2021 Vol. 48, No. 3
Article Contents

LIU Jun, LI Wenchang, ZHOU Qing, YANG Fucheng, JIANG Xiaojia, ZHANG Shuzhi, GUO Xinran. 2021. Advances in the study of porphyry tungsten deposits[J]. Geology in China, 48(3): 732-748. doi: 10.12029/gc20210305
Citation: LIU Jun, LI Wenchang, ZHOU Qing, YANG Fucheng, JIANG Xiaojia, ZHANG Shuzhi, GUO Xinran. 2021. Advances in the study of porphyry tungsten deposits[J]. Geology in China, 48(3): 732-748. doi: 10.12029/gc20210305

Advances in the study of porphyry tungsten deposits

    Fund Project: Funded by the major research projects of the National Natural Science Foundation of China (No.92055314), the Yunnan Science and Technology Award-Outstanding Contribution Award (No.2017001), and the Outstanding Scientist Award of " Tianfu Ten Thousand People Plan " in Sichuan Province (No. 023)
More Information
  • Author Bio: LIU Jun, male, born in 1990, doctor, assistant engineer, engaged in the study of geology and mineral resources in the Tibetan Plateau and its adjacent areas; E-mail: cdzxlj2017@163.com
  • Corresponding author: LI Wenchang, male, born in 1962, professor, doctoral supervisor, engaged in geological prospecting and research; E-mail: Lwcyndd@163.com 
  • P Porphyry tungsten deposit is the third most important type in the world, but its research is weak and scattered. This paper systematically summarizes and analyzes the research results in recent years from our team and other scholars about porphyry tungsten deposits. The results show that porphyry tungsten deposits are widely distributed in the Circum-Pacific metallogenic belt and the Alps-Himalayan metallogenic belt, and occur in magmatic arc, intraplate, and continental collision settings. Most of them were formed in Mesozoic and a few in Paleozoic. Porphyry tungsten mineralization is closely related to weakly oxidized, highly fractionated I-type or A-type hypabyssal granitic rocks, which were mainly derived from re-melting of the ancient crust, contaminated with a small amount of juvenile crust and/or depleted mantle and/or marine sediments. The ore-forming metals and fluids were dominantly originated from related magmatic rocks, and the Ca2+, Fe2+, and Mn2+ needed for W mineralization could be provided by the strata and magmatic rocks through water-rock reaction. The initial ore-forming fluids of porphyry tungsten deposits in magma arc and intraplate settings belong to the NaCl-H2O system with medium-high temperature, medium-high salinity and low CO2 content, while those under continental collision setting belong to NaCl-H2O-CO2 system with medium-high temperature, medium-low salinity and high CO2 content. W tends to be enriched in the coexisting fluid phase in the process of melt-fluid differentiation, and then migrates in the form of monomer tungstate, polytungstate, and fluorotungstate. The mechanisms of mineral precipitation mainly include fluid immiscibility/boiling/CO2 escape ±fluid mixing and water- rock reaction. Scheelite and wolframite are the dominant W-bearing minerals in porphyry tungsten deposits, and their occurrence may be mainly controlled by the fluorine content in relevant magma-fluid system.

  • 加载中
  • Audétat A, Günther D, Heinrich C A. 2000. Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-W-F-mineralized Mole granite (Australia)[J]. Geochimica et Cosmochimica Acta, 64(19): 3373-3393. doi: 10.1016/S0016-7037(00)00428-2

    CrossRef Google Scholar

    Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse J L. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition[J]. Geology, 44(7): 231-234.

    Google Scholar

    Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 123(3): 323-333. doi: 10.1007/s004100050159

    CrossRef Google Scholar

    BGS. 2011. Tungsten[R]. British Geological Survey, Keyworth, UK. Available at: http://www.bgs.ac.uk/downloads/.

    Google Scholar

    Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold-rich ore systems[J]. Resource Geology, 54(3): 241-252. doi: 10.1111/j.1751-3928.2004.tb00205.x

    CrossRef Google Scholar

    Brand A A. 2008. Mineralogy, Geochemistry, and Geochronology of the Northern Dancer Tungsten-molybdenum Deposit, Yukon and British Columbia[D]. Vancouver: M.S. Thesis, University of British Columbia, 1-242.

    Google Scholar

    Burnard P G, Polya D A. 2004. Importance of mantle derived fluids during granite associated hydrothermal circulation: He and Ar isotopes of ore minerals from Panasqueira[J]. Geochimica et Cosmochimica Acta, 68(7): 1607-1615. doi: 10.1016/j.gca.2003.10.008

    CrossRef Google Scholar

    Calvo G, Valero A, Valero A. 2019. How can strategic metals drive the economy? Tungsten and tin production in Spain during periods of war[J]. The Extractive Industries and Society, 6(1): 8-14. doi: 10.1016/j.exis.2018.07.008

    CrossRef Google Scholar

    Candela P A. 1992. Controls on ore metal ratios in granite-related ore systems: An experimental and computational approach[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 317-326.

    Google Scholar

    Carpentier M, Chauvel C, Maury R C, Mattielli N. 2009. The "zircon effect" as recorded by the chemical and Hf isotopic compositions of Lesser Antilles forearc sediments[J]. Earth and Planetary Science Letters, 2009, 287(1/2): 86-99.

    Google Scholar

    Chauvel C, Lewin E, Carpentier M, Arndt N T, Marini J C. 2008. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array[J]. Nature Geoscience, 1(1): 64-67. doi: 10.1038/ngeo.2007.51

    CrossRef Google Scholar

    Chelle-Michou C, Rottier B, Caricchi L, Simpson G. 2017. Tempo of magma degassing and the genesis of porphyry copper deposits[J]. Scientific Reports, 7: 40566. doi: 10.1038/srep40566

    CrossRef Google Scholar

    Chen B, Ma X H, Wang Z Q. 2014. Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization[J]. Journal of Asian Earth Sciences, 93: 301-314. doi: 10.1016/j.jseaes.2014.07.022

    CrossRef Google Scholar

    Chen Yanjing, Li Nuo. 2009. Nature of ore-fluids of intracontinental intrusion-related hypothermal deposits and its difference from those in island arcs[J]. Acta Petrologica Sinica, 25(10): 2477-2508(in Chinese with English abstract).

    Google Scholar

    Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Economic Geology, 100(5): 801-818. doi: 10.2113/gsecongeo.100.5.801

    CrossRef Google Scholar

    Davis W J, Williams-Jones A E. 1985. A fluid inclusion study of the porphyry-greisen, tungsten-molybdenum deposit at Mount Pleasant, New Brunswick, Canada[J]. Mineralium Deposita, 20(2): 94-101. doi: 10.1007/BF00204317

    CrossRef Google Scholar

    Dewaele S, Clercq F D, Hulsbosch N, Piessens K, Boyce A, Burgess R, Muchez Ph. 2016. Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe-Ankole belt, Central Africa[J]. Mineralium Deposita, 51(2): 283-307. doi: 10.1007/s00126-015-0608-x

    CrossRef Google Scholar

    Du Yudiao, Yu Xinqi, Liu Jiajun, Zhou Xiang, Fu Jianzhen. 2012. Characteristics of ore-forming fluids and sources of ore-forming materials in the Dongyuan W-Mo deposit, Southern Anhui Province[J]. Geology in China, 38(5): 1334-1346(in Chinese with English abstract).

    Google Scholar

    Feng Chengyou, Huang Fan, Zeng Zailin, Qu Wenjun, Ding Ming. 2011. Isotopic chronology of Jiulongnao granite and Hongshuizhai greisens-type tungsten deposit in South Jiangxi Province[J]. Journal of Jilin University (Earth Science Edition), 41(1): 111-121(in Chinese with English abstract).

    Google Scholar

    Fortier S M, Nassar N T, Lederer G W, Brainard J, Mccullough E A. 2018. Draft Critical Mineral List-Summary of Methodology and Background Information-US Geological Survey Technical Input Document in Response to Secretarial Order No. 3359[R]. US Geological Survey.

    Google Scholar

    Gu Juyun. 1988. The characteristics of dominant porphyry tungsten deposits of China[J]. Mineral Resources and Geology, 2(1): 15-23(in Chinese with English abstract).

    Google Scholar

    Guo C L, Wang R C, Yuan S D, Wu S H, Yin B. 2015. Geochronological and geochemical constraints on the petrogenesis and geodynamic setting of the Qianlishan granitic pluton, Southeast China[J]. Mineralogy and Petrology, 109(2): 253-282. doi: 10.1007/s00710-014-0355-1

    CrossRef Google Scholar

    Harris A C, Golding S D. 2002. New evidence of magmatic-fluid-related phyllic alteration: Implications for the genesis of porphyry Cu deposits[J]. Geology, 30(4): 335-338. doi: 10.1130/0091-7613(2002)030<0335:NEOMFR>2.0.CO;2

    CrossRef Google Scholar

    Hedenquist J W, Arribas A, Reynolds T J. 1998. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. Economic Geology, 93(4): 373-404. doi: 10.2113/gsecongeo.93.4.373

    CrossRef Google Scholar

    Hou Zengqian, Yang Zhiming, Wang Rui, Zheng Yuanchuan. 2020. Further discussion on porphyry Cu-Mo-Au deposit formation in main-land China[J]. Earth Science Frontiers, 27(2): 20-44(in Chinese with English abstract).

    Google Scholar

    Huang H, Niu Y L, Mo X X. 2017. Garnet effect on Nd-Hf isotope decoupling: Evidence from the Jinfosi batholith, Northern Tibetan Plateau[J]. Lithos, 274: 31-38.

    Google Scholar

    Hulsbosch N, Boiron M C, Dewaele S and Muchez P. 2016. Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda)[J]. Geochimica et Cosmochimica Acta, 175(7): 299-318.

    Google Scholar

    Inverno C M C, Hutchinson R W. 2006. Petrochemical discrimination of evolved granitic intrusions associated with Mount Pleasant deposits, New Brunswick, Canada[J]. Applied Earth Science, 115(1): 23-39. doi: 10.1179/174327506X113037

    CrossRef Google Scholar

    Jiang Shaoyong, Zhao Kuidong, Jiang Hai, Su Huimin, Xiong Suofei, Xiong Yiqu, Xu Yaoming, Zhang Wei, Zhu Lüyun. 2020. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: An overview[J]. Chinese Science Bulletin, 65(33): 86-101(in Chinese).

    Google Scholar

    Keppler H, Wyllie P J. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF[J]. Contributions to Mineralogy and Petrology, 109(2): 139-150. doi: 10.1007/BF00306474

    CrossRef Google Scholar

    Kooiman G J A, McLeod M J, Sinclair W D. 1986. Porphyry tungsten-molybdenum orebodies, polymetallic veins and replacement bodies, and tin-bearing greisen zones in the Fire Tower Zone, Mount Pleasant, New Brunswick[J]. Economic Geology, 81(6): 1356-1373. doi: 10.2113/gsecongeo.81.6.1356

    CrossRef Google Scholar

    Kwark T A P, White A J R. 1982. Contrasting W-Mo-Cu and W-Sn-F skarn types and related granitoids[J]. Mining Geology, 32(174): 339-351.

    Google Scholar

    Lecumberri-Sanchez P, Vieira R, Heinrich C A, Pinto F, Wälle M. 2017. Fluid-rock interaction is decisive for the formation of tungsten deposits[J]. Geology, 45(7): 579-582. doi: 10.1130/G38974.1

    CrossRef Google Scholar

    Lehmann B, Ishihara S, Michel H, Miller J, Winkelmann L. 1990. The Bolivian tin province and regional tin distribution in the Central Andes: A reassessment[J]. Economic Geology, 85(5): 1044-1058. doi: 10.2113/gsecongeo.85.5.1044

    CrossRef Google Scholar

    Li Hongying, Yang Lei, Chen Jianfeng. 2019. Geological characteristics and diagenetic age of ore-bearing rock of Taojiang Muguayuan tungsten deposit in Hunan Province[J]. Journal of Jilin University (Earth Science Edition), 49(5): 1285-1300(in Chinese with English abstract).

    Google Scholar

    Li Jiadai, Li Xiaofeng. 2020. Research progress in metallogenesis of skarn-type tungsten deposits[J]. Mineral Deposit, 39(2): 256-272(in Chinese with English abstract).

    Google Scholar

    Li X Y, Gao J F, Zhang R Q, Lu J J, Chen W H, Wu J W. 2018. Origin of the Muguayuan veinlet-disseminated tungsten deposit, South China: Constraints from in-situ trace element analyses of scheelite[J]. Ore Geology Reviews, 99: 180-194. doi: 10.1016/j.oregeorev.2018.06.005

    CrossRef Google Scholar

    Li Xianhai, Wang Dan, Wu Shangkun. 2014. The domestic strategic mineral resources evaluation index selection: Thinking based on list of key-minerals such as the United States, the European Union[J]. China Mining Magazine, 23(4): 30-33(in Chinese with English abstract).

    Google Scholar

    Liu J, Li W C, Zhu X P, Li C, Zhou Q, Yang F C. 2020a. Origin and evolution of ore-forming fluids of the Larong W-(Mo) deposit, eastern Tibet: Constraints from fluid inclusions, H-O isotopes, and scheelite geochemistry[J]. Ore Geology Reviews, 124: 103620. doi: 10.1016/j.oregeorev.2020.103620

    CrossRef Google Scholar

    Liu J, Li W C, Zhu X P, Wang B D, Jiang J S, Liu H F. 2020b. Magmatic evolution and related W-Mo mineralization in the Larong deposit, eastern Tibet: Evidence from zircon U-Pb ages, geochemistry and Sr-Nd-Hf isotopes[J]. Ore Geology Reviews, 120: 103411. doi: 10.1016/j.oregeorev.2020.103411

    CrossRef Google Scholar

    Liu J, Li W C, Zhu X P, Zhou J X, Yu H J. 2020c. Ore genesis of the Late Cretaceous Larong porphyry W-Mo deposit, eastern Tibet: Evidence from in-situ trace elemental and S-Pb isotopic compositions[J]. Journal of Asian Earth Sciences, 190: 104199. doi: 10.1016/j.jseaes.2019.104199

    CrossRef Google Scholar

    Liu Jun, Zhu Xiangping, Li Wenchang, Wang Baodi, Dong Yu, Yang Fucheng, Yang Houbin, Wu Jianghua. 2019. Molybdenite Re-Os dating of the Larong porphyry W-Mo deposit in eastern Tibet and its geological significance[J]. Acta Geologica Sinica, 93(7): 1708-1719(in Chinese with English abstract).

    Google Scholar

    Liu P, Mao J W, Pirajno F, Jia L H, Zhang F, Li Y. 2018. Ore genesis and geodynamic setting of the Lianhuashan porphyry tungsten deposit, eastern Guangdong Province, SE China: Constraints from muscovite 40Ar-39Ar and zircon U-Pb dating and Hf isotopes[J]. Mineralium Deposita, 53(6): 797-814. doi: 10.1007/s00126-017-0779-8

    CrossRef Google Scholar

    Lowell J D, Guilbert J M. 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology, 65(4): 373-408. doi: 10.2113/gsecongeo.65.4.373

    CrossRef Google Scholar

    Lu H Z, Liu Y M, Wang C L, Xu Y Z, Li H Q. 2003. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China[J]. Economic Geology, 98(5): 955-974. doi: 10.2113/gsecongeo.98.5.955

    CrossRef Google Scholar

    Lu H Z. 1985. Fluid inclusion studies of a new type of ore deposit: Porphyry tungsten occurrence in China[J]. Geochemistry, 4(1): 41-53. doi: 10.1007/BF03179317

    CrossRef Google Scholar

    Mao J W, Cheng Y B, Chen M H, Franco P. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 48(3): 267-294. doi: 10.1007/s00126-012-0446-z

    CrossRef Google Scholar

    Mao J W, Xiong B K, Liu J, Franco P, Cheng Y B, Ye H S, Song S W, Dai P. 2017a. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting[J]. Lithos, 286/287: 35-52. doi: 10.1016/j.lithos.2017.05.023

    CrossRef Google Scholar

    Mao Jingwen, Wu Shenghua, Song Shiwei, Dai Pan, Xie Guiqing, Su Qiangwei, Liu Peng, Wang Xianguang, Yu Zhongzhen, Chen Xiangyun, Tang Weixin. 2020. The world-class Jiangnan tungsten belt: Geological characteristics, metallogeny, and ore deposit model[J]. Chinese Science Bulletin, 65(33): 102-118(in Chinese).

    Google Scholar

    Mao W, Rusk B, Yang F C, Zhang M J. 2017b. Physical and chemical evolution of the Dabaoshan porphyry Mo deposit, south China: Insights from fluid inclusions, cathodoluminescence, and trace elements in quartz[J]. Economic Geology, 112(4): 889-918. doi: 10.2113/econgeo.112.4.889

    CrossRef Google Scholar

    Meinert L D, Hedenquist J W, Satoh H, Matsuhisa, Y. 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids[J]. Economic Geology, 98(1): 147-156. doi: 10.2113/gsecongeo.98.1.147

    CrossRef Google Scholar

    Mo Mingzhen. 1988. A preliminary study on alteration zoning of the Yangchuling porphyry W-Mo deposit and its relationship to mineralization[J]. Mineral Deposit, 7(3): 52-61(in Chinese with English abstract).

    Google Scholar

    Mortensen J K, Brand A, Liverton T. 2006. Laser ablation ICP-MS U-Pb zircon ages for Cretaceous plutonic rocks in the Logtung and Thirtymile Range areas of southern Yukon[C]//Emond D S, Lewis L L, Weston L H (eds.). Yukon Exploration and Geology. Yukon Geological Survey.

    Google Scholar

    Mustard R, Ulrich T, Kamenetsky V S, Mernagh T. 2006. Gold and metal enrichment in natural granitic melts during fractional crystallization[J]. Geology, 34(2): 85-88. doi: 10.1130/G22141.1

    CrossRef Google Scholar

    Nast H J, Williams-Jones A E. 1991. The role of water-rock interaction and fluid evolution in forming the porphyry-related Sisson Brook W-Cu-Mo deposit, New Brunswick[J]. Economic Geology, 86(2): 302-317. doi: 10.2113/gsecongeo.86.2.302

    CrossRef Google Scholar

    Ni P, Wang X D, Wang G G, Huang J B, Wang T G. 2015. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China[J]. Ore Geology Reviews, 65: 1062-1077 doi: 10.1016/j.oregeorev.2014.08.007

    CrossRef Google Scholar

    Nie Rongfeng, Wang Xudong. 2007. On research advancement of Southern Jiangxi's tungsten deposits[J]. China Mining Magazine, 22(3): 4-8(in Chinese with English abstract).

    Google Scholar

    Noble S R, Spooner E T C, Harris F R. 1984. The Logtung large tonnage, low-grade W (scheelite)-Mo porphyry deposit, south-central Yukon Territory[J]. Economic Geology, 79(5): 848-868. doi: 10.2113/gsecongeo.79.5.848

    CrossRef Google Scholar

    Pan X F, Hou Z Q, Zhao M, Chen G H, Rao J F, Li Y, Wei J, Ouyang Y P. 2018. Geochronology and geochemistry of the granites from the Zhuxi W-Cu ore deposit in South China: Implication for petrogenesis, geodynamical setting and mineralization[J]. Lithos, 304: 155-179.

    Google Scholar

    Patchett P J, White W M, Feldmann H, Kielinczuk S, Hofmann A W. 1984. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's mantle[J]. Earth and Planetary Science Letters, 69(2): 365-378. doi: 10.1016/0012-821X(84)90195-X

    CrossRef Google Scholar

    Qin Yan, Wang Denghong, Wu Libin, Wang Keyou, Mei Yuping. 2010. Zircon SHRIMP U-Pb dating of the mineralized porphyry in the Dongyuan W deposit in Anhui Province and its geological significance[J]. Acta Geologica Sinica, 84(4): 479-484(in Chinese with English abstract).

    Google Scholar

    Rudnick R L, Gao S. 2003. Composition of the continental crust[J]. Treatise Geochem., 3: 659.

    Google Scholar

    Sanfilippo A, Salters V, Tribuzio R, Zanetti A. 2019. Role of ancient, ultra-depleted mantle in Mid-Ocean-Ridge magmatism[J]. Earth and Planetary Science Letters, 511: 89-98. doi: 10.1016/j.epsl.2019.01.018

    CrossRef Google Scholar

    Schmitz M D, Vervoort J D, Bowring S A, Patchett P J. 2004. Decoupling of the Lu-Hf and Sm-Nd isotope systems during the evolution of granulitic lower crust beneath southern Africa[J]. Geology, 32(5): 405-408. doi: 10.1130/G20241.1

    CrossRef Google Scholar

    Seal R R. 2006. Sulfur isotope geochemistry of sulfide minerals[J]. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. doi: 10.2138/rmg.2006.61.12

    CrossRef Google Scholar

    Selby D, Creaser R A, Heaman L M, Hart C J. 2003. Re-Os and U-Pb geochronology of the Clear Creek, Dublin Gulch, and Mactung deposits, Tombstone Gold Belt, Yukon, Canada: Absolute timing relationships between plutonism and mineralization[J]. Canadian Journal of Earth Sciences, 40(12): 1839-1852. doi: 10.1139/e03-077

    CrossRef Google Scholar

    Shan Liang, Pang Yingchun, Ke Xianzhong, Liu Jiajun, Chen Wenhui, Niu Zhijun, Xu Deming, Long Wenguo, Wang Binqing. 2019. Diagenetic and metallogenic age of the Muguayuan tungsten polymetallic deposit and its effect on regional mineralization, Taojiang County, Northeastern Hunan Province, China[J]. Geological Science and Technology Information, 38(1): 100-112(in Chinese with English abstract).

    Google Scholar

    Sheng J F, Liu L J, Wang D H, Chen Z H, Ying L J, Huang F, Wang J H, Zeng L. 2015. A preliminary review of metallogenic regularity of tungsten deposits in China[J]. Acta Geologica Sinica(English Edition), 89(4): 1359-1374. doi: 10.1111/1755-6724.12533

    CrossRef Google Scholar

    Shi Hongzhao, Lin Fangcheng, Zhang Linkui. 2009. Spatio-temporaldistribution and current state ofthe research of the tungsten deposits: An overview[J]. Sedimentary Geology and Tethyan Geology, 29(4): 90-95(in Chinese with English abstract).

    Google Scholar

    Shimazaki H. 1980. Characteristics of skarn deposits and related acid magmatism in Japan[J]. Economic Geology, 75(2): 173-183. doi: 10.2113/gsecongeo.75.2.173

    CrossRef Google Scholar

    Sillitoe R H. 2010. Porphyry copper systems[J]. Economic Geology, 105(1): 3-41. doi: 10.2113/gsecongeo.105.1.3

    CrossRef Google Scholar

    Sinclair W D. 1995. Porphyry W. Selected British Columbia Mineral Deposit Profiles, Volume 1-metallics and coal[C]//Lefebure D V, Ray G E(eds.). British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20: 101-104.

    Google Scholar

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    Tan Yunjin. 1985. Metallogenetic mechanism of Lianhuashan porphyry tungsten deposit[J]. Science in China (Series B), (6): 83-90(in Chinese).

    Google Scholar

    Tan Yunjin. 1999. Composite characteristic of tungsten minerals and its dominate factors of endogenesis tungsten deposit in south China[J]. China Tungsten Industry, 14(5/6): 84-89(in Chinese).

    Google Scholar

    Tang M, Wang X L, Shu X J, Wang D, Yang T, Gopon P. 2014. Hafnium isotopic heterogeneity in zircons from granitic rocks: Geochemical evaluation and modeling of "zircon effect" in crustal anatexis[J]. Earth and Planetary Science Letters, 389: 188-199. doi: 10.1016/j.epsl.2013.12.036

    CrossRef Google Scholar

    Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 69(6): 843-883. doi: 10.2113/gsecongeo.69.6.843

    CrossRef Google Scholar

    Thode H G, Monster J, Dunford H B. 1961. Sulphur isotope geochemistry[J]. Geochimica et Cosmochimica Acta, 25(3): 159-174. doi: 10.1016/0016-7037(61)90074-6

    CrossRef Google Scholar

    Thorne K G, Fyffe L R, Creaser R A. 2013. Re-Os geochronological constraints on the W-Mo mineralizing event in the Mount Pleasant Caldera Complex: Implications for the timing of subvolcanic magmatism and caldera development[J]. Atlantic Geology, 49(1): 131-150.

    Google Scholar

    Ulrich T, Mavrogenes J. 2008. An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions from 500℃ to 800℃, and 150 to 300 MPa[J]. Geochimica et Cosmochimica Acta, 72(9): 2316-2330. doi: 10.1016/j.gca.2008.02.014

    CrossRef Google Scholar

    Vallance J, Cathelineau M, Marignac C, Boiron M C, Cécile F. 2001. Microfracturing and fluid mixing in granites: W-(Sn) ore deposition at Vaulry (NW French Massif Central)[J]. Tectonophysics, 336(1/4): 43-61.

    Google Scholar

    Vervoort J D, Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica Acta, 63(3/4): 533-556.

    Google Scholar

    Vervoort J D, Plank T, Prytulak J. 2011. The Hf-Nd isotopic composition of marine sediments[J]. Geochimica et Cosmochimica Acta, 75(20): 5903-5926. doi: 10.1016/j.gca.2011.07.046

    CrossRef Google Scholar

    Voicu G, Bardoux M, Stevenson R, Jebrak M. 2000. Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai, Guiana Shield: Implications for ore fluid source and flow path during the formation of orogenic gold deposits[J]. Mineralium Deposita, 35(4): 302-314. doi: 10.1007/s001260050243

    CrossRef Google Scholar

    Wade J, Wood B J, Norris C A. 2013. The oxidation state of tungsten in silicate melt at high pressures and temperatures[J]. Chemical Geology, 335: 189-193. doi: 10.1016/j.chemgeo.2012.10.011

    CrossRef Google Scholar

    Wang Denghong, Xu Zhigang, Sheng Jifu, Zhu Mingyu, Xu Jue, Yuan Zhongxin, Bai Ge, Qu Wenjun, Li Huaqin, Chen Zhenghui, Wang Chenghui, Huang Fan, Zhang Changqing, Wang Yonglei, Ying Lijuan, Li Houmin, Gao Lan, Sun Tao, Fu Yong, Li Kangjian, Wu Guang, Tang Juxing, Feng Chengyou, Zhao Zheng, Zhang Daquan. 2014. Progress on the study of regularity of major mineral resources and regional metallogenic regularity in China: A Review[J]. Acta Geologica Sinica, 88(12): 2176-2191(in Chinese with English abstract).

    Google Scholar

    Wang Lijuan, Wang Jingbin, Wang Yuwang, Wang Junsheng, Liao Zhen. 2011. The characteristics of porphyry Cu, Mo, W ore-forming fluid in different tectonic setting[J]. Mineral Exploration, 2(6): 704-713(in Chinese with English abstract).

    Google Scholar

    Wang P, Chen Y J, Fu B, Yang Y F, Mi M, Li Z L. 2014. Fluid inclusion and H-O-C isotope geochemistry of the Yaochong porphyry Mo deposit in Dabie Shan, China: A case study of porphyry systems in continental collision orogens[J]. International Journal of Earth Sciences, 103(3): 777-797. doi: 10.1007/s00531-013-0982-5

    CrossRef Google Scholar

    Wang X L, Qiu Y, Chou I M, Zhang R Q, Li G L, Zhong R C. 2020. Effects of pH and salinity on the hydrothermal transport of tungsten: Insights from in situ Raman spectroscopic characterization of K2WO4-NaCl-HCl-CO2 solutions at temperatures up to 400℃[J]. Geofluids, 2: 1-12.

    Google Scholar

    Wang X S, Williams-Jones A E, Hu R Z, Shang L B, Bi X W. 2021. The role of fluorine in granite-related hydrothermal tungsten ore genesis: Results of experiments and modeling[J]. Geochimica et Cosmochimica Acta, 292: 170-187. doi: 10.1016/j.gca.2020.09.032

    CrossRef Google Scholar

    Wang Xue, Huang Xiaolong, Ma Jinlong, Zhong Junwei, Yang Qijun. 2015. Hf-Nd isotopes of the Early Precambrian metamorphic complexes in the southern segment of the Trans-North China Orogen: Implications for crustal evolution[J]. Geotectonica et Metallogenia, 39(6): 1108-1118(in Chinese with English abstract).

    Google Scholar

    Wang Y H, Zhang F F, Liu J J, Xue C Ji, Zhang Z C. 2018. Genesis of the Wurinitu W-Mo deposit, Inner Mongolia, northeast China: Constraints from geology, fluid inclusions and isotope systematics[J]. Ore Geology Reviews, 94: 367-382. doi: 10.1016/j.oregeorev.2018.01.031

    CrossRef Google Scholar

    Wood S A, Samson I M. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl[J]. Economic Geology, 95(1): 143-182. doi: 10.2113/gsecongeo.95.1.143

    CrossRef Google Scholar

    Wu F Y, Liu X C, Ji W Q, Wang J M, Yang L. 2017. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 60(7): 1201-1219. doi: 10.1007/s11430-016-5139-1

    CrossRef Google Scholar

    Xu Keqin, Liu Yingjun, Yu Shoujun. 1959. Types of tungsten deposits of China and their distribution with relation to geotectonics[J]. Journal of Nanjing University (Natural Sciences), (2): 31-54(in Chinese with English abstract).

    Google Scholar

    Xu Tai, Gao Haidong, Li Yuanzhi, Wei Xin. 2012. On the metallogenic characteristics of China's tungsten deposits[J]. China Tungsten Industry, 27(3): 1-5(in Chinese with English abstract).

    Google Scholar

    Yuan Shunda, Zhang Dongliang, Shuang Yan, Du Andao, Qu Wenjun. 2012. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications[J]. Acta Petrologica Sinica, 28(1): 27-38(in Chinese with English abstract).

    Google Scholar

    Zartman R E, Doe B R. 1981. Plumbotectonics-the model[J]. Tectonophysics, 75(1/2): 135-162.

    Google Scholar

    Zhai Yusheng. 2002. Some features of regional metallogeny of China[J]. Geology and Exploration, 38(5): 1-4(in Chinese with English abstract).

    Google Scholar

    Zhang C, Santosh M, Luo Q, Jiang S, Liu L F, Liu D D. 2019. Impact of residual zircon on Nd-Hf isotope decoupling during sediment recycling in subduction zone[J]. Geoscience Frontiers, 10(1): 241-251. doi: 10.1016/j.gsf.2018.03.015

    CrossRef Google Scholar

    Zhang Dachun, Mu Zhiguo, Huang Fusheng, Chen Chengye, Zheng Shuhui. 1984. Stable isotope studied of the Yangchuling tungsten-molybdenum ore deposit, Jiangxi Province[J]. Mineral Deposits, 3(02): 56-65(in Chinese with English abstract).

    Google Scholar

    Zhang Jiajing, Chen Zhenghui, Wang Denghong, Chen Zhenyu, Liu Shanbao, Wang Chenghui. 2008. Geological characteristics and metallogenic epoch of the Xingluokeng tungsten deposit, Fujian Province[J]. Geotectonica et Metallogenia, 32(1): 92-97(in Chinese with English abstract).

    Google Scholar

    Zhang Ligang. 1985. Hydrogen, oxygen, sulfur and carbon isotope geochemistry of the Lianhuashan porphyry type tungsten deposit[J]. Mineral Deposits, 4(1): 56-65(in Chinese with English abstract).

    Google Scholar

    Zhang W, Lentz D R, Thorne K G, Massawe R J R. 2020. Late Silurian-Early Devonian slab break-off beneath the Canadian Appalachians: Insights from the Nashwaak granite, west-central New Brunswick, Canada[J]. Lithos, 358/359: 105393. doi: 10.1016/j.lithos.2020.105393

    CrossRef Google Scholar

    Zhang W, Lentz D R, Thorne K G, McFarlane C. 2016. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W-Mo-Cu deposit, west-central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems[J]. Ore Geology Reviews, 77: 82-96. doi: 10.1016/j.oregeorev.2016.02.004

    CrossRef Google Scholar

    Zhang Yuxue. 1982. Geological characteristics and origin of Yangchuling porphyry W-Mo deposit[J]. Geochimica, (2): 122-132(in Chinese with English abstract).

    Google Scholar

    Zhao W W, Zhou M F, Li Y H M, Zhao Z, Gao J F. 2017. Genetic types, mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China[J]. Journal of Asian Earth Sciences, 137: 109-140. doi: 10.1016/j.jseaes.2016.12.047

    CrossRef Google Scholar

    Zhou Jie. 2013. Origin of Tungsten-bearing Granites in the Eastern Jiangnan Orogen Belt[D]. Nanjing: Nanjing University, 1-95(in Chinese with English abstract).

    Google Scholar

    Zhou Xiang, Yu Xinqi, Wang De'en, Zhang Dehui, Li Chunlin, Fu Jianzhen, Dong Hhuiming. 2011. Characteristics and geochronology of the W, Mo-bearing granodiorite porphyry in Dongyuan, Southern Anhui[J]. Geoscience, 25(2): 201-210(in Chinese with English abstract).

    Google Scholar

    Zhu Bingquan. 1998. Theories and Application of Isotopic System in Geoscience: Crustal and Mantle Evolution in China continent[M]. Beijing: Science Press, 224-226(in Chinese).

    Google Scholar

    Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, He Peng, Fu Qibin, Li Tingshun. 2013. Characteristics of greisen inclusions in alkali feldspar granite of Yaogangxian tungsten deposit[J]. Mineral Deposits, 32(3): 533-544(in Chinese with English abstract).

    Google Scholar

    陈衍景, 李诺. 2009. 大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异[J]. 岩石学报, 25(10): 2477-2508.

    Google Scholar

    杜玉雕, 余心起, 刘家军, 周翔, 傅建真. 2012. 皖南东源钨钼矿成矿流体特征和成矿物质来源[J]. 中国地质, 38(5): 1334-1346.

    Google Scholar

    丰成友, 黄凡, 曾载淋, 屈文俊, 丁明. 2011. 赣南九龙脑岩体及洪水寨云英岩型钨矿年代学[J]. 吉林大学学报(地球科学版), 41(1): 111-121.

    Google Scholar

    古菊云. 1988. 中国主要斑岩钨矿床特征[J]. 矿产与地质, 2(1): 15-23.

    Google Scholar

    侯增谦, 杨志明, 王瑞, 郑远川. 2020. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 27(2): 20-44.

    Google Scholar

    蒋少涌, 赵葵东, 姜海, 苏慧敏, 熊索菲, 熊伊曲, 徐耀明, 章伟, 朱律运. 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J]. 科学通报, 65(33): 86-101.

    Google Scholar

    李洪英, 杨磊, 陈剑锋. 2019. 湖南桃江县木瓜园钨矿床地质特征及含矿岩体成岩时代[J]. 吉林大学学报(地球科学版), 49(5): 1285-1300.

    Google Scholar

    李佳黛, 李晓峰. 2020. 矽卡岩型钨矿床成矿作用研究进展[J]. 矿床地质, 39(2): 256-272.

    Google Scholar

    李宪海, 王丹, 吴尚昆. 2014. 我国战略性矿产资源评价指标选择: 基于美国、欧盟等关键矿产名录的思考[J]. 中国矿业, 23(4): 30-33. doi: 10.3969/j.issn.1004-4051.2014.04.007

    CrossRef Google Scholar

    刘俊, 祝向平, 李文昌, 王保弟, 董宇, 杨富成, 杨后斌, 吴江华. 2019. 藏东拉荣斑岩钨钼矿床辉钼矿Re-Os定年及地质意义[J]. 地质学报, 93(7): 1708-1719. doi: 10.3969/j.issn.0001-5717.2019.07.011

    CrossRef Google Scholar

    毛景文, 吴胜华, 宋世伟, 戴盼, 谢桂青, 苏蔷薇, 刘鹏, 王先广, 余忠珍, 陈祥云, 唐维新. 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型[J]. 科学通报, 65(33): 102-118.

    Google Scholar

    莫名浈. 1988. 阳储岭斑岩钨钼矿床蚀变分带特征及与成矿作用关系的初步研究[J]. 矿床地质, 7(3): 52-61.

    Google Scholar

    聂荣锋, 王旭东. 2007. 赣南钨矿研究进展[J]. 中国钨业, 22(3): 4-8.

    Google Scholar

    秦燕, 王登红, 吴礼彬, 王克友, 梅玉萍. 2010. 安徽东源钨矿含矿斑岩中的锆石SHRIMP U-Pb年龄及其地质意义[J]. 地质学报, 84(4): 479-484.

    Google Scholar

    陕亮, 庞迎春, 柯贤忠, 刘家军, 陈文辉, 牛志军, 徐德明, 龙文国, 王滨清. 2019. 湖南省东北部地区桃江县木瓜园钨多金属矿成岩成矿时代及其对区域成矿作用的启示[J]. 地质科技情报, 38(1): 100-112.

    Google Scholar

    石洪召, 林方成, 张林奎. 2009. 钨矿床的时空分布及研究现状[J]. 沉积与特提斯地质, 29(4): 90-95. doi: 10.3969/j.issn.1009-3850.2009.04.016

    CrossRef Google Scholar

    谭运金. 1985. 莲花山斑岩钨矿床的成矿机理[J]. 中国科学(B辑), (6): 83-90.

    Google Scholar

    谭运金. 1999. 华南地区内生钨矿床的钨矿物成分特征及其控制因素[J]. 中国钨业, 14(5-6): 84-89.

    Google Scholar

    王登红, 徐志刚, 盛继福, 朱明玉, 徐珏, 袁忠信, 白鸽, 屈文俊, 李华芹, 陈郑辉, 王成辉, 黄凡, 张长青, 王永磊, 应立娟, 李厚民, 高兰, 孙涛, 付勇, 李建康, 武广, 唐菊兴, 丰成友, 赵正, 张大权. 2014. 全国重要矿产和区域成矿规律研究进展综述[J]. 地质学报, 88(12): 2176-2191.

    Google Scholar

    王莉娟, 王京彬, 王玉往, 王军升, 廖震. 2011. 不同构造环境中的斑岩铜, 钼, 钨等矿床成矿流体特征[J]. 矿产勘查, 2(6): 704-713. doi: 10.3969/j.issn.1674-7801.2011.06.009

    CrossRef Google Scholar

    王雪, 黄小龙, 马金龙, 钟军伟, 杨启军. 2015. 华北克拉通中部造山带南段早前寒武纪变质杂岩的Hf-Nd同位素特征及其地壳演化意义[J]. 大地构造与成矿学, 39(6): 1108-1118.

    Google Scholar

    徐克勤, 刘英俊, 俞受鋆. 1959. 中国钨矿的类型及其分布规律[J]. 南京大学学报(自然科学版), (2): 31-54.

    Google Scholar

    许泰, 高海东, 李元志, 魏欣. 2012. 中国钨矿床成矿特征探讨[J]. 中国钨业, 27(3): 1-5. doi: 10.3969/j.issn.1009-0622.2012.03.001

    CrossRef Google Scholar

    袁顺达, 张东亮, 双燕, 杜安道, 屈文俊. 2012. 湘南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义[J]. 岩石学报, 28(1): 27-38.

    Google Scholar

    翟裕生. 2002. 中国区域成矿特征探讨[J]. 地质与勘探, 38(5): 1-4.

    Google Scholar

    张大椿, 穆治国, 黄福生, 陈成业, 郑淑蕙. 1984. 江西阳储岭钨钼矿床稳定同位素组成特征的研究[J]. 矿床地质, 3(2): 56-65.

    Google Scholar

    张家菁, 陈郑辉, 王登红, 陈振宇, 刘善宝, 王成辉. 2008. 福建行洛坑大型钨矿的地质特征, 成矿时代及其找矿意义[J]. 大地构造与成矿学, 32(1): 92-97. doi: 10.3969/j.issn.1001-1552.2008.01.012

    CrossRef Google Scholar

    张理刚. 1985. 莲花山斑岩型钨矿床的氢、氧、硫、碳和铅同位素地球化学[J]. 矿床地质, 4(1): 56-65.

    Google Scholar

    张玉学. 1982. 阳储岭斑岩钨钼矿床地质地球化学特征及其成因探讨[J]. 地球化学, (2): 122-132. doi: 10.3321/j.issn:0379-1726.1982.02.002

    CrossRef Google Scholar

    周洁. 2013. 江南造山带东段含钨花岗岩成因研究[D]. 博士学位论文. 南京: 南京大学, 1-95.

    Google Scholar

    周翔, 余心起, 王德恩, 张德会, 李春麟, 傅建真, 董会明. 2011. 皖南东源含W、Mo花岗闪长斑岩及成岩成矿年代学研究[J]. 现代地质, 25 (2): 201-210. doi: 10.3969/j.issn.1000-8527.2011.02.002

    CrossRef Google Scholar

    朱炳泉. 1998. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M]. 北京: 科学出版社, 224-226.

    Google Scholar

    祝新友, 王京彬, 王艳丽, 程细音, 何鹏, 傅其斌, 李顺庭. 2013. 黑钨矿矿床中云英岩包体及岩浆液态分异成矿研究——以湖南瑶岗仙钨矿为例[J]. 矿床地质, 32(3): 533-544. doi: 10.3969/j.issn.0258-7106.2013.03.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(2951) PDF downloads(119) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint