining & Technology, 23(1): 39−45 (in Chinese with English abstract).

    Google Scholar

    [35] Song Mingshui. 2005. Sedimentary environment geochemistry in the Shasi Section of Southern ramp, Dongying Depression. [J]. Mineralogy and Petrology, (1): 67–73(in Chinese with English abstract).

    Google Scholar

    [36] Sun Haitao, Zhang Yuyin, Liu Huilin, Xie Rui, Yang Xueqi, Ren Ying. 2018. Typological analysis and genetic mechanism of dolomite in the lower Cambrian Longwangmiao Formation, eastern Sichuan Basin[J]. Oil and Gas Geology, 39(2): 318−329 (in Chinese with English abstract).

    Google Scholar

    [37] Tian Jingchun, Chen Gaowu, Zhang Xiang, Nie Yongsheng, Zhao Qiang, Wei Dongxiao. 2006. Application of sedimentary geochemistry in the analysis of sequence stratigraphy[J]. Journal of Chengdu University of Technology (Science & Technology Edition), (1): 30−35 (in Chinese with English abstract).

    Google Scholar

    [38] Tian Yang, Zhao Xiaoming, Wang Lingzhan, Tu Bing, Zeng Bofu. 2014. Geochemical characteristics and its paleoenvironmental implication of Permian Qixia Formation in Shizhu, Chongqing[J]. Acta Sedimentologica Sinica, 32(6): 1035−1045 (in Chinese with English abstract).

    Google Scholar

    [39] Wang Chuanshang, Li Zhihong, Peng Zhongqin, Wang Baozhong, Zhang Guotao. 2014. The carbon isotope variation and its responses to sea level changes during the Late Early Devonian period in Guizhou and Guangxi[J]. Geology in China, 41(6): 2039−2047 (in Chinese with English abstract).

    Google Scholar

    [40] Wang Kaiming, Luo Shunshe. 2009. Strontium isotope and trace element characteristics of marine carbonate and sea level fluctuation[J]. Marine Geology & Quaternary Geology, 29(6): 51−58 (in Chinese with English abstract).

    Google Scholar

    [41] Wang Yuan, Lin Changsong, Li Hao, Sun Yanda, He Haiquan, Wang Qinglong, Zhang Manli, Ji Muye. 2017. Characteristics of high–frequency sequence and sedimentary evolution of the Lower Carboniferous in Marsel block, Kazakhstan[J]. Journal of Palaeogeography, 19(5): 819−834 (in Chinese with English abstract).

    Google Scholar

    [42] Wei Guoqi, Yang Wei, Du Jinhu, Xu Chunchun, Zou Caineng, Xie Wuren, Wu Saijun, Zeng Fuying. 2015. Tectonic features of Gaoshiti–Moxi paleo–uplift and its controls on the formation of a giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 42(3): 257−265 (in Chinese with English abstract).

    Google Scholar

    [43] Wen Huaguo, Huo Fei, Guo Pei, Ning Meng, Liang Jintong, Zhong Yijiang, Su Zhongtang, Xu Wenli, Liu Sibin, Wen Longbin, Jiang Huachuan. 2021. Advances and prospects of dolostone−evaporite paragenesis system[J]. Acta Sedimentary Sinica, 39(6): 1321–1343 (in Chinese with English abstract).

    Google Scholar

    [44] Xiao D, Cao J, Tan X C, Xiong Y, Zhang D F, Dong G D, Lu Z X. 2021. Marine carbonate reservoirs formed in evaporite sequences in sedimentary basins: A review and new model of epeiric basin–scale moldic reservoirs[J]. Earth–Science Reviews, 223: 103860.

    Google Scholar

    [45] Xiong Xiaohui, Xiao Jiafei. 2011. Geochemical indicators of sedimentary environments—A Summary[J]. Earth and Environment, 39(3): 405−414 (in Chinese with English abstract).

    Google Scholar

    [46] Yang Xuefei, Wang Xingzhi, Tang Hao, Jiang Nan, YangYueming, Xie Jirong, Luo Wenjun. 2015. Research sedimentary microfacies of the Longwangmiao Formation in Moxi Area, Central Sichuan Basin[J]. Acta Sedimentologica Sinica, 33(5): 972−982 (in Chinese with English abstract).

    Google Scholar

    [47] Yao Genshun, Zhou Jingao, Zou Weihong, Zhang Jianyong, Pan Liyin, Hao Yi, Wang Fang, Gu Mingfeng, Dong Yong, Zheng Jianfeng, Ni Chao, Xin Yongguang. 2013. Characteristics and distribution rule of Lower Cambrian Longwangmiao grain beach in Sichuan Basin[J]. Marine Origin Petroleum Geology, 18(4): 1−8 (in Chinese with English abstract).

    Google Scholar

    [48] Zeng Hongliu, Zhao Wenzhi, Xu Zhaohui, Fu Qilong, Hu Suyun, Wang Zecheng, Li Bohua. 2018. Carbonate seismic sedimentology: A case study of Cambrian Longwangmiao Formation, Gaoshiti–Moxi area, Sichuan Basin, China[J]. Petroleum Exploration and Development, 45(5): 775−784 (in Chinese with English abstract).

    Google Scholar

    [49] Zhao Zongju. 2015. Indicators of global sea–level change and research methods of marine tectonic sequences: Take Ordovician of Tarim Basin as an example[J]. Acta Petrolei Sinica, 36(3): 262−273 (in Chinese with English abstract).

    Google Scholar

    [50] Zhang Y X, Chen J W, Zhou J Y, Yuan Y. 2019. Sedimentological sequence and depositional evolutionary model of Lower Triassic carbonate rocks in the South Yellow Sea Basin[J]. China Geology, 2(3): 301−314.

    Google Scholar

    [51] Zhong Shoukang, Tan Xiucheng, Nie Wancai, Zhang Daofeng, Yang Mengying, Lu Zixing, Zhang XinYue, Xiao Di. 2022. High–frequency cyclic sequence of the Ma56 submember of Middle Ordovician Majiagou Formation in Ordos Basin: Indication for sea–level change and sedimentary differentiation effect of Hengshan uplift[J]. Journal of Palaeogeography, 24(2): 245−260 (in Chinese with English abstract).

    Google Scholar

    [52] 鲍志东, 朱井泉, 江茂生, 夏勇. 1998. 海平面升降中的元素地球化学响应——以塔中地区奥陶纪为例[J]. 沉积学报, 16(4): 32−36.

    Google Scholar

    [53] 杜金虎, 张宝民, 汪泽成, 邹才能, 徐春春, 沈平, 张健, 张静, 周慧, 姜华, 文龙, 单秀琴, 刘静江. 2016. 四川盆地下寒武统龙王庙组碳酸盐缓坡双颗粒滩沉积模式及储层成因[J]. 天然气工业, 36(6): 1−10. doi: 10.3787/j.issn.1000-0976.2016.06.001

    CrossRef Google Scholar

    [54] 高达, 胡明毅, 李安鹏, 杨威, 谢武仁, 孙春燕. 2021. 川中地区龙王庙组高频层序与沉积微相及其对有利储层的控制[J]. 地球科学, 46(10): 3520−3534.

    Google Scholar

    [55] 高达, 林畅松, 胡明毅, 黄理力. 2016. 利用自然伽马能谱测井识别碳酸盐岩高频层序——以塔里木盆地塔中地区T1井良里塔格组为例[J]. 沉积学报, 34(4): 707−715.

    Google Scholar

    [56] 高达, 王明敏, 陶叶, 黄理力, 孙春燕, 黄鑫淼, 武建伟. 2022. 塔中地区良里塔格组海平面变化对高频层序和沉积演化的控制[J]. 中国地质: 49(6): 1936–1950.

    Google Scholar

    [57] 胡安平, 沈安江, 杨翰轩, 张杰, 王鑫, 杨柳, 蒙绍兴. 2019. 碳酸盐岩—膏盐岩共生体系白云岩成因及储盖组合[J]. 石油勘探与开发, 46(5): 916−928.

    Google Scholar

    [58] 姜高磊, 王乃昂, 李卓仑, 李孟, 苏贤保, 宁凯. 2022. 巴丹吉林沙漠湖泊表层沉积物盐类矿物分布及对气候环境的指示[J/OL]. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20220524.1358.002.html.

    Google Scholar

    [59] 江维, 高志前, 胡宗全, 赵永强, 储呈林. 2021. 塔里木盆地玉尓吐斯组高频层序沉积充填演化特征及控烃作用[J]. 现代地质, 35(2): 349−364.

    Google Scholar

    [60] 金丽娜, 单新, 王喆, 王睿. 2016. 北京西山中寒武统层序发育与控制因素[J]. 海洋地质前沿, 32(12): 1−9.

    Google Scholar

    [61] 李儒峰, 刘本培. 1996. 碳氧同位素演化与碳酸盐岩层序地层学关系研究[J]. 地球科学—中国地质大学学报, 21(3): 29−34.

    Google Scholar

    [62] 李玉成. 1998. 华南晚二叠世碳酸盐岩碳同位素旋回对海平面变化的响应[J]. 沉积学报, 16(3): 52–53, 55–57.

    Google Scholar

    [63] 梁文君, 肖传桃, 肖凯, 林婉. 2015. 藏北安多晚侏罗世古环境、古气候与地球化学元素关系研究[J]. 中国地质, 42(4): 1079−1091.

    Google Scholar

    [64] 刘林, 王大钊, 陈爱章, 蔡雄威. 2024. 湖北宜昌磷矿伴生稀土元素分布规律、赋存状态及其开发利用前景分析[J]. 中国地质.51(2): 526−547.

    Google Scholar

    [65] 罗顺社, 尚飞, 吕奇奇, 张建坤, 淡卫东, 赵文栋. 2011. 燕山地区宣龙坳陷高于庄组—雾迷山组沉积相与地球化学特征[J]. 海相油气地质, 16(4): 57−61.

    Google Scholar

    [66] 罗顺社, 汪凯明. 2010. 元素地球化学特征在识别碳酸盐岩层序界面中的应用——以冀北坳陷中元古界高于庄组为例[J]. 中国地质, 37(2): 430−437.

    Google Scholar

    [67] 任大伟, 江维, 高达, 杜柳, 罗贤富. 2018. 川中磨溪地区龙王庙组沉积相与高频层序对储层的控制[J]. 地质与资源, 27(1): 77−82.

    Google Scholar

    [68] 任影, 钟大康, 柳慧琳, 梁婷, 孙海涛, 高崇龙, 郑晓薇. 2018. 渝东地区寒武系第四阶龙王庙组古环境演化的稳定同位素与主、微量元素证据[J]. 地球科学, 43(11): 4066−4095.

    Google Scholar

    [69] 邵龙义. 1994. 碳酸盐岩氧、碳同位素与古温度等的关系[J]. 中国矿业大学学报, 23(1): 39−45.

    Google Scholar

    [70] 宋明水. 2005. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石, (1): 67–73.

    Google Scholar

    [71] 孙海涛, 张玉银, 柳慧林, 谢瑞, 杨雪琪, 任影. 2018. 四川盆地东部下寒武统龙王庙组白云岩类型及其成因[J]. 石油与天然气地质, 39(2): 318−329.

    Google Scholar

    [72] 田景春, 陈高武, 张翔, 聂永生, 赵强, 韦东晓. 2006. 沉积地球化学在层序地层分析中的应用[J]. 成都理工大学学报(自然科学版), (1): 30−35.

    Google Scholar

    [73] 田洋, 赵小明, 王令占, 涂兵, 谢国刚, 曾波夫. 2014. 重庆石柱二叠纪栖霞组地球化学特征及其环境意义[J]. 沉积学报, 32(6): 1035−1045.

    Google Scholar

    [74] 汪凯明, 罗顺社. 2009. 海相碳酸盐岩锶同位素及微量元素特征与海平面变化[J]. 海洋地质与第四纪地质, 29(6): 51−58.

    Google Scholar

    [75] 王传尚, 李志宏, 彭中勤, 王保忠, 张国涛. 2014. 黔桂地区早泥盆世晚期碳稳定同位素变化及其对海平面变化的响应[J]. 中国地质, 41(6): 2039−2047.

    Google Scholar

    [76] 王媛, 林畅松, 李浩, 孙彦达, 何海全, 王清龙, 张曼莉, 姬牧野. 2017. 哈萨克斯坦Marsel探区下石炭统高频层序地层特征与沉积演化[J]. 古地理学报, 19(5): 819−834.

    Google Scholar

    [77] 魏国齐, 杨威, 杜金虎, 徐春春, 邹才能, 谢武仁, 武赛军, 曾富英. 2015. 四川盆地高石梯—磨溪古隆起构造特征及对特大型气田形成的控制作用[J]. 石油勘探与开发, 42(3): 257−265.

    Google Scholar

    [78] 文华国, 霍飞, 郭佩, 甯濛, 梁金同, 钟怡江, 苏中堂, 徐文礼, 刘四兵, 温龙彬, 蒋华川. 2021. 白云岩—蒸发岩共生体系研究进展及展望[J]. 沉积学报, 39(06): 1321−1343.

    Google Scholar

    [79] 熊小辉, 肖加飞. 2011. 沉积环境的地球化学示踪[J]. 地球与环境, 39(3): 405−414.

    Google Scholar

    [80] 杨雪飞, 王兴志, 唐浩, 姜楠, 杨跃明, 谢继荣, 罗文军. 2015. 四川盆地中部磨溪地区龙王庙组沉积微相研究[J]. 沉积学报, 33(5): 972−982.

    Google Scholar

    [81] 姚根顺, 周进高, 邹伟宏, 张建勇, 潘立银, 郝毅, 王芳, 谷明峰, 董庸, 郑剑锋, 倪超, 辛勇光. 2013. 四川盆地下寒武统龙王庙组颗粒滩特征及分布规律[J]. 海相油气地质, 18(4): 1−8.

    Google Scholar

    [82] 曾洪流, 赵文智, 徐兆辉, 傅启龙, 胡素云, 汪泽成, 李伯华. 2018. 地震沉积学在碳酸盐岩中的应用——以四川盆地高石梯—磨溪地区寒武系龙王庙组为例[J]. 石油勘探与开发, 45(5): 775−784.

    Google Scholar

    [83] 赵宗举. 2015. 全球海平面变化指标及海相构造层序研究方法——以塔里木盆地奥陶系为例[J]. 石油学报, 36(3): 262−273.

    Google Scholar

    [84] 钟寿康, 谭秀成, 聂万才, 张道锋, 杨梦颖, 卢子兴, 张欣玥, 肖笛. 2022. 鄂尔多斯盆地中奥陶统马五6亚段高频旋回层序研究: 论海平面升降与横山凸起沉积分异效应[J]. 古地理学报, 24(2): 245−260.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(967) PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint