2021 Vol. 48, No. 3
Article Contents

HE Miao, QIN Lanzhi, YIN Taiju, LIU Yong, WANG Jianning, FENG Wenjie. 2021. The application of the distributive fluvial system in the South Xihu depression, East China Sea and its indication of oil and gas potential[J]. Geology in China, 48(3): 820-831. doi: 10.12029/gc20210312
Citation: HE Miao, QIN Lanzhi, YIN Taiju, LIU Yong, WANG Jianning, FENG Wenjie. 2021. The application of the distributive fluvial system in the South Xihu depression, East China Sea and its indication of oil and gas potential[J]. Geology in China, 48(3): 820-831. doi: 10.12029/gc20210312

The application of the distributive fluvial system in the South Xihu depression, East China Sea and its indication of oil and gas potential

    Fund Project: Funded by National Major Science and Technology Project"Deep Low Permeability and Tight Gas Exploration and Development Technology in the East China Sea"(No. 2016ZX05027-002)
More Information
  • Author Bio: HE Miao, female, born in 1988, doctor, mainly engages in sedimentology and oil & gas exploration research; E-mail: hemiao3@cnooc.com.cn
  • Taking the South Xihu depression as a study case, the authors applies the research idea of distributive fluvial system (DFS) to the study of the sedimentary system of the East China Sea Basin. By summarizing the forming conditions of large DFS, it is concluded that the south Xihu depression is near the source and under stable tectonic condition, and there also exists large basin and mountain systems, which is favorable for forming large DFS. Based on the characteristics of the core and paleontology of Huagang Formation, the author divided branch channels into some types, and indicated that the main types of FS are braided bifurcating and single braided channels. Different types of channels have the potential for developing thick sand bodies. Combined with the features of the paleotopography and sedimentary system distribution, the study of the patterns of DFS distribution shows that the study area has developed two sets of DFS, which are distributed respectively from western slope to the northeast and southeast. The DFS end belongs to "the axial end" type, suggesting that the axial limited rivers of Xihu depression and DFS has formed a convergence zone with reservoir exploration potential.

  • 加载中
  • Bilmes Andres, Veiga Gonzalo D. 2016. Linking mid-scale distributive fluvial systems to drainage basin area: Geomorphological and sedimentological evidence from the endorheic Gastre Basin, Argentina[J]. Geological Society London Special Publications, 440: 4.

    Google Scholar

    Davidson Stephanie K, Hartley Adrian J. 2014. A quantitative approach to linking drainage area and distributive-fluvial-system area in modern and ancient Endorheic Basins[J]. Journal of Sedimentary Research, 84: 1005-1020. doi: 10.2110/jsr.2014.79

    CrossRef Google Scholar

    Fielding Christopher R, Ashworth Philip J, Best James L, Prokocki Eric W, Sambrook Smith, Gregory H. 2012. Tributary, distributary and other fluvial patterns: What really represents the norm in the continental rock record?[J]. Sedimentary Geology, 261-262: 15-32. doi: 10.1016/j.sedgeo.2012.03.004

    CrossRef Google Scholar

    Gao Maosheng, Guo Fei, Hou Guohua, Qiu Jiandong, Kong Xianghuai, Liu Sen, Huang Xueyong, Zhuang Haihai. 2018. The evolution of sedimentary environment since Late Pleistocene in Laizhou Bay, Bohai Sea[J]. Geology in China, 45(1): 59-68(in Chinese with English abstract).

    Google Scholar

    Hartley Adrian J, Weissmann Gary S, Nichols Gary J, Warwick Gail L. 2010. Large distributive fluvial systems: Characteristics, distribution, and controls on development[J]. Journal of Sedimentary Research, 80: 167-183. doi: 10.2110/jsr.2010.016

    CrossRef Google Scholar

    Holzweber Barbara I, Hartley Adrian J, Weissmann Gary S. 2014. Scale invariance in fluvial barforms: Implications for interpretation of fluvial systems in the rock record[J]. Petroleum Geoscience, 20: 211-224. doi: 10.1144/petgeo2011-056

    CrossRef Google Scholar

    Jia Jianyi, Gu Huirong. 2002. Petroleum Systems and Assessment of Oil and Gas Resources in Xihu Depression, East China Sea[M]. Beijing: Geological Publishing House, 110-125.

    Google Scholar

    Jin Desheng, Qiao Yunfeng, Yang Lihu, Song Xianfang. 2015. A research of influence of neo-tectonic movement on alluvial rivers: Review and prospect[J]. Geography Research, 34(3): 437-454(in Chinese with English abstract).

    Google Scholar

    Kelly B F J, Timms W, Ralph T J, Giambastiani B M S, Comunian A, McCallum A M, Andersen M S, Blakers R S, Acworth R I, Baker A. 2014. A reassessment of the Lower Namoi Catchment aquifer architecture and hydraulic connectivity with reference to climate drivers[J]. Australian Journal of Earth Sciences, 61: 501-511. doi: 10.1080/08120099.2014.900647

    CrossRef Google Scholar

    Liu Feng, Zhao Yue, Song Licai, Li Jianfeng. 2015. Time of the upper Irrawaddy streams: A case study of the Longchuan River, western Yunnan[J]. Geology in China, 42(1): 199-206(in Chinese with English abstract).

    Google Scholar

    Liu Jinshui, Cao Bing, Xu Zhixing, Qin Lanzhi, Xu Fanghao, Tang Jiancheng. 2012. Sedimentary facies and the characteristics of tight sandstone reservoirs of Huagang Formation in Xihu depression, East China Sea Basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 39(2): 130-136 (in Chinese with English abstract).

    Google Scholar

    Liu Jinshui. 2015. Characteristics of formation pressure and their relationship with hydrocarbon distribution in Pinghu tectonic belt of Xihu sag, East China Sea[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 42(1): 60-69 (in Chinese with English abstract).

    Google Scholar

    Liu Zongbao, Zhang Yunfeng, Liu Yunyan, Xue Xinyu, Wang Haishan, Liufang. 2018. Status quo of the terminal fan sedimentary system study and its petroleum geological significance[J]. Journal of China University of Mining & Technology, 47(3): 520-530(in Chinese with English abstract).

    Google Scholar

    Lü Junling, Zhu Yijie, Xia Rui, Zheng Yunke, Liu Chenhu, Feng Wenjie, Li Guoyan, Du Xiaofeng. 2020. Sedimentary characteristics and evolution process of arid distributive fluvial systems: Insights from a flume-tank experiment[J]. Acta Sedimenologica Sinica, 38(5): 994-1005.

    Google Scholar

    Owen Amanda, Hartley Adrian J, Weissmann Gary S, Nichols Gary J. 2016. Uranium distribution as a proxy for basin-scale fluid flow in distributive fluvial systems[J]. Journal of the Geological Society, 173(4): 1-17.

    Google Scholar

    Owen Amanda, Nichols Gary J, Hartley Adrian J, Weissmann Gary S. 2017. Vertical trendswithin the prograding Salt Wash distributive fluvial system, SW United States[J]. Basin Research, 29(1): 64-80. doi: 10.1111/bre.12165

    CrossRef Google Scholar

    Qiang Kunsheng, Zhang Guangxue, Zhang Li, Lü Baofeng, Zhong Guangjian, Feng Changmao, Yi Hai. 2018a. Paleogeomorphic features andsedimentary facies model of Jurassic strata in Chaoshan sub-basin, northern South China Sea[J]. Geology in China, 45(6): 1251-1258(in Chinese with English abstract).

    Google Scholar

    Qiang Kunsheng, Zhang Guangxue, Zhang Li, Lü Baofeng, Zhong Guangjian, Feng Changmao, Yi Hai, Zhao Zhongquan, Yang Zhen, Yan Wei. 2018b. A study of depositional characteristics of the Jurassic strata in Chaoshan Sub-basin, northern South China Sea, and its control on reservoir beds[J]. Geology in China, 45(1): 48-58(in Chinese with English abstract).

    Google Scholar

    Quartero E M, Leier A L, Bentley L R, Glombick P. 2015. Basin-scale stratigraphic architecture and potential Paleocene distributive fluvial systems of the Cordilleran Foreland Basin, Alberta, Canada[J]. Sedimentary Geology, 316: 26-38. doi: 10.1016/j.sedgeo.2014.11.005

    CrossRef Google Scholar

    Shi Yuxin, Gao Zhiyong, Zhou Chuanmin, Zhai, Yicheng, Fan Xiaorong, Feng Jiarui. 2019. Sedimentary characteristics and significance of distributive fluvial system of modern alluvial fan and fan delta plain in the northern margin of Bosten lake, Xinjiang[J]. Acta Petrolei Sinica, 40(5): 542-556.

    Google Scholar

    Sun Le, Yu Xinghe, Li Shengli, Zhang Hui, He Yulin, Yang Kaile, Qiao Yarong, Zhang Wenmiao, Wu Zijin, Gao Mingxuan. 2017. Sedimentary characteristics of transgressive fan delta of the 3rd Member of Eocene Liushagang Formation in eastern Wushi sag, Beibuwan Basin[J]. Geology in China, 44(3): 485-498(in Chinese with English abstract).

    Google Scholar

    Trendell A M, Atchley S C, Nordt L C. 2013. Facies analysis of a probable large-fluvial-fan depositional system: The Upper Triassic Chinle Formation at Petrified Forest National Park, Arizona, U.S. A[J]. Journal of Sedimentary Research, 83(10): 873-895. doi: 10.2110/jsr.2013.55

    CrossRef Google Scholar

    Wang Jian, Fu Xiugen. 2018. Sedimentary evolution of the Qiangtang Basin[J]. Geology in China, 45(2): 237-259(in Chinese with English abstract).

    Google Scholar

    Wang Wenjuan, Zhang Yinguo, Zhang Jianpei. 2014. Seismic facies features and sedimentary facies distribution of Oligocene Huagang Formation in Xihu Sag, East China Sea Basin[J]. Marine Origin Petroleum Geology, 19(1): 60-68(in Chinese with English abstract).

    Google Scholar

    Weissmann Gary S, Hartley Adrian J, Nichols Gary J, Scuderi Louis A. 2010. Fluvial form in modern continental sedimentary basins Distributive fluvial systems[J]. Geological Society of America, 38(1): 39-42.

    Google Scholar

    Weissmannn Gary S, Hartley Adrian J, Nichols Gary J. Scuderi Louis A, Olson M, Buehler H, Banteah R. 2011. Alluvial facies distribution in continental sedimentary basins——Distributive fluvial systems[J]. River to Rock Record: The Presentation of Fluvial Sediments and Their Subsequent Interpretation, 79: 327-355.

    Google Scholar

    Wu Chongyun, Xue Shuhao. 1993. Sedimentology of Petroleum-Bearing Basins in China[M]. Beijing: Petroleum Industry Press(in Chinese).

    Google Scholar

    Zhang Changmin, Huwei, Zhu Rui, Wang Xulong Hou Guowei. 2017a. Concept of distributive fluvial system and its significance to oil and gas exploration and development[J]. Lithologic Reservoirs, 29(3): 1-9(in Chinese with English abstract).

    Google Scholar

    Zhang Changmin, Song Xinmin, Zhi Dongming, Zhou Xinhuai, Yin Taiju, Yin Yanshu, Zhu Rui, Feng Wenjie, Zhang Baojin. 2020. Rethinking on the sedimentary system of terrestrial petroliferous basins: Insights from distributive fluvial system[J]. Acta Petrolei Sinica, 41 (2): 127-152.

    Google Scholar

    Zhang Changmin, Zhu Rui, Zhao Kang, Hu Wei, Yin Yanshu, Li Shaohua, Yin Taiju. 2017b. From endpoint to continuity: A review of research progress on river sedimentary models[J]. Acta Sedimentologica Sinica, 35(5): 926-9441(in Chinese with English abstract).

    Google Scholar

    Zhang Guohua, Zhang Jianpei. 2015. A discuss on the tectonic inversion and its genetic mechanism in the East China Sea shelf basin[J]. Earth Science Frontiers, 22(1): 260-270 (in Chinese with English abstract).

    Google Scholar

    Zhang Jianpei, Yu Yifan, Zhang Tian, Zhang Shaoliang, Tang Xianjun. 2013. Development characteristics and accumulation conditions of lithologic reservoirs in Lishui sag, East China Sea shelf basin[J]. China Offshore Oil and Gas, 25(2): 24-35(in Chinese with English abstract).

    Google Scholar

    Zhang Junfeng, Xu Hao, Zhao Junlong, Ren Pengfei. 2018. Geological characteristics and exploration potential of oil and gas in the northeast area of China[J]. Geology in China, 45(2): 260-273(in Chinese with English abstract).

    Google Scholar

    Zhang Kaixun, Han Shuqin, Wang Zongxiu, Tao Chongzhi, Han Fengbin, Li Chunlin, Li Xiaoshi, Halilov Zailabidin, Takenov Nurgazy. 2018. Characteristics of petroleum systems and resources potential in the Afghan-Tajik Basin[J]. Geology in China, 45(5): 920-930(in Chinese with English abstract).

    Google Scholar

    Zhang Minqiang, Xu Fa, Zhang Jianpei, Zhang Tian. 2011. Structural framework and evolution of Xihu sag in East China Sea basin[J]. Geological Journal of China Universities, 31(5): 67-72(in Chinese with English abstract).

    Google Scholar

    Zhang Xianghui, Zhang Changmin, Feng Wenjie, Zhu Rui, Chen Zhe, Zhao Kang, Zhang Baojin. 2019. Geometry and control factors of distributive fluvial system around the Sugan Lake basin[J]. Acta Geologica Sinica. 93(11): 2948-2959.

    Google Scholar

    Zhang Yuanfu, Dai Xin, Wang Min, Li Xinxin. 2020. The concept, characteristics and significance of fluvial fans[J]. Petroleum Exploration and Development, 47(5): 947-957.

    Google Scholar

    Zhu Weilin, Wu, Jing Fu, Zhang Gongcheng, Ren Jianye, Zhao Zhigang, Wu Keqiang, Zhong Kai, Liu Shixiang. 2015. Discrepancy tectonic evolution and petroleum exploration in China offshore Cenozoic basins[J]. Earth Science Frontiers, 22(1): 88-1018(in Chinese with English abstract).

    Google Scholar

    高茂生, 郭飞, 侯国华, 仇建东, 孔祥淮, 刘森, 黄学勇, 庄海海. 2018. 渤海南部莱州湾晚更新世以来沉积演化特征[J]. 中国地质, 45(1): 59-68.

    Google Scholar

    贾健谊, 顾惠荣. 2002. 东海西湖凹陷含油气系统与油气资源评价[M]. 北京: 地质出版社: 110-125.

    Google Scholar

    金德生, 乔云峰, 杨丽虎, 宋献芳. 2015. 新构造运动对冲积河流影响研究的回顾与展望[J]. 地理研究, 34(3): 437-454.

    Google Scholar

    刘锋, 赵越, 宋立才, 李建锋. 2015. 伊洛瓦底江上游水系形成时代研究-以滇西龙川江为例[J]. 中国地质, 42(1): 199-206. doi: 10.3969/j.issn.1000-3657.2015.01.016

    CrossRef Google Scholar

    刘金水, 曹冰, 徐志星, 秦兰芝, 徐昉昊, 唐健程. 2012. 西湖凹陷某构造花港组沉积相及致密砂岩储层特征[J]. 成都理工大学学报(自然科学版), 39(2): 130-136. doi: 10.3969/j.issn.1671-9727.2012.02.003

    CrossRef Google Scholar

    刘金水. 2015. 西湖凹陷平湖构造带地层压力特征及与油气分布的关系[J]. 成都理工大学学报(自然科学版), 42(1): 60-69. doi: 10.3969/j.issn.1671-9727.2015.01.08

    CrossRef Google Scholar

    刘宗堡, 张云峰, 刘云燕, 薛欣宇, 王海山, 刘芳. 2018. 末端扇沉积体系研究现状及石油地质意义[J]. 中国矿业大学学报, 47(3): 520-530.

    Google Scholar

    吕峻岭, 朱一杰, 夏瑞, 郑云柯, 刘晨虎, 冯文杰, 李国艳, 杜晓峰. 2020. 干旱型分支河流体系沉积特征与演化过程——水槽沉积模拟实验研究[J]. 沉积学报, 38(5): 994-1005.

    Google Scholar

    强昆生, 张光学, 张莉, 吕宝凤, 钟广见, 冯常茂, 易海, 赵忠泉, 杨振, 鄢伟. 2018a. 南海北部潮汕坳陷侏罗系沉积特征及对储层的控制作用研究[J]. 中国地质, 45(1): 48-58.

