2021 Vol. 48, No. 3
Article Contents

LI Jichen, CHEN Mingzhu, TANG Qiang, LIU Chun, LIANG Liwei, Peter Bayer. 2021. Study on shallow geothermal field in Nanjing: Based on distributed optical fiber temperature measurement system[J]. Geology in China, 48(3): 939-947. doi: 10.12029/gc20210320
Citation: LI Jichen, CHEN Mingzhu, TANG Qiang, LIU Chun, LIANG Liwei, Peter Bayer. 2021. Study on shallow geothermal field in Nanjing: Based on distributed optical fiber temperature measurement system[J]. Geology in China, 48(3): 939-947. doi: 10.12029/gc20210320

Study on shallow geothermal field in Nanjing: Based on distributed optical fiber temperature measurement system

    Fund Project: Funded by National Natural Science Foundation of China(No.41761134089, No.41977218) and Jiangsu Natural Science Foundation Youth Project(No. BK20170393)
More Information
  • Author Bio: LI Jichen, male, born in 1996, master candidate, engaged in the study of shallow geothermal; Email: ljc_nju@smail.nju.edu.cn
  • Corresponding author: LIU Chun, male, born in 1984, associate professor, majoring in computational engineering geology 
  • Shallow geothermal energy has attracted extensive attention at home and abroad as a new type renewable energy. Resistance temperature sensors, as susceptible to electromagnetic interference, are not suitable for long-term use. The distribution-based fiber optic temperature measurement technology with strong anti-interference ability was used in 19 boreholes to a depth of 100 meters in Nanjing City. In the winter of 2018 and spring of 2019, the distribution of shallow uground temperature in Nanjing was obtained from the 19 boreholes. Based on the hydrological and geological conditions in Nanjing, it is concluded that the change of shallow ground temperature is lagged relative to the change of air temperature. For the shallow ground temperature in the same location, the flow of groundwater will lead to different ground temperature in different seasons. Structural conditions significantly affect the distribution of shallow ground temperature. The results can provide a reference for the utilization and further development of shallow geothermal energy in Nanjing.

  • 加载中
  • Bayer P, Attard G, Blum P, Menberg K. 2019. The geothermal potential of cities[J]. Renewable and Sustainable Energy Reviews, 106: 17-30. doi: 10.1016/j.rser.2019.02.019

    CrossRef Google Scholar

    E Jian, Chen Mingzhu, Yang Lumei, Wang Xiao, Gong Hongwei, Li Man. 2015. Exploitation and utilization of shallow geothermal energy in Nanjing[J]. Journal of Geology, 39(2): 339-342(in Chinese with English abstract).

    Google Scholar

    Epting J, Huggenberger P. 2013. Unraveling the heat island effect observed in urban groundwater bodies——Definition of a potential natural state[J]. Journal of Hydrology, 501: 193-204. doi: 10.1016/j.jhydrol.2013.08.002

    CrossRef Google Scholar

    Hong Zenglin, Zhang Yinlong, Zhou Yang. 2019. Research on the modes of occurrence and application of geothermal resources in the middle and deep layers of the piedmont area in southern Guanzhong basin[J]. Geology in China, 46(5): 1224-1235(in Chinese with English abstract).

    Google Scholar

    Jin Xu, Chen Xiaodong, Guan Yanwu. 2004. The correction of the influence of climatic change upon geotemperature measurement at shallow layer[J]. Acta Geoscientica Sinica, 25(5): 579-582(in Chinese with English abstract).

    Google Scholar

    Luan Guangzhong, Qiu Hanxue. 1998. The type of low-medium temperature geothermal system of convection type——The genesis analysis of Tangshan geothermal system in Nanjing[J]. Journal of Ocean University of Qindao, 28(1): 160-164(in Chinese with English abstract).

    Google Scholar

    Pollack H N, Huang S. 2000. Climate reconstruction from subsurface temperatures[J]. Annual Review of Earth and Planetary Sciences, 28(1): 339-365. doi: 10.1146/annurev.earth.28.1.339

    CrossRef Google Scholar

    Taniguchi M, Shimada J, Tanaka T, Kayane I, Sakura Y, Shimano Y, Dapaah Siakwan S, Kawashima S. 1999. Disturbances of temperature-depth profiles due to surface climate change and subsurface water flow: 1. An effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo metropolitan area, Japan[J]. Water Resources Research, 35(5): 1507-1517. doi: 10.1029/1999WR900009

    CrossRef Google Scholar

    Wang Baojun, Shi Bin, Jiang Hongtao, Zhao Lizheng. 2009. Characteristics of ground temperature variations in superficial soil layers for Nanjing in recent 30 years[J]. Geological Journal of China Universities, 15(2): 199-205(in Chinese with English abstract).

    Google Scholar

    Wang Guiling, Zhang Wei, Lin Wenjing, Liu Feng, Zhu Xi, Liu Yanguang, Li Jun. 2017. Research on formation mode and development potential of geothermal resources in Beijing-Tianjin-Hebei region[J]. Geology in China, 44(6): 1074-1085(in Chinese with English abstract).

    Google Scholar

    Wang Haibo, Huang Shaopeng, Ren Yongfei, He Liangliang, Xiao Bo. 2014. Preliminary analysis of the subsurface temperature and air temperature changes in Xi'an, China[J]. Chinese Journal of Geology, 49(3): 874-887(in Chinese with English abstract).

    Google Scholar

    Wang Wanli, Wang Guiling, Zhu Xi, Liu Zhiming. 2017. Characteristics and potential of shallow geothermal resources in provincial capital cities of China[J]. Geology in China, 44(6): 1062-1073(in Chinese with English abstract).

    Google Scholar

    Wang Xinjuan, Luan Yingbo, Lu Ming, Li Zhiping. 2010. Study of distribution law of shallow geothermal energy resources in Beijing plain area[J]. Site Investigation Science and Technology, (3): 48-53(in Chinese with English abstract).

    Google Scholar

    Wei Wanshun, Zheng Guisen, Luan Yingbo. 2010. Characteristics and influencing factors of the shallow geothermal field in Beijing plain area[J]. Geology in China, 37(6): 1733-1739(in Chinese with English abstract).

    Google Scholar

    Wen Zhonghui, Wang Binbin, Lu Chengpeng, Yan Lingxiang, Hua Hua. 2009. Development and utilization division of groundwater resources in Nanjing city[J]. Journal of Jilin University(Earth Science Edition), 39(1): 107-113(in Chinese with English abstract).

    Google Scholar

    Zhang Guitao, Zhang Hongguang. 2005. Signal processing of distributed optical sensor system based on Raman-scattering[J]. Journal of Qindao University(Engineering & Technology Edition), 20(3): 71-75(in Chinese with English abstract).

    Google Scholar

    Zhang Qing, Hao Wenjie, Hao Shuli, Li Shengtao, Wang Xinjie, Jiang Fan. 2018. Research of deep-hole temperature measurement technology base on Raman scattering[J]. Progress in Geophysics, 33(4): 1438-1443(in Chinese with English abstract).

    Google Scholar

    Zhang Wei, Wang Guiling, Liu Feng, Xing Linxiao, Li Man. 2019. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 46(2): 255-268(in Chinese with English abstract).

    Google Scholar

    Zhou Yang, Mu Genxu, Zhang Hui, Wang Ke, Liu Jianqiang, Zhang Yage. 2017. Geothermal Field Division and its geological influencing factors in Guanzhong Basin[J]. Geology in China, 44(5): 1017-1026(in Chinese with English abstract).

    Google Scholar

    鄂建, 陈明珠, 杨露梅, 汪霄, 龚红卫, 李曼. 2015. 南京浅层地温能开发利用现状研究[J]. 地质学刊, 39(2): 339-342. doi: 10.3969/j.issn.1674-3636.2015.02.339

    CrossRef Google Scholar

    洪增林, 张银龙, 周阳. 2019. 关中盆地南部山前中深层地热资源赋存特征及应用[J]. 中国地质, 46(5): 1224-1235.

    Google Scholar

    金旭, 陈晓冬, 管彦武. 2004. 气候变化对浅层地温测量影响的改正[J]. 地球学报, 25(5): 579-582. doi: 10.3321/j.issn:1006-3021.2004.05.016

    CrossRef Google Scholar

    栾光忠, 邱汉学. 1998. 中低温对流型地热系统的典型成因——南京汤山地热系统的分析[J]. 青岛海洋大学学报, 28(1): 160-164.

    Google Scholar

    栾英波, 郑桂森, 卫万顺. 2013. 浅层地温能资源开发利用发展综述[J]. 地质与勘探, 49(2): 379-383.

    Google Scholar

    王宝军, 施斌, 姜洪涛, 赵理政. 2009. 近30年南京市浅层地温场变化规律研究[J]. 高校地质学报, 15(2): 199-205. doi: 10.3969/j.issn.1006-7493.2009.02.008

    CrossRef Google Scholar

    王贵玲, 张薇, 蔺文静, 刘峰, 朱喜, 刘彦广, 李郡. 2017. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质, 44(6): 1074-1085.

    Google Scholar

    王海波, 黄少鹏, 任永飞, 何亮亮, 肖波. 2014. 西安城市地温与气温变化初步分析[J]. 地质科学, 49(3): 874-887. doi: 10.3969/j.issn.0563-5020.2014.03.014

    CrossRef Google Scholar

    王婉丽, 王贵玲, 朱喜, 刘志明. 2017. 中国省会城市浅层地热能开发利用条件及潜力评价[J]. 中国地质, 44(6): 1062-1073.

    Google Scholar

    王新娟, 栾英波, 路明, 李志萍. 2010. 北京平原区浅层地温能分布规律研究[J]. 勘察科学技术, (3): 48-53. doi: 10.3969/j.issn.1001-3946.2010.03.013

    CrossRef Google Scholar

    卫万顺, 郑桂森, 栾英波. 2010. 北京平原区浅层地温场特征及其影响因素研究[J]. 中国地质, 37(6): 1733-1739. doi: 10.3969/j.issn.1000-3657.2010.06.019

    CrossRef Google Scholar

    温忠辉, 王彬彬, 鲁程鹏, 颜陵翔, 华骅. 2009. 南京市地下水资源开发利用分区[J]. 吉林大学学报(地球科学版), 39(1): 107-113.

    Google Scholar

    张桂涛, 张红光. 2005. 喇曼散射分布式光纤传感器系统的信号处理[J]. 青岛大学学报(工程技术版), 20(3): 71-75. doi: 10.3969/j.issn.1006-9798.2005.03.015

    CrossRef Google Scholar

    张青, 郝文杰, 蒿书利, 李胜涛, 王新杰, 蒋凡. 2018. 基于拉曼散射的深孔测温技术研究[J]. 地球物理学进展, 33(4): 1438-1443.

    Google Scholar

    张薇, 王贵玲, 刘峰, 邢林啸, 李曼. 2019. 中国沉积盆地型地热资源特征[J]. 中国地质, 46(2): 255-268.

    Google Scholar

    周阳, 穆根胥, 张卉, 王克, 刘建强, 张亚鸽. 2017. 关中盆地地温场划分及其地质影响因素[J]. 中国地质, 44(5): 1017-1026.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(2284) PDF downloads(102) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint