Citation: | YUE Gaofan, WANG Guiling, MA Feng, ZHU Xi, ZHANG Hanxiong. 2021. Evaluation of fault slip probability of geothermal large-scale development: A case study of deep karst geothermal reservoir in Xiong'an New Area[J]. Geology in China, 48(5): 1382-1391. doi: 10.12029/gc20210505 |
Xiongan New Area is rich in geothermal resources and has broad prospects for large-scale development and utilization, which is of great significance to the realization of "green Xiongan". Many scholars have focused their research on geological structure exploration, resource evaluation, crustal stability, etc. However, the study on the possible fault sliding caused by the large-scale development of deep karst thermal storage is weak. On the basis of geomechanical theory and geothermal geological survey, Monte Carlo stochastic simulation method was used to evaluate the characteristics of main faults (strike, dip, slip friction coefficient, etc.) and geostress distribution (pore pressure, maximum/minimum/vertical principal stress magnitude and direction, etc.) in Xiongan New area for quantifying the activation possibility of natural faults under large-scale development and utilization. The results show that the maximum slip trends of proven faults under natural, large-scale recharge and hydraulic fracturing conditions are 0.26, 0.27 and 0.40, respectively. Geothermal development will not cause fault activation. The study establishes confidence in geothermal development and provides support for safe geothermal use in Xiong'an New Area.
Blanpied M L, Lockner D A, Byerlee J D. 1995. Frictional slip of granite at hydrothermal conditions[J]. Journal of Geophysical Research: Solid Earth, 100(B7): 13045-13064. doi: 10.1029/95JB00862 |
Byerlee J. 1978. Friction of Rocks[M]. Byerlee J D, Wyss M. Basel: Birkhäuser Basel. |
Fan Larsheng, Jia Xiaofeng, Wang Guiling, Zhang Tunde, Zhang Ping, Lv Can, Li Junping. 2020. Drilling practice of D03 geothermal exploration well in Xiongan New Area[J]. Exploration Engineering(Rock & Soil Drilling And Tunneling), 47(10): 13-22. (in Chinese with English abstract) |
Fan Yulu, Tan Chengxuan, Zhang Peng, Sun Mingqian, Qi Bangshen, Feng Chengjun, Meng Jing, Wang Huiqing. 2020. A Study of current in-situ stress state and its influence on tectonic stability in the Xiongan New Area[J]. Acta Geoscientica Sinica, 41(4): 481-491 (in Chinese with English abstract). |
Feng Chengjun, Qi Bangshen, Wang Xiaoshan, Zhang Peng, Sun Mingqian, Meng Jing, Tan Chengxuan, Chen Qunze. 2019. Study of fault activity risk in typical strong seismic regions in northern China by in-situ stress measurements and the influence on the Xiong'an New Area[J]. Earth Science Frontiers, 26(4): 170-190 (in Chinese with English abstract). |
Friberg P, Besana-Ostman G, Dricker I. 2014. Characterization of an earthquake sequence triggered by hydraulic fracturing in Harrison County, Ohio[J]. Seismological Research Letters, 85: 1295-1307. doi: 10.1785/0220140127 |
He Dengfa, Shan Shuaiqiang, Zhang Yuying, Lu Renqi, Zhang Ruifeng, Cui Yongqian. 2018. 3-D geologic architecture of Xiong'an New Area: Constraints from seismic reflection data[J]. Science China: Earth Sciences, 48(9): 1207-1222 (in Chinese with English abstract). |
Heidbach O, Rajabi M, Reiter K. 2016. World Stress Map Database Release 2016. V. 1.1[OL]. GFZ Data Services. |
Huang Luyuan, Yang Shuxin, Cui Xiaofeng, Chen Qunce, Yao Rui. 2013. Analysis of characteristics of measured stress and stability of faults in North China[J]. Rock and Soil Mechanics, 34(S1): 204-213 (in Chinese with English abstract). |
Jaeger J C, Cook N G W, Zimmerman R. 2007. Fundamentals of Rock Mechanics, 4th Edition[M]. US: Wiley-Blackwell. |
Ma Zhen, Xia YuBo, Wang Xiaodan, Han Bo, Gao Yihang. 2019. Integration of engineering geological investigation data and construction of a 3D geological structure model in the Xiong'an New Area[J]. Geology in China, 46(S2): 123-129(in Chinese with English abstract). |
Ma Zhen, Xia Yubo, Li Haitao, Han Bo, Yu Xuezhong, Zhou Yalong, Wang Yushan, Guo Xu, Li Hong, Pei Yandong. 2021. Analysis of natural resources and environment eco-geological conditions in the Xiong'an New Area[J]. Geology in China, 48(3): 677-696(in Chinese with English abstract). |
Mcgarr A, Barbour A. 2018. Injection-induced moment release can also be aseismic[J]. Geophysical Research Letters, 45 (11): 5344. doi: 10.1029/2018GL078422 |
Moeck I, Kwiatek G, Zimmerman Gu. 2009. Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir[J]. Journal of Structural Geology, 31(10): 1174-1182. doi: 10.1016/j.jsg.2009.06.012 |
Morris A, Ferrill D, Henderson D. 1996. Slip-tendency analysis and fault reactivation[J]. Geology, 24. |
Nelson P, Gianoutsos N, Drake II R. 2015. Underpressure in Mesozoic and Paleozoic rock units in the Midcontinent of the United States[J]. AAPG Bulletin, 99: 1861-1892. doi: 10.1306/04171514169 |
Niu Linlin. 2018. Study on the Tectonic Stress Field and Seismogenic Environment in Beijing Tianjin Hebei Region[D]. Beijing: Chinese Academy of Geological Sciences (in Chinese with English abstract). |
Norbeck J H, Horne R N. 2018. Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults[J]. Tectonophysics, 733: 108-118. doi: 10.1016/j.tecto.2018.01.028 |
Pang Jumei, Pang Zhonghe, Lü Min, Tian Jiao. 2018. Geochemical and isotopic characteristics of fluids in the Niutuozhen geothermal field, North China[J]. Environmental Earth Sciences, 77(1): 12. doi: 10.1007/s12665-017-7171-y |
Seithel R, Gaucher E, Mueller B, Steiner U, Kohl T. 2019. Probability of fault reactivation in the Bavarian Molasse Basin[J]. Geothermics, 82: 81-90. doi: 10.1016/j.geothermics.2019.06.004 |
Schoenball M, Walsh F R, Weingarten M. 2018. How faults wake up: The Guthrie-Langston, Oklahoma earthquakes[J]. The Leading Edge, 37(2): 100-106. doi: 10.1190/tle37020100.1 |
Shang Shijie, Feng Chengjun, Tan Chengxuan, Qi Bangshen, Zhang Peng, Meng Jing, Wang Miaomiao, Sun Mingqian, Wan Jiawei, Wang Huiqing, Xiang Xinxuan. 2019. Quaternary activity study of major buried faults near Xiongan New Area[J]. Acta Geoscientia Sinica, 40(6): 836-846 (in Chinese with English abstract). |
Walsh F R, Zoback M D. 2015. Oklahoma's recent earthquakes and saltwater disposal[J]. Science Advances, 1(5): 1-9. |
Walsh F R, Zoback M D. 2016. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: Application to north-central Oklahoma, USA[J]. Geology, 44(12): 991-994. doi: 10.1130/G38275.1 |
Xu Jie, Gao Zhanwu, Song Changqing, Sun Jiangbao. 2000. Tectonic features of the Taihang Mountains pre-mountain rift zone[J]. Seismology and Geology, (2): 111-122(in Chinese with English abstract). |
Zhang Yi, Dai Junsheng, Wang Ke, Zou Juan, Zhang Dandan. 2014. Characteristics of Paleoproterozoic fracture activity in the Baxian Depression of the Jizhong Depression[J]. Journal of Xi'an Shiyou University(Natural Science), 29(1): 27-33, 5(in Chinese with English abstract). |
Zhu Xi, Wang Guiling, Ma Feng, Zhang Wei, Zhang Qinglian, Zhang Hanxiong. 2020. Hydrogeochemistry of geothermal maters from Taihang Mountain-Xiong'an New Area and its indicating significance[J]. Earth Science, 46(7): 15(in Chinese with English abstract). |
Zoback M D, Harhes H P. 1997. Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany[J]. Journal of Geophysical Research: Solid Earth, 102(B8): 18477-18491(in Chinese with English abstract). doi: 10.1029/96JB02814 |
陈墨香. 1988. 华北地热[M]. 北京: 科学出版社. |
樊腊生, 贾小丰, 王贵玲, 张统得, 张平, 吕灿, 李俊萍. 2020. 雄安新区D03地热勘探井钻探施工实践[J]. 探矿工程(岩土钻掘工程), 47(10): 13-22. |
范玉璐, 谭成轩, 张鹏, 孙明乾, 戚帮申, 丰成君, 孟静, 王惠卿. 2020. 雄安新区现今地应力环境及其对构造稳定性影响研究[J]. 地球学报, 41(4): 481-491. |
丰成君, 戚帮申, 王晓山, 张鹏, 孙明乾, 孟静, 谭成轩, 陈群策. 2019. 基于原地应力实测数据探讨华北典型强震区断裂活动危险性及其对雄安新区的影响[J]. 地学前缘, 26(4): 170-190. |
何登发, 单帅强, 张煜颖, 鲁人齐, 张锐锋, 崔永谦. 2018. 雄安新区的三维地质结构: 来自反射地震资料的约束[J]. 中国科学: 地球科学, 48(9): 1207-1222. |
胡秋韵, 高俊, 马峰, 赵志宏, 刘桂宏, 王贵玲, 张薇, 朱喜, 张保建, 邢一飞. 2020. 雄安新区容城凸起区地热可采资源量动态预测[J]. 地质学报, 94(7): 2013-2025. doi: 10.3969/j.issn.0001-5717.2020.07.010 |
黄禄渊, 杨树新, 崔效锋, 陈群策, 姚瑞. 2013. 华北地区实测应力特征与断层稳定性分析[J]. 岩土力学, 34(S1): 204-213. |
马峰, 王贵玲, 张薇, 朱喜, 张汉雄, 岳高凡. 2020. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 94(7): 1981-1990. doi: 10.3969/j.issn.0001-5717.2020.07.007 |
马震, 夏雨波, 王小丹, 韩博, 高伊航. 2019. 雄安新区工程地质勘查数据集成与三维地质结构模型构建[J]. 中国地质, 46(S2): 123-129. |
马震, 夏雨波, 李海涛, 韩博, 余学中, 周亚龙, 王雨山, 郭旭, 李洪, 裴艳东. 2021. 雄安新区自然资源与环境-生态地质条件分析[J]. 中国地质, 48(3): 677-696. |
牛琳琳. 2018. 京津冀地区现代构造应力场与孕震环境研究[D]. 北京: 中国地质科学院. |
商世杰, 丰成君, 谭成轩, 戚帮申, 张鹏, 孟静, 王苗苗, 孙明乾, 万佳威, 王惠卿, 项歆璇. 2019. 雄安新区附近主要隐伏断裂第四纪活动性研究[J]. 地球学报, 40(6): 836-846. |
王贵玲, 高俊, 张保建, 邢一飞, 张薇, 马峰. 2020. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 94(7): 1970-1980. doi: 10.3969/j.issn.0001-5717.2020.07.006 |
王贵玲, 蔺文静. 2020. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 94(7): 1923-1937. doi: 10.3969/j.issn.0001-5717.2020.07.002 |
吴爱民, 马峰, 王贵玲, 刘金侠, 胡秋韵, 苗青壮. 2018. 雄安新区深部岩溶热储探测与高产能地热井参数研究[J]. 地球学报, 39(5): 523-532. |
徐杰, 高战武, 宋长青, 孙建宝. 2000. 太行山山前断裂带的构造特征[J]. 地震地质, (2): 111-122. doi: 10.3969/j.issn.0253-4967.2000.02.003 |
张薇, 王贵玲, 刘峰, 邢林啸, 李曼. 2019. 中国沉积盆地型地热资源特征[J]. 中国地质, 46(2): 255-268. |
张艺, 戴俊生, 王珂, 邹娟, 张丹丹. 2014. 冀中坳陷霸县凹陷古近纪断裂活动特征[J]. 西安石油大学学报(自然科学版), 29(1): 27-33, 5. doi: 10.3969/j.issn.1673-064X.2014.01.005 |
赵佳怡. 2020. 雄安新区深部热储空间结构与水热分异过程研究[D]. 北京: 中国地质科学院. |
朱喜, 王贵玲, 马峰, 张薇, 张庆莲, 张汉雄. 2020. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义[J]. 地球科学, 46(7): 15. |
Geographic location and distribution of faults in Xiongan New Area
Monte Carlo simulation parameter distribution
Natural fault slip trend distribution
Cumulative distribution map of natural fault sliding trend
Polar plot of natural fault sliding trend
Cumulative distribution plot of sliding trend under pore pressure disturbance (2 MPa)
Effect of pore pressure variations on fault stability