    Google Scholar

    强昆生, 张光学, 张莉, 吕宝凤, 钟广见, 冯常茂, 易海. 2018b. 南海北部潮汕坳陷侏罗系古地貌特征及沉积相模式[J]. 中国地质. 45(6): 1252-1258.

    Google Scholar

    石雨昕, 高志勇, 周川闽, 翟弈程, 樊小容, 冯佳睿. 2019. 新疆博斯腾湖北缘现代冲积扇与扇三角洲平原分支河流体系的沉积特征与意义[J]. 石油学报, 40(5): 542-556.

    Google Scholar

    孙乐, 于兴河, 李胜利, 张辉, 何玉林, 杨楷乐, 乔亚蓉, 张文淼, 吴子瑾, 高明轩. 2017. 北部湾盆地乌石凹陷东区始新统流三段水进型扇三角洲沉积特征[J]. 中国地质, 44(3): 485-498.

    Google Scholar

    王剑, 付修根. 2018. 论羌塘盆地沉积演化[J]. 中国地质, 45(2): 237-259.

    Google Scholar

    王文娟, 张银国, 张建培. 2014. 东海盆地西湖凹陷渐新统花港组地震相特征及沉积相分布[J]. 海相油气地质, 19(1): 60-68. doi: 10.3969/j.issn.1672-9854.2014.01.008

    CrossRef Google Scholar

    吴崇筠, 薛叔浩. 1993. 中国含油气盆地沉积学[M]. 北京: 石油工业出版社.

    Google Scholar

    张昌民, 胡威, 朱锐, 王绪龙, 侯国伟. 2017a. 分支河流体系的概念及其对油气勘探开发的意义[J]. 岩性油气藏, 29(3): 1-9.

    Google Scholar

    张昌民, 宋新民, 支东明, 周心怀, 尹太举, 尹艳树, 朱锐, 冯文杰, 张宝进. 2020. 陆相含油气盆地沉积体系再思考: 来自分支河流体系的启示[J]. 石油学报, 41 (2): 127-152.

    Google Scholar

    张昌民, 朱锐, 赵康, 胡威, 尹艳树, 李少华, 尹太举. 2017b. 从端点走向连续: 河流沉积模式研究进展述评[J]. 沉积学报, 35(5): 926-944.

    Google Scholar

    张国华, 张建培. 2015. 东海陆架盆地构造反转特征及成因机制探讨[J]. 地学前缘, 22(1): 260-270.

    Google Scholar

    张建培, 余逸凡, 张田, 张绍亮, 唐贤君. 2013. 东海西湖凹陷深盆气勘探前景探讨[J]. 中国海上油气, 25(2): 24-35.

    Google Scholar

    张君峰, 许浩, 赵俊龙, 任鹏飞. 2018. 中国东北地区油气地质特征与勘探潜力展望[J]. 中国地质, 45(2): 260-273.

    Google Scholar

    张凯逊, 韩淑琴, 王宗秀, 陶崇智, 韩凤彬, 李春麟, 李小诗, Halilov Zailabidin, Takenov Nurgazy. 2018. 阿富汗-塔吉克盆地含油气系统特征与资源潜力[J]. 中国地质, 45(5): 920-930.

    Google Scholar

    张敏强, 徐发, 张建培, 张田. 2011. 西湖凹陷裂陷期构造样式及其对沉积充填的控制作用[J]. 海洋地质与第四纪地质, 31(5): 67-72.

    Google Scholar

    张祥辉, 张昌民, 冯文杰, 朱锐, 陈哲, 赵康, 张宝进. 2019. 苏干湖盆地周缘分支河流体系的几何形态及影响因素分析[J]. 地质学报, 93(11): 2948-2959.

    Google Scholar

    张元福, 戴鑫, 王敏, 李鑫鑫. 2020. 河流扇的概念、特征及意义[J]. 石油勘探与开发, 47(5): 947-957.

    Google Scholar

    朱伟林, 吴景富, 张功成, 任建业, 赵志刚, 吴克强, 钟锴, 刘世翔. 2015. 中国近海新生代盆地构造差异性演化及油气勘探方向[J]. 地学前缘, 22(1): 88-101.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(2892) PDF downloads(126) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint