2023 Vol. 50, No. 2
Article Contents

ZHANG Sen, JU Nan, WU Yue, GUO Changlai, MA Wei, ZHOU Yongheng, ZHANG Yanfei. 2023. Distribution characteristics, main types and exploration and development status of beryllium deposit[J]. Geology in China, 50(2): 410-424. doi: 10.12029/gc20210723002
Citation: ZHANG Sen, JU Nan, WU Yue, GUO Changlai, MA Wei, ZHOU Yongheng, ZHANG Yanfei. 2023. Distribution characteristics, main types and exploration and development status of beryllium deposit[J]. Geology in China, 50(2): 410-424. doi: 10.12029/gc20210723002

Distribution characteristics, main types and exploration and development status of beryllium deposit

    Fund Project: Supported by National Natural Science Foundation of China (No.42102087), China Postdoctoral Science Foundation (No.2022M712966) and Construction of Bulk Mineral Database on Qinghai-Tibet Plateau (No.2021QZKK0304)
More Information
  • Author Bio: ZHANG Sen, male, born in 1983, master, senior engineer, mainly engaged in metallogenic law, metallogenic prediction and uranium deposit investigation; E-mail: zhangsen556@163.com
  • Corresponding author: JU Nan, male, born in 1986, doctor, senior engineer, engaged in solid mineral survey and research; E-mail: junan-cgs@qq.com 
  • This paper is the result of mineral exploration engineering.

    Objective

    As the lightest alkaline earth metal, beryllium has become an excellent functional and structural material. Due to its special physical and chemical characteristics such as density, stiffness and melting point, it has great scientific and economic value for researching the genetic mechanism, exploration and development.

    Methods

    In this paper, the characteristics, genesis and exploration technology of typical beryllium deposits in the domestic and overseas are systematically sorted out and summarized. The metallogenic rules are summarized from time and space scales by means of similarity and analogy, and the exploration, development and utilization suggestions are also put forward.

    Results

    Beryllium deposits can be divided into endogenous and exogenous types. Exogenous beryllium deposits can be subdivided into different deposit types related to weathering or metamorphism. According to the alkali-aluminum properties of magma system, endogenous beryllium deposits can be subdivided into peraluminous, metaluminous and peralkaline metallogenic systems. According to the fluid evolution stage, it can be subdivided into magma type, pegmatite type and magma hydrothermal type.

    Conclusions

    From the perspective of metallogenic age, the beryllium mineralization in either peraluminous, metaluminous or peralkaline systems is concentrated in the Mesozoic. Yanshanian is the main metallogenic period of beryllium deposits. From the perspective of metallogenic structure background, the magma type is often produced in post-collision environments, the magmatic hydrothermal type is produced on the continental margin, and the pegmatite type is basically produced in the orogenic belt. Beryllium is one of the new materials, which will play an important role in energy conservation, emission reduction and carbon neutralization in the future. Research on comprehensive utilization and recovery technology of beryllium deposits should be strengthened.

  • 加载中
  • Adams D T, Hofstra A H, Cosca M A, Todorov T I, Marsh E E. 2009. Age of sanidine and composition of melt inclusions in quartz phenocrysts from volcanic rocks associated with large Mo and Be deposits in the Western United States[J]. Geological Society of America, 41(7): 255.

    Google Scholar

    Agency for Toxic Substances and Disease Registry. 2002. Toxicological profile for beryllium: Atlanta, Ga., U.S. Department of Health and Human Services[J]. Public Health Service, 247(plus 4): 21-29.

    Google Scholar

    Alexsandrov S M. 2010. Skarn-greisen deposits of the lost river and mount ear ore field, Seward Peninsula, Alaska, United States[J]. Geochemistry International, 48(12): 1220-1236. doi: 10.1134/S0016702910120062

    CrossRef Google Scholar

    Bao Shandong, Zeng Biao, Bai Zonghai, Huang Qinghua, Yuan Yongtao, Qi Wen, Xiong Shoujia. 2022. Application of comprehensive geophysical prospecting method in exploration of lithium-beryllium rare metal and rare earth ores[J]. Geology and Resources, 31(1): 59-68 (in Chinese with English abstract).

    Google Scholar

    Barton M D. 1986. Phase equilibria and thermodynamic properties of minerals in the BeO-Al2O3-SiO2-H2O(BASH) system, with petrologic applications[J]. American Mineralogist, 71(3/4): 277-300.

    Google Scholar

    Barton M D, Young S. 2002. Non-pegmatitic deposits of beryllium——Mineralogy, geology, phase equilibria and origin[J]. Reviews in Mineralogy and Geochemistry, 50(1): 591-691. doi: 10.2138/rmg.2002.50.14

    CrossRef Google Scholar

    Beus A A. 1966. Geochemistry of Beryllium and Genetic Types of Beryllium Deposits[M]. San Francisco: W. H. Freeman and Company, 1-401.

    Google Scholar

    Bhat P N, Ghosh D K, Desai M V. 2002. Immobilisation of beryllium in solid waste (red-mud) by fxation and vitrifcation[J]. Waste Management, 22(5): 549-556. doi: 10.1016/S0956-053X(02)00013-2

    CrossRef Google Scholar

    Bradley D, McCauley A. 2013. A Preliminary Deposit Model for Lithium-Cesium-Tantalum (LCT) Pegmatites[M]. Reston, VA: U.S. Geological Survey, 1-7.

    Google Scholar

    Browning J S. 1961. Flotation of spodumene-beryl ores[J]. Mining Engineering, 17(7): 706-708.

    Google Scholar

    Browning J S, McVay T L, Bennett P E. 1964. Continuous Flotation of Beryl from Spodumene Mill Tailings[M]. North Carolina: Foote Mineral Company, 1-24.

    Google Scholar

    Bruce R M, Odin M. 2001. Beryllium and Beryllium Compounds[M]. Geneva: World Health Organization, 1-71.

    Google Scholar

    Brush Engineered Materials, Inc. 2009. Transforming Our World and Yours——Annual Report[M]. Ohio: Brush Engineered Materials, Inc, 1-122.

    Google Scholar

    Burt D M, Sheridan M F, Bikun J V, Christiansen E H. 1982. Topaz rhyolites——Distribution, origin, and significance for exploration[J]. Economic Geology, 77(8): 1818-1836. doi: 10.2113/gsecongeo.77.8.1818

    CrossRef Google Scholar

    Černý P. 2002. Mineralogy of beryllium in granitic pegmatites[J]. Reviews in Mineralogy and Geochemistry, 50(1): 405-444. doi: 10.2138/rmg.2002.50.10

    CrossRef Google Scholar

    Černý P, Linnen R L, Samson I M. 2005. The Tanco rare-element pegmatite deposit, Manitoba——Regional context, internal anatomy, and global comparisions[J]. Rare Element Geochemistry and Mineral Deposits, 17: 127-158.

    Google Scholar

    Černý P, London D, Novák M. 2012. Granitic pegmatites as reflections of their sources[J]. Elements, 8(4): 289-294. doi: 10.2113/gselements.8.4.289

    CrossRef Google Scholar

    Day G A, Stefaniak A B, Weston A, Tinkle S S. 2006. Beryllium exposure——Dermal and immunological considerations[J]. International Archives of Occupational and Environmental Health, 79(2): 161-164. doi: 10.1007/s00420-005-0024-0

    CrossRef Google Scholar

    Deng Wei, Yan Shiqiang, Tan Hongqi, Yang Yaohui, Wang Changliang. 2023. General situation of beryllium ore resources and research status of mineral processing technology in China[J]. Multipurpose Utilization of Mineral Resources, 44(1): 148-154 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6532.2023.01.020

    CrossRef Google Scholar

    Deubner D, Kelsh M, Shum M, Maier L, Kent M, Lau E. 2001. Beryllium sensitization, chronic berylliumdisease, and exposures at a beryllium mining and extraction facility[J]. Applied Occupational and Environmental Hygiene, 16(5): 579-592. doi: 10.1080/104732201750169697

    CrossRef Google Scholar

    Deubner D, Sabey P, Huang W, Fernandez D, Rudd A, Johnson W P, Storrs J, Larson R. 2011. Solubility and chemistry of materials encountered by beryllium mineand ore extraction workers——Relation to risk[J]. Journal of Occupational and Environmental Medicine, 53(10): 1187-1193. doi: 10.1097/JOM.0b013e31822cfe38

    CrossRef Google Scholar

    Dobson D. 1982. Geology and alteration of the Lost Rivertin-tungsten-fluorine deposit, Alaska[J]. Economic Geology, 77(4): 1033-1052. doi: 10.2113/gsecongeo.77.4.1033

    CrossRef Google Scholar

    Duling M G, Stefaniak A B, Lawrence R B, Chipera S J, Abbas Virji M. 2012. Release of beryllium frommineral ores in artifcial lung and skin surface fluids[J]. Environmental Geochemistry and Health, 34(3): 313-322. doi: 10.1007/s10653-011-9421-3

    CrossRef Google Scholar

    Eckel W P, Jacob T A. 1988. Ambient levels of 24 dissolved metals in US surface and ground waters[J]. Preprints of Papers Presented at National Meeting, Division of Water, Air and Waste Chemistry, American Chemical Society, 28(2): 371-372.

    Google Scholar

    Emsley J. 2001. Nature's Building Blocks——An A-Z guide to the Elements[M]. Oxford: Oxford University Press, 1-538.

    Google Scholar

    Engell J, Hansen J, Jensen M, Kunzendorf H, Løvborg L. 1971. Beryllium mineralization in the Ilimaussaq intrusion, south Greenland, with description of a feldberyllometer and chemical methods[J]. Copenhagen University, Mineralogical and Geological Museum, Contributions to Mineralogy, 82(33): 1-40.

    Google Scholar

    Epstein W L. 1991. Cutaneous Effects of Beryllium[M]. Baltimore: Williams and Wilkins, 113-117.

    Google Scholar

    Foley N K, Hofstra A H, Lindsey D A, Seal R R, Jaskula B, Piatak N M. 2012. Occurrence Model for Volcanogenic Beryllium Deposits[M]. Reston, Virginia: U.S. Geological Survey, 1-43.

    Google Scholar

    Gaillardet J, Viers J, Dupré B. 2003. Trace Elementsin River Waters[M]. Oxford: Elsevier-Pergamon, 225-227.

    Google Scholar

    Galeschuk C, Vanstone P. 2005. Exploration for buried rare element pegmatites in the Bernic Lake area of southeastern Manitoba[J]. Geological Association of Canada Short Course Notes, 17: 159-173.

    Google Scholar

    Galeschuk C, Vanstone P. 2007. Exploration techniques for rare-element pegmatite in the Bird-River Greenstone Belt, southeastern Manitoba[J]. Ore Deposits and Exploration Technology, 55: 823-839.

    Google Scholar

    Global Industry Analysts, Inc. 2012. Global Beryllium Marketto Reach 505.6 Metric Tons by 2017[M]. California: Global Industry Analysts, Inc, 1-32.

    Google Scholar

    Glover A S, Rogers W Z, Barton J E. 2012. Granitic pegmatites-Storehouses of industrial minerals[J]. Elements, 8(4): 269-273. doi: 10.2113/gselements.8.4.269

    CrossRef Google Scholar

    Graedel T E, Allwood J, Birat J P, Buchert M, Hagelüken C, Reck B K, Sibley S F, Sonnemann G. 2011. What do we know about metal recycling rates[J]. Journal of Industrial Ecology, 15(3): 355-366. doi: 10.1111/j.1530-9290.2011.00342.x

    CrossRef Google Scholar

    Grew E S. 2002. Mineralogy, petrology and geochemistry of beryllium-An introduction and list of beryllium minerals[J]. Reviews in Mineralogy and Geochemistry, 50(1): 1-76. doi: 10.2138/rmg.2202.50.01

    CrossRef Google Scholar

    Grifftts W R. 1954. Beryllium Resources of the Tin-Spodumene Belt, North Carolina[M]. Washington: U.S. Geological Survey Circular, 1-309.

    Google Scholar

    Grifftts W R, Pratt W P. 1973. United States mineral resources[J]. U.S. Geological Survey Professional Paper, 820: 85-93.

    Google Scholar

    Grundmann G, Morteani G. 1989. Emerald mineralization during regional metamorphism——The Habachtal(Austria) and Leydsdorp (Transvaal, South Africa) deposits[J]. Economic Geology, 84(7): 1835-1849. doi: 10.2113/gsecongeo.84.7.1835

    CrossRef Google Scholar

    Hawkins G. 2001. Open pit surgical mining of bertranditeores at the world's largest beryllium deposit[J]. Forum on the Geology of Industrial Minerals, 37: 105-106.

    Google Scholar

    Henry C D. 1992. Beryllium and other rare metals in Trans-Pecos, Texas[J]. Bulletin of the West Texas Geological Society, 31: 1-15.

    Google Scholar

    Hörmann P K. 1978. Beryllium[M]. Berlin: Springer-Verlag, 1-6.

    Google Scholar

    Hu Z C, Gao S. 2008. Upper crustal abundance of trace elements——A revision and update[J]. Chemical Geology, 253(3/4): 205-221.

    Google Scholar

    IBC Advanced Alloys Corp. 2010. IBC Advanced Alloyssigns Agreement to Advance Lithium Beryllium Metalhydrides Hydrogen Storage Technology[M]. Vancouver: IBC Advanced Alloys Corp, 1-10.

    Google Scholar

    IBC Advanced Alloys Corp. 2013. Beryllium Aluminum Alloys-Beralcast Alloys[M]. Vancouver: IBC Advanced Alloys Corp, 1-9.

    Google Scholar

    Jaskula B W. 2013a. Beryllium[Advance Release] [M]. Reston, Virginia: U.S. Geological Survey Mineral Commodity Summaries, 28-29.

    Google Scholar

    Jaskula B W. 2013b. Beryllium, in Metals and Minerals[M]. Reston, Virginia: U.S. Geological Survey Minerals Yearbook, 111-117.

    Google Scholar

    Kabata-Pendias A, Mukherjee A B. 2007. Traceelements from Soil to Human[M]. Berlin: Springer-Verlag, 1-550.

    Google Scholar

    Keith J D, Christiansen E H, Tingey D G. 1994. Geological and Chemical Conditions of Formation of Redberyl, Wah Wah Mountains, Utah[M]. Utah: Utah Geological Association Publication, 155-169.

    Google Scholar

    Kesler S E, Gruber P W, Medina P A, Keolwian G A, Everson M P, Wallington T J. 2012. Global lithium resources——Relative importance of pegmatite, brine and otherdeposits[J]. Ore Geology Reviews, 48: 55-69. doi: 10.1016/j.oregeorev.2012.05.006

    CrossRef Google Scholar

    Kim S K, Ko W I, Kim H D, Revankar S T, Zhou W, Daeseong J. 2010. Cost-beneft analysis of BeO-UO2 nuclear fuel[J]. Progress in Nuclear Energy, 52(8): 813-821. doi: 10.1016/j.pnucene.2010.07.008

    CrossRef Google Scholar

    Kislov E V, Imetkhenov A B, Sandakova D M. 2010. The Yermakovskoye fluorite-beryllium deposit——Avenues for improving ecological security of revitalization of the mining operations[J]. Geography and Natural Resources, 31(4): 324-329. doi: 10.1016/j.gnr.2010.11.004

    CrossRef Google Scholar

    Kovalenko V I, Yarmolyuk V V. 1995. Endogenous raremetal ore formations and rare metal metallogeny of Mongolia[J]. Economic Geology, 90(3): 520-529. doi: 10.2113/gsecongeo.90.3.520

    CrossRef Google Scholar

    Krogstad E J, Walker R J, Nabelek P I, Russ-Nabelek C. 1993. Lead isotopic evidence for mixed sources of Proterozoic granites and pegmatites, Black Hills, South Dakota, USA[J]. Geochimica et Cosmochimica Acta, 57(19): 4677-4685. doi: 10.1016/0016-7037(93)90192-Y

    CrossRef Google Scholar

    Kuperman R G, Checkai R T, Simini M, Phillips C T, Speicher J A, Barclift D J. 2006. Toxicity benchmarks for antimony, barium, and beryllium determined using reproduction endpoints for Folsomiacandida, Eeiseniafetida, and Enchytraeuscrypticus[J]. Environmental Toxicology and Chemistry, 25(3): 754-762. doi: 10.1897/04-545R.1

    CrossRef Google Scholar

    Laznicka P. 2006. Giant Metallic Deposits——Future Sources of Industrial Metals[M]. Berlin: Springer-Verlag, 1-732.

    Google Scholar

    Li Jiankang, Zou Tianren, Wang Denghong, Ding Xin. 2017. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 36(4): 951-978 (in Chinese with English abstract).

    Google Scholar

    Li Na, Gao Aihong, Wang Xiaoning. 2019. Global beryllium supply and demand trends and its enlightenment[J]. China Mining Magazine, 28(4): 69-73 (in Chinese with English abstract).

    Google Scholar

    Liang Fei. 2018. Discussion on the Characteristics, Supply and Demand Prediction and Development of Beryllium Resources in China[D]. Beijing: Chinese Academy of Geological Sciences, 14-23 (in Chinese with English abstract).

    Google Scholar

    Lide D R. 2005. CRC Handbook of Chemistry and Physics[M]. Florida: CRC Press, 1-544.

    Google Scholar

    Lin Bolei, Yin Liwen, Cui Rongguo, Li Bingxin, Xu Guifen. 2018. Global beryllium resources distribution and supply and demand pattern[J]. Natural Resources Information, 1: 13-17 (in Chinese with English abstract).

    Google Scholar

    Lin Desong. 1985. A preliminary study on genesis of an altered volcanic type beryl deposit in south China[J]. Mineral Deposits, 4(3): 19-30 (in Chinese with English abstract).

    Google Scholar

    Lin Y, Pollard P J, Hu S X, Taylor R G. 1995. Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, South China[J]. Economic Geology, 90(3): 577-585. doi: 10.2113/gsecongeo.90.3.577

    CrossRef Google Scholar

    Lindsey D A. 1975. Mineralization halos and diagenesis in water-laid tuff of the Thomas Range, Utah[J]. U.S. Geological Survey Professional Paper, 818: 1-59.

    Google Scholar

    Lindsey D A. 1981. Volcanism and uranium mineralization at Spor Mountain, Utah[J]. American Association of Petroleum Geologists Studies in Geology, 13: 89-98.

    Google Scholar

    Lindsey D A. 1998. Slides of the Fluorspar, Beryllium, and Uranium Deposits at Spor Mountain, Utah[M]. Reston, Virginia: U.S. Geological Survey, 98-524.

    Google Scholar

    Lindsey D A, Bradley L A, Gardner J, Merritt V. 1973. Mineralogical and Chemical Data for Alteration Studies, Spor Mountain Beryllium Seposits, Juab County, Utah[M]. Reston, VA: U.S. Geological Survey, 220-552.

    Google Scholar

    Linnen R L, Van Lichtervelde M, Černý P. 2012. Granitic pegmatites as sources of strategic metals[J]. Elements, 8(4): 275-280. doi: 10.2113/gselements.8.4.275

    CrossRef Google Scholar

    London D. 2005. Geochemistry of alkali and alkaline earth elements in ore-forming granites, pegmatites and rhyolites[J]. Geological Association of Canada Short Course Notes, 17: 17-43.

    Google Scholar

    London D, Evensen J M. 2002. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites[J]. Reviews in Mineralogy and Geochemistry, 50(1): 445-486. doi: 10.2138/rmg.2002.50.11

    CrossRef Google Scholar

    London D, Kontak D J. 2012. Granitic pegmatites——Scientifc wonders and economic bonanzas[J]. Elements, 8(4): 257-261. doi: 10.2113/gselements.8.4.257

    CrossRef Google Scholar

    Lykhin D A, Kovalenko V I, Yarmolyuk V V, Sal'nikova E B, Kotov A B, Anisimova I V, Plotkina Y V. 2010. The Yermakovsky beryllium deposit, western Transbaikal region, Russia——Geochronology of igneous rocks[J]. Geology of Ore Deposits, 52(2): 114-137.

    Google Scholar

    Martin R F, De Vito C. 2005. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting[J]. Canadian Mineralogist, 43(6): 2027-2048.

    Google Scholar

    McLemore V T. 2010a. Beryllium Deposits in New Mexico and Adjacent Areas[M]. New Mexico: New Mexico Bureau of Geology and Mineral Resources, 1-105.

    Google Scholar

    McLemore V T. 2010b. Geology, Mineral Resources, and Geoarchaeology of the Montoya Butte Quadrangle, Including the Ojo Caliente No. 2 Mining District, Socorro County, New Mexico[M]. New Mexico: New Mexico Bureau of Geology and Mineral Resources, 1-106.

    Google Scholar

    McLemore V T, Guilinger J R. 1993. Geology and Mineral Resources of the Cornudas Mountains, Otero County, New Mexico and Hudspeth County, Texas[M]. New Mexico: New Mexico Geological Society, 145-154.

    Google Scholar

    Meeves H C. 1966. No Pegmatitic Beryllium Occurrences in Arizona, Colorado, New Mexico, Utah, and Four Adjacent States[M]. Virginia: U.S. Bureau of Mines, 1-68.

    Google Scholar

    Montoya J W, Havens R J, Bridges D W. 1962. Beryllium-bearing Tuff from Spor Mountain, Utah——Its Chemical, Mineralogical and Physical Properties[M]. Virginia: U.S. Bureau of Mines, 1-15.

    Google Scholar

    Olson D W. 2016. Gemstones[Advance Release], in Metals and Minerals[M]. Reston, Virginia: U.S. Geological Survey, 291-295.

    Google Scholar

    Pearson R G. 1963. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 85(22): 3533-3539.

    Google Scholar

    Petkof B. 1985. Beryllium, mineral facts and problems[J]. U.S. Bureau of Mines Bulletin, 675: 75-82.

    Google Scholar

    Pichavant M, Kontak D J, Briqueu L, Valencia-Herrera J, Clark A H. 1988a. The Miocene-Pliocene Macusani Volcanics, SE Peru-Ⅱ, Geochemistry and origin of a felsic peraluminous magma[J]. Contributions to Mineralogy and Petrology, 100(3): 325-338.

    Google Scholar

    Pichavant M, Kontak D J, Valencia-Herrera J, Clark A H. 1988b. The Miocene-Pliocene Macusani volcanics, SE Peru——Ⅰ, Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite[J]. Contributions to Mineralogy and Petrology, 100(3): 300-324.

    Google Scholar

    Qiao Gengbiao, Ding Jiangang, Su Yonghai, Chen Junlu. 2020. The discovery of Li, Be, Nb, Ta rare metal ore spots in the Bieyesamas area in Altay, Xinjiang[J]. Geology in China, 47(2): 542-543 (in Chinese with English abstract).

    Google Scholar

    Ramsden A R, French D H, Chalmers D I. 1993. Volcanic-hosted rare-metals deposit at Brockman, Western Australia——Mineralogy and geochemistry of the Niobiumtuff[J]. Mineralium Deposita, 28(1): 1-12.

    Google Scholar

    Ren J P, Wang J, Zuo L B, Liu X Y, Dai C C, Xu K K, Li G Z, Geng J Z, Xiao Z B, Sun K, He F Q, Gu A L. 2017. Zircon U-Pb and biotite 40Ar/39Ar geochronology from the Anzan emerald deposit in Zambia[J]. Ore Geology Reviews, 91: 612-619.

    Google Scholar

    Ren Junping, Wang Jie, Gu Alei, Zuo Libo, Sun Hongwei, Xu Kangkang, Wu Xingyuan, Alphet Phaskani Dokowe, Ezekiah Chikambwe. 2019. Zircon U-Pb geochronology and Lu-Hf isotopic composition of syenogranite, northeastern Zambia[J]. North China Geology, 42(3): 161-165 (in Chinese with English abstract).

    Google Scholar

    Reyf F G. 2008. Alkaline granites and Be (phenakite-bertrandite) mineralization——An example of the Orot and Ermakovka (Yermakovskoye) deposits[J]. Geochemistry International, 46(3): 213-232.

    Google Scholar

    Rossman M D. 2004. Elements and their Compounds in the Environment——Occurrence, Analysis and Biological Relevance, General Aspects[M]. Weinheim: Wiley-VCH, 575-586.

    Google Scholar

    Rubin J N, Price J G, Henry C D, Koppenaal D W. 1987. Cryolite-bearing and rare metal-enriched rhyolite, Sierra Blanca Peaks, Hudspeth County, Texas[J]. American Mineralogist, 72(11/12): 1122-1130.

    Google Scholar

    Sainsbury C L. 1963. Beryllium Deposits of the Western Seward Peninsula, Alaska[M]. Reston, Virginia: U.S. Geological Survey Circular, 1-23.

    Google Scholar

    Sainsbury C L. 1964a. Association of beryllium within deposits rich influorite[J]. Economic Geology, 59(5): 920-929.

    Google Scholar

    Sainsbury C L. 1964b. Geology of the Lost River Mine Area, Alaska[M]. Washington: U.S. Government Printing Office, 1-80.

    Google Scholar

    Selway J B, Breaks F W, Tindle A G. 2005. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 14(1/4): 1-30.

    Google Scholar

    Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographic a Section A-Foundations, 32(5): 751-767.

    Google Scholar

    Sirbescu M L, Nabelek P I. 2003. Crystallization conditions and evolution of magmatic fluids in the Harney Peak granite and associated pegmatite, Black Hills, South Dakota——Evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 67(13): 2443-2465.

    Google Scholar

    Smith D B, Cannon W F, Woodruff L G, Solano F, Kilburn J E, Fey D L. 2013. Geochemical and Mineralogical Data for Soils of the Conterminous United States[M]. Reston, Virginia: U.S. Geological Survey, 1-19.

    Google Scholar

    Smith R E, Perdrix J L, Davis J M. 1987. Dispersioninto pisolitic laterite from the Greenbushes mineralized Sn-Tapegmatite system, Western Australia[J]. Journal of Geochemical Exploration, 28(1/3): 251-265.

    Google Scholar

    Soloviev S G. 2011. Compositional Features and Rare Metal Mineralization of the Hell Roaring Creek Stock, Southeastern British Columbia (NTS 082F/09), in Geological fieldwork 2011[M]. Victoria: Ministry of Energy and Mines, 181-197.

    Google Scholar

    Stefaniak A B, Chipera S J, Day G A, Sabey P, Dickerson R M, Sbarra D C, Duling M G, Lawrence R B, Stanton M L, Scripsick R C. 2008. Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores——Implications for risk assessment[J]. Journal of Toxicology and Environmental Health, Part A, 71(22): 1468-1481.

    Google Scholar

    Stilling A, Černý P, Vanstone P J. 2006. The Tanco pegmatite at Bernic Lake, Manitoba——XVI, Zonaland bulk compositions and their petrogenetic signifcance[J]. Canadian Mineralogist, 44(3): 599-623.

    Google Scholar

    Suter G W. 1996. Toxicological benchmarks for screening contaminants of potential concern for effects on freshwater biota[J]. Environmental Toxicology and Chemistry, 15(7): 1232-1241.

    Google Scholar

    Taylor S R, McLennan S M. 1985. The Continental Crust——Its Composition and Evolution; An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific Publishing, 1-312.

    Google Scholar

    Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 33(2): 241-265.

    Google Scholar

    Taylor T P, Ding M, Ehler D S, Foreman T M, Kaszuba J P, Sauer N N. 2003. Beryllium in the environment——A review[J]. Journal of Environmental Scienceand Health, Part A——Toxic/Hazardous Substances and Environmental Engineering, 38(2): 439-469.

    Google Scholar

    Taylor W R, Esslemont G, Sun S S. 1995a. Geology of the volcanic-hosted Brockman rare-metals deposit, Halls Creek mobile zone, northwest Australia-Ⅱ, Geochemistry and petrogenesis of the Brockman volcanics[J]. Mineralogy and Petrology, 52(3/4): 231-255.

    Google Scholar

    Taylor W R, Page R W, Esslemont G, Rock N M S, Chalmers D I. 1995b. Geology of the volcanic-hosted Brockman rare-metals deposit, Halls Creek mobile zone, northwest Australia——Ⅰ, Volcanic environment, geochronology and petrography of the Brockman volcanics[J]. Mineralogy and Petrology, 52(3): 209-230.

    Google Scholar

    Walker R J, Hanson G N, Papike J J, O'Neil J R. 1986. Nd, O, and Sr isotopic constraints on the origin of Precambrian rocks, southern Black Hills, South Dakota[J]. Geochimica et Cosmochimica Acta, 50(12): 2833-2846.

    Google Scholar

    Wang Denghong, Wang Chenghui, Sun Yan, Li Jiankang, Liu Shanbao, Rao Kuiyuan. 2017. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China[J]. Geological Survey of China, 4(5): 1-7 (in Chinese with English abstract).

    Google Scholar

    Wang Yao, Guo Chihui, Zhuang Shurong, Chen Xijie, Jia Liqiong, Chen Zeyu, Xia Zilong, Wu Zhen. 2021. Major contribution to carbon neutrality by China's geosciences and geological technologies[J]. China Geology, 4(2): 329-352.

    Google Scholar

    Wood S A. 1992. Theoretical prediction of speciation and solubility of beryllium in hydrothermal solution to 300℃ at saturated vapor pressure-Application to bertrandite/phenakite deposits[J]. Ore Geology Reviews, 7(4): 249-278.

    Google Scholar

    Xu Demei, Qin Gaowu, Li Feng, Wang Zhanhong, Zhong Jingming, He Jilin, He Lijun. 2014. Advances in beryllium and beryllium-containing materials[J]. The Chinese Journal of Nonferrous Metals, 24(5): 1212-1223 (in Chinese with English abstract).

    Google Scholar

    Zhang Sen, Shi Lei, Ju Nan, Su Jianwei. 2018. The "Oil-Uranium Co-exploration" idea in Songliao Basin: A practice in Southern Central Depression[J]. Geology and Resources, 27(3): 257-262 (in Chinese with English abstract).

    Google Scholar

    Zhang Sen, Ju Nan, Zhang Guobin, Zhao Yuandong, Ren Yunsheng, Liu Baoshan, Wang Hui, Guo Rongrong, Yang Qun, Sun Zhenming, Xu Fengming, Wang Keyong, Hao Yujie. 2023. Geology and mineralization of the Duobaoshan supergiant porphyry Cu-Au-Mo-Ag deposit (2.36 Mt) in Heilongjiang Province, China: A review[J]. China Geology, 6(1): 100-136.

    Google Scholar

    Zuo Libo, Ren Junping, Wang Jie, Gu Alei, Sun Hongwei, Xu Kangkang, Alphet Phaskani Dokowe, Ezekiah Chikambwe. 2020. Geochemical characteristics, zircon U-Pb age, and Lu-Hf isotopic composition of Granites from the Banweulu Block, Zambia[J]. North China Geology, 43(1): 30-41 (in Chinese with English abstract).

    Google Scholar

    保善东, 曾彪, 白宗海, 黄青华, 苑永涛, 祁文, 熊寿加. 2022. 综合物探方法在锂铍稀有、稀土矿勘查中的应用研究[J]. 地质与资源, 31(1): 59-68.

    Google Scholar

    邓伟, 颜世强, 谭洪旗, 杨耀辉, 王昌良. 2023. 我国铍矿资源概况及选矿技术研究现状[J]. 矿产综合利用, 44(1): 148-154.

    Google Scholar

    李建康, 邹天人, 王登红, 丁欣. 2017. 中国铍矿成矿规律[J]. 矿床地质, 36(4): 951-978.

    Google Scholar

    李娜, 高爱红, 王小宁. 2019. 全球铍资源供需形势及建议[J]. 中国矿业, 28(4): 69-73.

    Google Scholar

    梁飞. 2018. 我国铍资源特征、供需预测与发展探讨[D]. 北京: 中国地质科学院, 14-23.

    Google Scholar

    林博磊, 尹丽文, 崔荣国, 李冰心, 徐桂芬. 2018. 全球铍资源分布及供需格局[J]. 国土资源情报, 1: 13-17.

    Google Scholar

    林德松. 1985. 华南-蚀变火山岩型绿柱石矿床的成因探讨[J]. 矿床地质, 4(3): 19-30.

    Google Scholar

    乔耿彪, 丁建刚, 苏永海, 陈隽璐. 2020. 新疆阿尔泰山别也萨麻斯一带发现新的锂、铍、铌、钽等稀有金属矿点[J]. 中国地质, 47(2): 542-543.

    Google Scholar

    任军平, 王杰, 古阿雷, 左立波, 孙宏伟, 许康康, 吴兴源, Alphet Phaskani Dokowe, Ezekiah Chikambwe. 2019. 赞比亚东北部正长花岗岩的锆石U-Pb年龄和Lu-Hf同位素特征[J]. 地质调查与研究, 42(3): 161-165.

    Google Scholar

    王登红, 王成辉, 孙艳, 李建康, 刘善宝, 饶魁元. 2017. 我国锂铍钽矿床调查研究进展及相关问题简述[J]. 中国地质调查, 4(5): 1-7.

    Google Scholar

    许德美, 秦高梧, 李峰, 王战宏, 钟景明, 何季麟, 何力军. 2014. 国内外铍及含铍材料的研究进展[J]. 中国有色金属学报, 24(5): 1212-1223.

    Google Scholar

    张森, 石蕾, 鞠楠, 苏建伟. 2018. "油铀兼探"的找矿思路在松辽盆地的应用——以中央拗陷区南部为例[J]. 地质与资源, 27(3): 257-262.

    Google Scholar

    左立波, 任军平, 王杰, 古阿雷, 孙宏伟, 许康康, Alphet Phaskani Dokowe, Ezekiah Chikambwe. 2020. 赞比亚班韦乌卢地块花岗岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 地质调查与研究, 43(1): 30-41.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(4562) PDF downloads(358) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint