2021 Vol. 48, No. 3
Article Contents

GE Xiangying, MOU Chuanlong, YU Qian, LIU Wei, MEN Xin, HE Jianglin, LU Junze, LIANG Wei. 2021. Petrology and geochemistry of the K-bentonites at the Ordovician-Silurian transition in XD2 well, Daguan, Yunnan Province[J]. Geology in China, 48(3): 911-924. doi: 10.12029/gc20210318
Citation: GE Xiangying, MOU Chuanlong, YU Qian, LIU Wei, MEN Xin, HE Jianglin, LU Junze, LIANG Wei. 2021. Petrology and geochemistry of the K-bentonites at the Ordovician-Silurian transition in XD2 well, Daguan, Yunnan Province[J]. Geology in China, 48(3): 911-924. doi: 10.12029/gc20210318

Petrology and geochemistry of the K-bentonites at the Ordovician-Silurian transition in XD2 well, Daguan, Yunnan Province

    Fund Project: Funded by China Geological Survey Project(No.DD20160176, No.DD20190122)
More Information
  • Author Bio: GE Xiangying, female, born in 1986, master degree, an engineer, engaged in the study of sedimentology and basin analysis; E-mail: gexiangying-2006@163.com
  • Many K-bentonites have been recognized from the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) in the Yangtze Block,but only a few of them on the western margin of the Yangtze Block are reported. The mineralogical and geochemical studies of K-bentonites in the Wufeng-Longmaxi Formations through Xindi 2 well in Daguan area of Yunnan province were carried out to confirm the original magma type and its tectonic setting. The mineralogical characteristics show that the potassium bentonite is mainly composed of clay minerals and non-clay minerals,in which the clay minerals are composed of illite and illite-montmorillonite mixed beds. The non-clay minerals are mainly quartz,feldspar,calcite,dolomite and pyrite. It is geochemically characterized by high K2O and low TiO2,relative enrichment of Rb,Ba,Th and U and depletion of Ti and P elements. The Ti/Th values indicates acidic volcanic ash character. Compared with the chondrite,the total rare earth elements is (49.86-209.43)×10-6 with slight rich LREE and negative Eu amomaly,without Ce abnormity. In Nb/Y-Zr/TiO2 diagram,the data dots are mainly plotted in the andesite and trachy andesite range,which shows that the volcanic ash is mostly from middle-acid rocks. Various chemical discrimination diagrams and trace elements imply that K-bentonites were possibly derived from an island arc environment,and the volcanic ash was probably related to the subduction and closure of the Qinling Ocean on the northern border of Yangtze Plate in the Early Paleozoic.

  • 加载中
  • Bergström S M, Huff W D, Kolata D R. 1998. The Lower Silurian Osmundsberg K-bentonite. PartⅠ: Stratigraphic position, distribution, and palaeogeographic significance[J]. Geological Magazine, 135: 1-13. doi: 10.1017/S0016756897007887

    CrossRef Google Scholar

    Bergström S M, Huff W D, Kolata D R, Melchin M J. 1997. Occurrence and significance of Silurian K-bentonite beds at Arisaig, NovaScotia, eastern Canada[J]. Canadian Journal of Earth Sciences, 34: 1630-1643. doi: 10.1139/e17-131

    CrossRef Google Scholar

    Bergström S M, Huff W D, Saltzman M R, Kolata D R, Leslie S A. 2004. The greatest volcanic ash falls in the Phanerozoic: Millbrig and Kinnekulle K-bentonites[J]. The Sedimentary Record, 2: 4-7.

    Google Scholar

    Bergström S M, Eriksson M E, Schmitz B, Young S A, Ahlberg P. 2016. Upper Ordovician δ13Corg chemostratigraphy, K-bentonite stratigraphy, and biostratigraphy in southern Scandinavia: A reappraisal[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 454: 175-188. doi: 10.1016/j.palaeo.2016.04.037

    CrossRef Google Scholar

    Cabanis B, Lecolle M. 1989. The La/10-Y/15-Nb/8 diagram; a tool for distinguishing volcanic series and discovering crustal mixing and/or contamination[J]. Comptes Rendus de l'Academie des Sciences, 309: 2023-2029.

    Google Scholar

    Chen Xu, Rong Jiayu, Rowley D B, Zhang Jin, Zhang Yuandong, Zhan Renbin. 1995. Is the Early Paleozoic Banxi Ocean in South China necessary?[J]. Geological Review, 41(5): 389-400(in Chinese with English abstract).

    Google Scholar

    Chen X, Rong J Y, Fan J X, Zhan R B, Mitchell C E, Harper D A T, Melchin M J, Peng P A, Finney S C, Wang X F. 2006. The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System)[J]. Episodes, 29: 183-196. doi: 10.18814/epiiugs/2006/v29i3/004

    CrossRef Google Scholar

    Chen Xiaohong, Zhang Baomin, Zhang Guotao, Chen Lin, Zhang Miao, Li Peijun. 2018. High shale gas industry flow obtained from the Ordovician Wufeng Formation and the Silurian Longmaxi Formation of Yichang area, Hubei Province[J]. Geology in China, 45(1): 199-200.

    Google Scholar

    Cui Y, Kump L R. 2015. Global warming and the end-Permian extinction event: Proxy and modeling perspectives[J]. Earth-Science Reviews, 149: 5-22. doi: 10.1016/j.earscirev.2014.04.007

    CrossRef Google Scholar

    Feng Baohua. 1989. Carboniferous-Permian Tonsteins formed by Hydrolytic reformation of volcanic ash sediments in North China[J]. Acta Sedimentologica Sinica, 7(1): 101-108(in Chinese with English abstract).

    Google Scholar

    Feng Weiming, Li Rong, Zhao Zhan, Yu Qian, Yang Han, Xie Yuan, Ye Dingnan. 2021. Boundary definition of Wufeng Formation and Longmaxi Formation in well DD1 and sedimentary environment evolution of Northeastern Yunnan[J]. Geology in China, 48(1): 297-308(in Chinese with English abstract).

    Google Scholar

    Ge X Y, Mou C L, Wang C S, Men X, Chen C, Hou Q. 2019. Mineralogical and geochemical characteristics of K-bentonites from the Late Ordovician to the Early Silurian in South China and their geological significance[J]. Geological Journal, 54: 514-528. doi: 10.1002/gj.3201

    CrossRef Google Scholar

    Ge X Y, Mou C L, Yu Q, Liu W, Men X, He J L. 2019. The geochemistry of the sedimentary rocks from the Huadi No. 1 well in the Wufeng-Longmaxi formations (Upper Ordovician-Lower Silurian), South China, with implications for paleoweathering, provenance, tectonic setting and paleoclimate[J]. Marine and Petroleum Geology, 103: 646-660. doi: 10.1016/j.marpetgeo.2018.12.040

    CrossRef Google Scholar

    Gromet L P, Haskin L A, Korotev R L, Dymek R F. 1984. The "North American shale composite": Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 48: 2469-2482. doi: 10.1016/0016-7037(84)90298-9

    CrossRef Google Scholar

    Harvey J C. 2014. Zircon age and oxygen isotopic correlations between Bouse Formation tephra and the Lawlor Tuff[J]. Geosphere, 10: 221-232. doi: 10.1130/GES00904.1

    CrossRef Google Scholar

    Heintz M L, Yancey T E, Miller B V, Heizler M T. 2015. Tephrochronology and geochemistry of Eocene and Oligocene volcanic ashes of east and central Texas[J]. GSA Bulletin, 127: 770-780. doi: 10.1130/B31146.1

    CrossRef Google Scholar

    Hong H L, Zhao L L, Fang Q, Algeo T J, Wang C W, Yu J X, Gong N N, Yin K, Ji K P. 2019. Volcanic sources and diagenetic alteration of Permian-Triassic boundary Kbentonites in Guizhou Province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 141-153. doi: 10.1016/j.palaeo.2018.01.019

    CrossRef Google Scholar

    HuY H, Zhou J B, Song B, Li W, Sun W D. 2008. SHRIMP zircon U-Pb dating from K-bentonite in the top of Ordovician of Wangjiawan Section, Yichang, Hubei, China[J]. Science in China (Series D), 51: 493-498. doi: 10.1007/s11430-008-0028-1

    CrossRef Google Scholar

    Hu Yanhua, Liu Jian, Zhou Mingzhong, Wang Fangyue, Ding Xing, Ling Mingxing, Sun Weidong. 2009a. An overview of Ordovician and Silurian K-bentonites[J]. Geochimica, 38(4): 390-401(in Chinese with English abstract).

    Google Scholar

    Hu Yanhua, Qian Junfeng, Zhu Xianyao, Xu Yan, Gu Mingguang, Li Jianfeng. 2012. The overview and origin analysis for the Caledonian Movement in the South China Block[J]. Bulletin of Science and Technology, 28(11): 42-48(in Chinese with English abstract).

    Google Scholar

    Hu Yanhua, Zhou Jibin, Song Bin, Li Wei, Sun Weidong. 2008. SHRIMP zircon U-Pb dating from K-bentonite in the top of Ordovician of Wangjiawan Section, Yichang, Hubei, China[J]. Science in China (Series D), 38(1): 72-77(in Chinese with English abstract). doi: 10.1007/s11430-008-0028-1

    CrossRef Google Scholar

    Hu Yanhua, Sun Weidong, Ding Xing, Wang Fangyue, Ling Mingxing, Liu Jian. 2009b. Volcanic event at the Ordovician-Silurian boundary: The message from K-bentonite of Yangtze Block[J]. Acta Petrologica Sinica, 25(12): 3298-3308(in Chinese with English abstract).

    Google Scholar

    Huff W D. 2008. Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras[J]. Quaternary International, 178: 276-287. doi: 10.1016/j.quaint.2007.04.007

    CrossRef Google Scholar

    Huff W D. 2016. K-bentonites: A review[J]. American Mineralogist, 101: 43-70. doi: 10.2138/am-2016-5339

    CrossRef Google Scholar

    Huff W D, Bergström S M, Kolata D R. 1992. Gigantic Ordovician volcanicash fall in North America and Europe: Biological, tectonomagmatic, and event-stratigraphic significance[J]. Geology, 20: 875-878. doi: 10.1130/0091-7613(1992)020<0875:GOVAFI>2.3.CO;2

    CrossRef Google Scholar

    Huff W D, Bergström S M, Kolata D R. 2000. Silurian K-bentonites of the Dnestr Basin, Podolia, Ukraine[J]. Journal of the Geological Society, 157: 493-504. doi: 10.1144/jgs.157.2.493

    CrossRef Google Scholar

    Huff W D, Bergström S M, Kolata D R, Sun H P. 1998. The Lower Silurian Osmundsberg K-bentonite. PartⅡ: Mineralogy, geochemistry, chemostratigraphy and tectonomagmatic significance[J]. Geological Magazine, 135: 15-26. doi: 10.1017/S001675689700811X

    CrossRef Google Scholar

    Huff W D, Davis D W, Bergström S M, Krekeler M P S, Kolata D R, Cingolani C A. 1997. A biostratigraphically well-constrained K-bentonite U-Pb zircon age of the lowermost Darriwilian stage (Middle Ordovician) from the Argentine Precordillera[J]. Episodes, 20: 29-33. doi: 10.18814/epiiugs/1997/v20i1/006

    CrossRef Google Scholar

    Huff W D, Dronov A V, Sell B, Kanygin A V, Gonta T V. 2014. Traces of explosive volcanic eruptions in the Upper Ordovician of the Siberian Platform[J]. Estonian Journal of Earth Sciences, 63: 244-250. doi: 10.3176/earth.2014.26

    CrossRef Google Scholar

    Huff W D, Kolata D R, Bergström S M, Zhang Y S. 1996. Large magnitude Middle Ordovician volcanic ash falls in North America and Europe: Dimensions, emplacement and post-emplacement characteristics[J]. Journal of Volcanology and Geothermal Research, 73: 285-301. doi: 10.1016/0377-0273(96)00025-X

    CrossRef Google Scholar

    Huff W D, Merriman R J, Morgan D J, Roberts B. 1993. Distribution and tectonic setting of the Ordovician K-bentonites in the United-Kingdom[J]. Geological Magazine, 130: 93-100. doi: 10.1017/S001675680002375X

    CrossRef Google Scholar

    Jiang Shengling, Li Bo, Peng Chuansheng, Hu Xiaolan, Hong Keyan, Zhu Liangliang. 2018. Characteristics and gas content of Wufeng-Longmaxi Formation Shale in the Well LD2 of the Laifeng-Xianfeng Block[J]. Geology and Exploration, 54(1): 203-210(in Chinese with English abstract).

    Google Scholar

    JiangYaofa, Tang Yuegang, Dai Shifeng, Zou Xing, Qian Handong, Zhou Guoqing. 2006. Pyrites and sulfur isotopic composition near Permian-Triassic boundary in Meishan, Zhejiang[J]. Acta Geologica Sinica, 80(8): 1202-1207(in Chinese with English abstract).

    Google Scholar

    Jones D S, Martini A M, Fike D A, Kaiho K. 2017. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia[J]. The Geological Society of America, 45: 631-634.

    Google Scholar

    Kiipli T, Kallaste T, Nielsen A T, Schovsbo N H, Siir S. 2014. Geochemical discrimination of the Upper Ordovician Kinnekulle Bentonite in the Billegrav-2 drill core section, Bornholm, Denmark[J]. Estonian Journal of Earth Sciences, 63: 264-270. doi: 10.3176/earth.2014.29

    CrossRef Google Scholar

    Kiipli T, Dahlqvist P, Kallaste T, Kiipli E, Nõlvak J. 2015. Upper Katian (Ordovician) bentonites in the East Baltic, Scandinavia and Scotland: Geochemical correlation and volcanic source interpretation[J]. Geological Magazine, 152: 589-602. doi: 10.1017/S001675681400051X

    CrossRef Google Scholar

    Kolata D R, Frost J K, Huff W D. 1987. Chemical correlation of K-bentonite beds in the Middle Ordovician Decorah Subgroup, upper Mississippi Valley[J]. Geology, 15: 208-211. doi: 10.1130/0091-7613(1987)15<208:CCOKBI>2.0.CO;2

    CrossRef Google Scholar

    Kolata D R, Huff W D, Bergström S M. 1996. Ordovician K-bentonites of Eastern North America[J]. Geological Society of America (Special Paper), 313: 1-84.

    Google Scholar

    Li Bin, Hu Bowen, Luo Qun. 2017. A study on sequence stratigraphy and sedimentary microfacies of Longmaxi Formation of Early Silurian in the Baojing area, Hunan Province[J]. Geology and Exploration, 53(6): 1229-1239(in Chinese with English abstract).

    Google Scholar

    Liao Zhiwei, Hu Wenxuan, Wang Xiaolin, Cao Jian, Yao Suping, Wan Ye. 2016. Volcanic origin of claystone near the Permian-Triassic boundary in the deep water environment of the Yangtze Region and its implications for LPME[J]. Acta Geological Sinica, 90(4): 785-800(in Chinese with English abstract).

    Google Scholar

    Liu Baojun, Xu Xiaosong. 1994. Lithofacies Palaeogeography Atlas of South China (Sinian-Triassic Period)[M]. Beijing: Science Press, 1-188(in Chinese).

    Google Scholar

    Luo Hua, He Renliang, Pan Longke, Yang Cheng, Yu Guofei. 2016. LA-ICP-MS zircon U-Pb age and its significance of Late Ordovician-Early Silurian Longmaxi bentonite[J]. Resources Environment & Engineering, 30(4): 547-550(in Chinese with English abstract).

    Google Scholar

    Luo Hua, Pan Longke, He Renliang. 2017. Geochemical characeristics and geological significance of Longmaxi Formation of Late Ordovician-Early Silurian in Mayangzhai Area, Hubei Province[J]. Resources Environment & Engineering, 31(1): 1-12(in Chinese with English abstract).

    Google Scholar

    Luo Q Y, Zhong N N, Dai N, Zhang W. 2016. Graptolite-derived organic matter in the Wufeng-Longmaxi Formations(Upper Ordovician-Lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation[J]. International Journal of Coal Geology, 153: 87-98. doi: 10.1016/j.coal.2015.11.014

    CrossRef Google Scholar

    Ma J L, Wei G J, Xu Y G, Long W G, Sun W D. 2007. Mobilization and redistribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China[J]. Geochimica et Cosmochimica Acta, 71: 3223-3237. doi: 10.1016/j.gca.2007.03.035

    CrossRef Google Scholar

    Mullen E D. 1983. MnO/TiO2/P2O5: A major element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters, 62: 53-62. doi: 10.1016/0012-821X(83)90070-5

    CrossRef Google Scholar

    Nesbitt H W, Young G M, Mclennan S M, Keays R R. 1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. Journal of Geology, 104: 525-542. doi: 10.1086/629850

    CrossRef Google Scholar

    Nesbitt H W, Markovics G. 1997. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 61: 1653-1670. doi: 10.1016/S0016-7037(97)00031-8

    CrossRef Google Scholar

    Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks investigated using trace element analyses[J]. Earth and Planetary Science Letters, 19: 290-300. doi: 10.1016/0012-821X(73)90129-5

    CrossRef Google Scholar

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Science, 23: 251-285. doi: 10.1146/annurev.ea.23.050195.001343

    CrossRef Google Scholar

    Rakociński M, Zatoń M, Marynowski L, Gedl P, Lehmann J. 2018. Redox conditions, productivity, and volcanic input during deposition of uppermost Jurassic and Lower Cretaceous organic-rich siltstones in Spitsbergen, Norway[J]. Cretaceous Research, 89: 126-147. doi: 10.1016/j.cretres.2018.02.014

    CrossRef Google Scholar

    Roberts B, Merriman R J. 1990. Cambrian and Ordovician metabentonites and their relevance to the origins of associated mudrocks in the northern sector of the Lower Palaeozoic Welsh Margina basin[J]. Geological Magazine, 127: 31-43. doi: 10.1017/S001675680001414X

    CrossRef Google Scholar

    Rollinson H. 1993. Using geochemical data: Evaluation, presentation, interpretation[M]. Longman Scienice and Technology Publication. London, 1-352.

    Google Scholar

    Shu Liangshu. 2006. Predevonian tectonic evolution of South China: From Cathaysian Block to Caledonian Period Folded orogenic belt[J]. Geological Journal of China Universities, 12(4): 418-431(in Chinese with English abstract).

    Google Scholar

    Siir S, Kallaste T, Kiipli T, Hints R. 2015. Internal stratification of two thick Ordovician bentonites of Estonia: Deciphering primary magmatic, sedimentary, environmental and diagenetic signatures[J]. Estonian Journal of Earth Sciences, 64: 140-158. doi: 10.3176/earth.2015.23

    CrossRef Google Scholar

    Song Teng, Chen Ke, Bao Shujing, Guo Tianlin, Lei Yuxue, Wang Yi, Meng Fanyang, Wang Peng. 2018. The discovery of shale gas in Wufeng-Longmaxi Formation at Hongdi-1 Well on the northern limb of Shennongjia anticline in northwestern Hubei Province[J]. Geology in China, 45(1): 195-196(in Chinese with English abstract).

    Google Scholar

    Su Wenbo, He Longqing, Wang Yongbiao, Gong Shuyun, Zhou Huyun. 2002. K-bentonite beds and high-resolution integrated stratigraphy of the uppermost Ordovician Wufeng and the lowest Silurian Longmaxi formations in South China[J]. Science in China (Series D), 32(3): 207-209(in Chinese with English abstract).

    Google Scholar

    Su Wenbo, Li Zhiming, Frank R Ettensohn, Markes E Johnson, Warren D Huff, Wang Wei, Ma Chao, Li Lu, Zhang Lei, Zhao Huijing. 2007. Distribution of black shale in the Wufeng-Longmaxi Formations (Ordovician-Silurian), South China: Major controlling factors and implications[J]. Earth Science——Journal of China University of Geosciences, 32(6): 819-827(in Chinese with English abstract).

    Google Scholar

    Su W B, He L Q, Wang Y B, Gong S Y, Zhou H Y. 2003. K-bentonite beds and high-resolution integrated stratigraphy of the uppermost Ordovician Wufeng and the lowest Silurian Longmaxi formations in South China[J]. Science in China (Series D), 46: 1121-1133. doi: 10.1360/01yd0225

    CrossRef Google Scholar

    Su Wenbo, Li Zhiming, Shi Xiaoying, Zhou Hongrui, Huang Siji, Liu Xiaoming, Chen Xiaoyu, Zhang Jian, Yang Hongmei, Jia Liujing, W D Huff, F R Ettensohn. 2006. K-bentonites and black shales from the Wufeng-Longmaxi Formations(Early Paleozoic, South China) and Xiamaling Formation(Early Neoproterozoic, North China)——implications for tectonic processes during two important transitions[J]. Earth Science Frontiers, 13(6): 82-95(in Chinese with English abstract).

    Google Scholar

    Su W B, Huff W D, Ettensohn F R, Liu X M, Zhang J E, Li Z M. 2009. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana[J]. Gondwana Research, 15: 111-130. doi: 10.1016/j.gr.2008.06.004

    CrossRef Google Scholar

    Su W B, Li Z M, Ettensohn F R, Johnson M E, Huff W D, Wang W, Ma C. 2007. Tectonic and eustatic control on the distribution of black-shale source beds in the Wufeng and Longmaxi Formations (Ordovician-Silurian), South China[J]. Frontier of the Earth Sciences, 1: 470-481. doi: 10.1007/s11707-007-0058-6

    CrossRef Google Scholar

    Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific, 1-311.

    Google Scholar

    Teale C T, Spears D A. 1986. The mineralogy and origin of some Silurian bentonites, Welsh Borderland, U.K.[J]. Sedimentology, 33: 757-765.

    Google Scholar

    Trela W, Bak E, Pańczyk M. 2018. Upper Ordovician and Silurian ash beds in the Holy Cross Mountains, Poland: Preservation in mudrock facies and relation toatmospheric circulation in the Southern Hemisphere[J]. Journal of Geological Society, 175: 352-360. doi: 10.1144/jgs2017-026

    CrossRef Google Scholar

    Türkmenoǧlu A G, Bozkaya Ö, Göncüoǧlu M C, ünlüce Ö, Yilmaz İ Ö, Okuyucu C. 2015. Clay mineralogy, chemistry, and diagenesis of Late Devonian K-bentonite occurrences in northwestern Turkey[J]. Turkish Journal of Earth Sciences, 24: 209-229. doi: 10.3906/yer-1501-14

    CrossRef Google Scholar

    Wan Bin, Guan Chengguo, Zhou Chuanming, Meng Fanwei, Pang Ke, Tang Qing, Rao Xin. 2013. Petrologic and geochemical characteristics of K-bentonites from the basal Ediacaran in Yangtze Platform, South China and their geological significance[J]. Acta Petrologica Sinica, 29(12): 4373-4386(in Chinese with English abstract).

    Google Scholar

    Wang X D, Cawood P A, Zhao H, Zhao L S, Grasby S E, Chen Z Q, Wignall P B, Lv Z Y, Han C. 2018. Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments[J]. Earth and Planetary Science Letters, 496: 159-167. doi: 10.1016/j.epsl.2018.05.044

    CrossRef Google Scholar

    Wang Yuman, Li Xinjing, Dong Dazhong, Zhang Chenchen, Wang Shufang. 2017. Main factors controlling the sedimentation of high-quality shale inWufeng-Longmaxi Fm, Upper Yangtze region[J]. Natural Gas Industry, 37(4): 9-20(in Chinese with English abstract).

    Google Scholar

    Wang Longwu, Zhang Jianfang, Chen Jianhua, Zhang Yuandong, Chen Xiaoyou, Zhu Chaohui, Liu Jian, Hu Yanhua, Ma Xuan. 2015. Chararteristics of Katian(Late Ordovician) K-Bentonites from An Ji, Zhe Jiang Province[J]. Journal of Stratigraphy, 39(2): 155-168(in Chinese with English abstract).

    Google Scholar

    Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    Wood D A. 1980. The application of a Th-Hf-Ta diagram to problem of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters, 50: 11-30. doi: 10.1016/0012-821X(80)90116-8

    CrossRef Google Scholar

    Xi Zhandong, Tang Shuheng, Wang Jing, Zhang Zhen, Li Yanpeng, Gong Minghui, Xiao Heqi. 2018. Evalution parameters study of selecting favorable shale gas areas in Southern China[J]. Acta Geologica Sinica, 92(6): 1313-1323(in Chinese with English abstract).

    Google Scholar

    Xie Shangke, Wang Zhengjiang, Wang Jian, Zhuo Jiewen. 2012. LA-ICP-MS zircon U-Pb dating of the bentonites from the uppermost part of the Ordovician Wufeng Formation in the Haoping section, Taoyuan, Hunan[J]. Sedimentary Geology and Tethyan Geology, 32(4): 65-69(in Chinese with English abstract).

    Google Scholar

    Xiong Xiaohui, Wang Jian, Xiong Guoqing, Wang Zhengjiang, Men Yupeng, Zhou Xiaolin, Zhou Yexin, Yang Xiao, De Qi. 2018. Shale gas geological characteristics of Wufeng and Longmaxi Formations in Northeast Chongqing and its exploration direction[J]. Acta Geologica Sinica, 92 (9): 1948-1958(in Chinese with English abstract).

    Google Scholar

    Yan D T, Wang H, Fu Q L, Chen Z H, He J, Gao Z. 2015. Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for organic matter accumulation[J]. Marine and Petroleum Geology, 65: 290-301. doi: 10.1016/j.marpetgeo.2015.04.016

    CrossRef Google Scholar

    Yang Ping, Wang Zhengjiang, Yu Qian, Liu Wei, Liu Jiahong, Xiong Guoqing, He Jianglin, Yang Fei. 2019. An resources potential analysis of Wufeng-Longmaxi Formation shale gas in the southwestern margin of Sichuan Basin[J]. Geology in China, 46(3): 601-614(in Chinese with English abstract).

    Google Scholar

    Yang R, He S, Hu Q H, Hu D F, Yi J Z. 2017. Geochemical characteristics and origin of natural gas from Wufeng-Longmaxi shales of the Fuling gas field, Sichuan Basin (China)[J]. International Journal of Coal Geology, 171: 1-11. doi: 10.1016/j.coal.2016.12.003

    CrossRef Google Scholar

    Yang Ying. 2011. Zircon U-Pb geochronology and genesis of K-bentonite at the Paleozoic-Mesozoic key stratigraphic boundary of South China[M]. China University of Geosciences(Wuhan), 1-72(in Chinese with English abstract).

    Google Scholar

    Yin Hongfu, Wu Shunbao, Du Yuansheng, Peng Yuanqiao. 1999. South China defined as part of Tethyan archipelagic ocean system[J]. Earth Science, 24(1): 1-12(in Chinese with English abstract).

    Google Scholar

    Zhang G W, Guo A L, Wang Y J, Li S Z, Dong Y P, Liu S F, He D F, Cheng S Y, Lu R K, Yao A P. 2013. Tectonics of South China continent and its implications[J]. Science China: Earth Sciences, 56: 1804-1828. doi: 10.1007/s11430-013-4679-1

    CrossRef Google Scholar

    Zhao J H, Jin Z J, Jin Z K, Geng Y K, Wen X, Yan C N. 2016. Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China[J]. International Journal of Coal Geology, 163: 52-71. doi: 10.1016/j.coal.2016.06.015

    CrossRef Google Scholar

    Zheng B, Mou C, Zhou R, Wang X, Xiao Z, Chen Y. 2020a. Nature and origin of the volcanic ash beds near the Permian-Triassic boundary in South China: New data and their geological implications[J]. Geological Magazine, 157: 677-689. doi: 10.1017/S001675681900133X

    CrossRef Google Scholar

    Zheng B, Zhou R, Mou C, Wang X, Xiao Z, Chen Y. 2020b. Nature of the Late Ordovician-Early Silurian Xiaohe section, Hunan-Hubei area, South China: Implications for the Kwangsian Orogeny[J]. International Geology Review, 62: 1262-1272. doi: 10.1080/00206814.2019.1644541

    CrossRef Google Scholar

    Zhou Mingzhong, Luo Taiyi, Huang Zhilong, Long Hansheng, Yang Yong. 2007. Advances in research in K-bentonite[J]. Acta Mineralogical Sinica, 27(3): 351-359(in Chinese with English abstract).

    Google Scholar

    Zhou M Z, Luo T Y, Huff W D, Liu S R. 2014. Prominent Lower Cambrian K-bentonites in South China: Distribution, mineralogy, and geochemistry[J]. Journal of Sedimentary Research, 84: 842-853. doi: 10.2110/jsr.2014.66

    CrossRef Google Scholar

    陈孝红, 张保民, 张国涛, 陈林, 张淼, 李培军. 2018. 湖北宜昌地区奥陶系五峰组-志留系龙马溪组获页岩气高产工业气流[J]. 中国地质, 45(1): 199-200.

    Google Scholar

    陈旭, 戎嘉余, Rowley D B, 张进, 张元动, 詹仁斌. 1995. 对华南早古生代板溪洋的质疑[J]. 地质论评, 41(5): 389-400. doi: 10.3321/j.issn:0371-5736.1995.05.001

    CrossRef Google Scholar

    冯宝华. 1989. 我国北方石炭-二叠纪火山灰沉积水解改造而成的高岭岩[J]. 沉积学报, 7(1): 101-108.

    Google Scholar

    冯伟明, 李嵘, 赵瞻, 余谦, 杨瀚, 谢渊, 叶定南. 2021. 滇东北DD1井五峰组-龙马溪组地层界线划分及沉积环境演变[J]. 中国地质, 48(1): 297-308.

    Google Scholar

    胡艳华, 刘健, 周明忠, 汪方跃, 丁兴, 凌明星, 孙卫东. 2009a. 奥陶纪和志留纪钾质斑脱岩研究评述[J]. 地球化学, 38(4): 390-401.

    Google Scholar

    胡艳华, 钱俊锋, 褚先尧, 徐岩, 顾明光, 李建峰. 2012. 华南加里东运动研究综述及其性质初探1[J]. 科技通报, 28(11): 42-48. doi: 10.3969/j.issn.1001-7119.2012.11.011

    CrossRef Google Scholar

    胡艳华, 周继彬, 宋彪, 李卫, 孙卫东. 2008. 中国湖北宜昌王家湾剖面奥陶系顶部斑脱岩SHRIMP锆石U-Pb定年[J]. 中国科学(D辑): 地球科学, 38(1): 72-77. doi: 10.3321/j.issn:1006-9267.2008.01.007

    CrossRef Google Scholar

    胡艳华, 孙卫东, 丁兴, 汪方跃, 凌明星, 刘健. 2009b. 奥陶纪-志留纪边界附近火山活动记录: 来华南周缘钾质斑脱岩的信息[J]. 岩石学报, 25(12): 3298-3308.

    Google Scholar

    姜生玲, 李博, 彭传圣, 胡晓兰, 洪克岩, 朱亮亮. 2018. 来凤咸丰区块LD2井五峰-龙马溪组页岩发育特征及含气性分析[J]. 地质与勘探, 54(1): 203-210. doi: 10.3969/j.issn.0495-5331.2018.01.022

    CrossRef Google Scholar

    姜尧发, 唐跃刚, 代世峰, 邹星, 钱汉东, 周国庆. 2006. 浙江煤山二叠系-三叠系界线附近黄铁矿及其硫同位素组成研究[J]. 地质学报, 80(8): 1202-1207. doi: 10.3321/j.issn:0001-5717.2006.08.014

    CrossRef Google Scholar

    李斌, 胡博文, 罗群. 2017. 湖南保靖地区龙马溪组层序地层及沉积微相研究[J]. 地质与勘探, 53(6): 193-203.

    Google Scholar

    廖志伟, 胡文瑄, 王小林, 曹剑, 姚素平, 万野. 2016. 下扬子PTB界线深水相区黏土岩的火山成因研究及其对LPME的指示意义[J]. 地质学报, 90(4): 785-800. doi: 10.3969/j.issn.0001-5717.2016.04.013

    CrossRef Google Scholar

    刘宝珺, 许效松. 1994. 中国南方岩相古地理图集(震旦纪-三叠纪). 北京: 科学出版社, 1-188.

    Google Scholar

    罗华, 蟠龙克, 何仁亮. 2017. 湖北省麻阳寨地区晚奥陶-早志留世龙马溪组斑脱岩地球化学特征及其地质意义[J]. 资源环境与工程, 31(1): 1-12.

    Google Scholar

    罗华, 何仁亮, 蟠龙克, 杨成, 余国飞. 2016. 湖北宣恩县麻阳寨晚奥陶-早志留世龙马溪组斑脱岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 资源环境与工程, 30(4): 547-550.

    Google Scholar

    舒良树. 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带[J]. 高校地质学报, 12(4): 418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002

    CrossRef Google Scholar

    宋腾, 陈科, 包书景, 郭天旭, 雷玉雪, 王亿, 孟凡洋, 王鹏. 2018. 鄂西北神农架背斜北翼(鄂红地1井)五峰-龙马溪组钻获页岩气显示[J]. 中国地质, 45(1): 195-196.

    Google Scholar

    苏文博, 何龙清, 王永标, 龚淑云, 周湖云. 2002. 华南奥陶-志留系五峰组及龙马溪组底部斑脱岩与高分辨综合地层[J]. 中国科学(D辑), 32(3): 207-209.

    Google Scholar

    苏文博, 李志明, Frank R Ettensohn, Markes E Johnson, Warren D Huff, 王巍, 马超, 李录, 张磊, 赵慧静. 2007. 华南五峰组-龙马溪组黑色岩系时空展布的主控因素及其启示[J]. 地球科学——中国地质大学学报, 32(6): 819-827.

    Google Scholar

    苏文博, 李志明, 史晓颖, 周洪瑞, 黄思骥, 刘晓茗, 陈晓雨, 张继恩, 杨红梅, 贾柳静, W D Huff, F R Ettensohn. 2006. 华南五峰组-龙马溪组与华北下马岭组的钾质斑脱岩及黑色岩系——两个地史转折期板块构造运动的沉积响应[J]. 地学前缘, 13(6): 82-95. doi: 10.3321/j.issn:1005-2321.2006.06.011

    CrossRef Google Scholar

    万斌, 关成国, 周传明, 孟凡巍, 庞科, 唐卿, 饶馨. 2013. 华南埃迪卡拉系底部钾质斑脱岩的岩石地球化学特征及其地质意义[J]. 岩石学报, 29(12): 4373-4386.

    Google Scholar

    汪隆武, 张建芳, 陈津华, 张元动, 陈小友, 朱朝晖, 刘健, 胡艳华, 马譞. 2015. 浙江安吉上奥陶统钾质斑脱岩特征[J]. 地层学杂志, 39(2): 155-168.

    Google Scholar

    王玉满, 李新景, 董大忠, 张晨晨, 王淑芳. 2017. 上扬子地区五峰组-龙马溪组优质页岩沉积主控因素[J]. 天然气工业, 37(4): 9-20.

    Google Scholar

    郗兆栋, 唐书恒, 王静, 张振, 李彦朋, 龚明辉, 肖何琦. 2018. 中国南方海相页岩气选区关键参数探讨[J]. 地质学报, 92(6): 1313-1323. doi: 10.3969/j.issn.0001-5717.2018.06.014

    CrossRef Google Scholar

    谢尚克, 汪正江, 王剑, 卓皆文. 2012. 湖南桃源郝坪奥陶系五峰组顶部斑脱岩LA-ICP-MS锆石U-Pb年龄[J]. 沉积与特提斯地质, 32(4): 65-69. doi: 10.3969/j.issn.1009-3850.2012.04.010

    CrossRef Google Scholar

    熊晓辉, 王剑, 熊国庆, 汪正江, 门玉澎, 周小琳, 周业鑫, 杨潇, 邓奇. 2018. 渝东北地区五峰组-龙马溪组页岩气地质特征及其勘探方向探讨[J]. 地质学报, 92(9): 1948-1958. doi: 10.3969/j.issn.0001-5717.2018.09.013

    CrossRef Google Scholar

    杨平, 汪正江, 余谦, 刘伟, 刘家洪, 熊国庆, 何江林, 杨菲. 2019. 四川盆地西南缘五峰-龙马溪组页岩气资源潜力分析[J]. 中国地质, 46(3): 601-614.

    Google Scholar

    杨颖. 2011. 华南古-中生代关键地层界线附近斑脱岩锆石U-Pb年代学及成因[M]. 中国地质大学(武汉), 1-72.

    Google Scholar

    殷鸿福, 吴顺宝, 杜远生, 彭元桥. 1999. 华南是特提斯多岛洋体系的一部分[J]. 地球科学, 24(1): 1-12.

    Google Scholar

    张国伟, 郭安林, 王岳军, 李三忠, 董云鹏, 刘少峰, 何登发, 程顺有, 鲁如魁, 姚安平. 2013. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 43(10): 1553-1582.

    Google Scholar

    周明忠, 罗泰义, 黄智龙, 龙汉生, 杨勇. 2007. 钾质斑脱岩的研究进展[J]. 矿物学报, 27(3): 351-359. doi: 10.3321/j.issn:1000-4734.2007.03.017

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(2823) PDF downloads(148) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint