2021 Vol. 48, No. 2
Article Contents

WANG Cunzhi, HUANG Zhizhong, ZHAO Xilin, CHU Pingli, HUANG Wencheng, SONG Shiming, XU Yang, YANG Chao. 2021. Geochronology, geochemistry and petrogenesis of early Cretaceous Yaocun A-type granite in the Lower Yangtze region[J]. Geology in China, 48(2): 549-563. doi: 10.12029/gc20210214
Citation: WANG Cunzhi, HUANG Zhizhong, ZHAO Xilin, CHU Pingli, HUANG Wencheng, SONG Shiming, XU Yang, YANG Chao. 2021. Geochronology, geochemistry and petrogenesis of early Cretaceous Yaocun A-type granite in the Lower Yangtze region[J]. Geology in China, 48(2): 549-563. doi: 10.12029/gc20210214

Geochronology, geochemistry and petrogenesis of early Cretaceous Yaocun A-type granite in the Lower Yangtze region

    Fund Project: Supported by the projects of China Geological Survey(No. D20160036, No. DD20190153)
More Information
  • Author Bio: WANG Cunzhi, male, born in 1983, senior engineer, engaged in the study of structural geology; Email: 32107407@qq.com
  • The Yaocun pluton in Southern Anhui Province, lithologically consisting mainly of medium-to coarse-grained syenogranite in its centre and fine-grained porphyritic syenogranite on its margin, is outcropped around the northeastern Jiangnan orogeny of the Lower Yangtze region. This paper reports detailed study results of its the LA-ICP-MS zircon U-Pb dating, major elements, trace elements, whole-rock Nd isotopic compositions and zircon Hf isotopic compositions. LA-ICP-MS zircon U-Pb ages show that the Yaocun pluton, as the product of magmatic activity in the late Yanshanian period, was emplaced at 127.6±1.4Ma. The studies of petrography and geochemistry of this rock indicate that it is A-type granite, and is characterized by rich silica, high iron, high zircon saturation temperatures, enrichment of Rb, Th, U, K and Pb, depletion of Ba, Nb, Sr and Ti, and significant negative Eu anomalies (Eu/Eu*=0.22-0.46). Its εNd(t) and εHf(t) values range from -6.2 to -5.7 and from -13.9 to -5.0 respectively, and the calculated two-stage model ages (TDM2) of Nd and Hf isotopes from 1439 Ma to 1532 Ma and from 1508 Ma to 2062 Ma respectively. Combined with the results of regional geological research, it is suggested that the Yaocun pluton might be formed by the Mesoproterozoic crust remelting under extension-tension environment after the subduction of the Paleo-Pacific plate during the Early Cretaceous.

  • 加载中
  • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calcalkaline I-type plutonism in the European Variscides, northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50: 51-73. doi: 10.1016/S0024-4937(99)00052-3

    CrossRef Google Scholar

    Blichert-Toft J, Albarede F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planet Science Letter, 148(1/2): 243-258.

    Google Scholar

    Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 97, 1-29. doi: 10.1016/j.lithos.2006.12.007

    CrossRef Google Scholar

    Chang Yinfo, Dong Shuwen. 1996. On tectonics of "poly-basement withone cover" in middle-lower Yangtze craton China[J]. Volcanology and Mineral Resources, 17(1/2): 1-15 (in Chinese with English abstract).

    Google Scholar

    Chen C H, Lee C Y, Shinjo R. 2008. Was there Jurassic paleo-Pacific subduction in South China? Constraints from 40Ar/39Ar dating, elemental and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts[J]. Lithos, 106(1-2): 83-92. doi: 10.1016/j.lithos.2008.06.009

    CrossRef Google Scholar

    Chen Fang, Wang Denghong, Du Jianguo, Xu Wei, Hu Haifeng, Wang Keyou, Yu Youlin, Tang Jinlai. 2014. Geochemical characteristics and LA-ICP-MS zircon U-Pb geochronology of the Liucun monzogranite in ningguo, Anhui Provinceand and their geological significance[J]. Acta Geologica Sinica, 88(5): 869-882 (in Chinese with English abstract).

    Google Scholar

    Chen Jun, Wang Hui, Wang Lijuan, Guan Junpeng. 2018. Petrogenesis of Jinniu rock mass in Chuzhou area: Melting of delaminated lower crust or mixing of crust and mantle[J]. Geology in China, 45(1): 110-128(in Chinese with English abstract).

    Google Scholar

    Chen Z H, Xing G F. 2016. Geochemical and zircon U-Pb-Hf-O isotopic evidence for a coherent Paleoproterozoic basement beneath the Yangtze Block, South China[J]. Precambrian Research, 279: 81-90. doi: 10.1016/j.precamres.2016.04.002

    CrossRef Google Scholar

    Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80, 189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    Creaser R A, Price R C, Wormald R J. 1991. A-type granites revisited: Assessment of residual source model[J]. Geology, 19: 163-166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2

    CrossRef Google Scholar

    Deng J F, Mo X X, Zhao H L, Wu Z X, Luo Z H, Su S G. 2004. A newmodel for the dynamic evolution of Chinese lithosphere: 'continental roots-plume tectonics'[J]. Earth-Science Reviews, 65 (3/4): 223-275.

    Google Scholar

    Frost B R, Frost C D. 2008. A geochemical classification for feldspathic igneous rocks[J]. Journal of Petrology, 49: 1955-1969. doi: 10.1093/petrology/egn054

    CrossRef Google Scholar

    Frost C D, Frost B R. 2011. On ferroan (A-type) granitoids: their compositional variability and modes of origin[J]. Journal of Petrology 52, 39-53. doi: 10.1093/petrology/egq070

    CrossRef Google Scholar

    Gao Ran, Yan Jun, Li Quanzhong, Liu Xiaoqiang, Wang Sinuo. 2017. Petrogenesis of Tanshan Pluton in the Southern Anhui Province: Chronological and geochemical constraints[J]. Geological Journal of China Universities, 23(2): 227-243 (in Chinese with English abstract).

    Google Scholar

    Gilder S A, Keller G R, Luo M, Goodell P C. 1991. Eastern Asia and the Western Pacific timing and spatial distribution of rifting in China[J]. Tectonophysics, 197(2-4): 225-243. doi: 10.1016/0040-1951(91)90043-R

    CrossRef Google Scholar

    Griffin W L, Wang X, Jackson S E, et al. 2002. Zircon geochemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous conplexes[J]. Lithos, 61: 237-269. doi: 10.1016/S0024-4937(02)00082-8

    CrossRef Google Scholar

    Guan Junpeng, Weii Fubiao, Sun Guoxi, Huang Jianping, Wang Lijuan. 2015. Zircon U-Pb dating of intermediate-acid intrusive rocks in the middle section of Ningzhen district and their metallogenic implications[J]. Geotectonica et Metallogenia, 39(2): 344-354 (in Chinese with English abstract).

    Google Scholar

    Guo J L, Gao S, Wu Y S. 2014.3.45 Ga granitic gneisses from the Yangtze Craton, South China: Implications for Early Archean crustal growth[J]. Precambrian Resiearch, 242, 82-95. doi: 10.1016/j.precamres.2013.12.018

    CrossRef Google Scholar

    Chen J F, Jahn B M. 1998. Crust evolution of southeastem China: Nd and Sr isotopic evidence[J]. Tectonophysics, 284(1/2): 101-133.

    Google Scholar

    He Z Y, Xu X S. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to the geodynamics of paleo-Pacific plate subduction[J]. Chemical Geology, 328: 208-221. doi: 10.1016/j.chemgeo.2011.09.014

    CrossRef Google Scholar

    Hou Kejun, Li Yanhe, Tian Yourong. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract).

    Google Scholar

    Hsü K J, Sun S, Li J L, Chen H H, Pen H P, Sengor A M C. 1988. Mesozoic overthrust tectonics in south China[J]. Geology, 16(5): 418-421. doi: 10.1130/0091-7613(1988)016<0418:MOTISC>2.3.CO;2

    CrossRef Google Scholar

    Jiang Y H, Zhao P, Zhou Q, Liao S Y, Jin G D. 2011. Petrogenesis and tectonic implications of Early Cretaceous SandA-type granites in the northwest of the Gan-Hang rift, SE China[J]. Lithos, 121, 55-73. doi: 10.1016/j.lithos.2010.10.001

    CrossRef Google Scholar

    Kemp A I S, Hawkesworth C J. 2005. Granitic perspectives on the generation and secular evolution of the continental crust[C]//Rudnick R J (ed. ). Treatise on Geochemistry. Pergamon, Oxford, 1-64.

    Google Scholar

    Li X H. 2000. Cretaceous magmatism and lithospheric extension in southeast China[J]. Journal of Asian Earth Sciences, 18 (3): 293-305. doi: 10.1016/S1367-9120(99)00060-7

    CrossRef Google Scholar

    Li Z X, Li X H. 2007. Formation of the 1300 km wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat slab subduction model[J]. Geology, 35(2): 179-182. doi: 10.1130/G23193A.1

    CrossRef Google Scholar

    Li Z X, Li X H, Chung S L, Lo C H, Xu X S and Li W X. 2012. Magmatic switch on and switch off along the South China continental margin since the Permian: Transition from an Andean type to a Western Pacific type plate boundary[J]. Tectonophysics, 532/535: 271-290. doi: 10.1016/j.tecto.2012.02.011

    CrossRef Google Scholar

    Ling Wenli, Gao Shan, Zheng Haifei, Zhou Lian, Zhao Zubin. 1998. An Sm-Nd isotopic dating study of the Archean Kongling complex in the Huangling area of the Yangtze craton[J]. Chinese Science Bulletin (Chinese Version), 43(1): 86-89 (in Chinese). doi: 10.1360/csb1998-43-1-86

    CrossRef Google Scholar

    Liu Y S, Gao S, Hu Z C, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51: 537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    Liu Y S, Hu ZC, Gao S, Chen H L. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    Loiselle M C, Wones D R. 1979. Characteristics of anorogenic granites[J]. Geological Society of America Abstracts with Programs, 11(7): 468.

    Google Scholar

    Ludwig K R. 2003. Isoplot/EX Version 2.49: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 1a: 1-56.

    Google Scholar

    Lü Qingtian, Meng Guixiang, Yan Jiayong, Zhang Kun, Zhao Jinhua, Gong Xuejing. 2019. Multi-scale exploration of mineral system: Concept and progress-A case study in the middle and lower reaches of the Yangtze River Metallogenic Belt[J]. Geology in China, 46(4): 673-689(in Chinese with English abstract).

    Google Scholar

    Ma C, Ehlers C, Xu C, et al. 2000. The roots of Ac Dabieshan ultrahigh-pressure metamorphic terrane: constraints from geochemistry and Nd-Sr isotope systematics[J]. Precambrian Research, 102: 279-301. doi: 10.1016/S0301-9268(00)00069-3

    CrossRef Google Scholar

    Mao Jingwen, Holly S, Du Andao, Zhou Taofa, Mei Yanxiong, Li Yongfeng, Zang Wenshuan, Li Jinwen. 2004. Molybdenite Re-Os precise dating for molybdenite from Cu-Au-Mo deposits in the Middle-Lower Reaches of Yangtze River Belt and its implications for mineralizatotn[J]. Acta Geologica Sinica, 78(1): 121-131 (in Chinese with English abstract).

    Google Scholar

    Middlemost, E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 37: 215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    Mushkin A, Navon O, Halicz L, Hartmann G and Stein M. 2003. The petrogenesis of A-type magmas from the Amram Massif, southernIsrael[J]. Journal of Petrology, 44(5): 815-832. doi: 10.1093/petrology/44.5.815

    CrossRef Google Scholar

    Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58: 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    Scherer E, Munker C and Mezger K. 2001. Calibration of the lutetium-hafnium clock[J]. Science, 293: 683-687. doi: 10.1126/science.1061372

    CrossRef Google Scholar

    Sun F J, Xu X S, Zou H B, Xia Y. 2015. Petrogenesis and magmatic evolution of ~130 Ma A-type granites in Southeast China[J]. Journal of Asian Earth Sciences 98, 209-224. doi: 10.1016/j.jseaes.2014.11.018

    CrossRef Google Scholar

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes[C]//Sanders A D, Norry M J (ed. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313-345.

    Google Scholar

    Sun W D, Ding X, Hu Y H, Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 262(3-4): 533-542. doi: 10.1016/j.epsl.2007.08.021

    CrossRef Google Scholar

    Sylvester P J. 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3

    CrossRef Google Scholar

    Xing F M, Xu X, Li Z C, 1994. Discovery of the Early Proterozoic basement in the Middle-Lower Reaches of Yangtze River and its significance[J]. Chinese Science Bulletin, 2: 135-139.

    Google Scholar

    Turner S P, Foden J D, Morrison R S. 1992. Derivation of some Atype magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 28, 151-179. doi: 10.1016/0024-4937(92)90029-X

    CrossRef Google Scholar

    Vervoort J D, Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica Acta, 63(3/4): 533-556.

    Google Scholar

    Wang Cunzhi, Huang Zhizhong, Zhao Xilin, Chu Pingli, Huang Wencheng, Song Shiming, Chen Zhihong. 2018. Geochronology, geochemistry and petrogenesis of Early Cretaceous acid volcanic rocks at Shuidong Area, Xuancheng City in the Middle-Lower Yangtze River Belt[J]. Acta Petrologica et Mineralogica, 37(5): 697-715 (in Chinese with English abstract).

    Google Scholar

    Wang C Z, Zhao X L, Huang Z Z, Xing G F, Wang L X. 2018. Early Cretaceous Extensional tectonism related petrology of the Gan Hang Belt SE China: Lingshan A type granite at ca. 130 Ma[J]. Geological Journal, 53(6): 2487-2506. doi: 10.1002/gj.3083

    CrossRef Google Scholar

    Wang F Y, Ling M X, Ding X, Hu Y H, Zhou J B, Yang X Y, Liang H Y, Fan W M, Sun W D. 2011. Mesozoic large magmatic events and mineralization in SE China: Oblique subduction of the Pacific plate[J]. International Geology Review, 53(5-6): 704-726. doi: 10.1080/00206814.2010.503736

    CrossRef Google Scholar

    Wang Jiqiang, Sun Weian, Yuan Feng, Shang Shigui, Zhou Taofa, Zhong Fuming, Zhang Ruofei. 2017. Geological characteristics, rock-forming epoch and genesis of the Danizhuang Cu deposit in Luzong basin[J]. Geology in China, 44(1): 86-100(in Chinese with English abstract).

    Google Scholar

    Wang X L, Zhou J C, Wan Y S, Kitajima K, Wang D, Bonamici C, Qiu J S, Sun T. 2013. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon[J]. Earth and Planetary Science Letters, 366 (2): 71-82.

    Google Scholar

    Wang Y J, Fan W M, Guo F, Peng T P, Li C W. 2003. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou Linwu fault, South China: Implications for the lithospheric boundary between the Yangtze and Cathaysia blocks[J]. International Geology Review, 45 (3): 263-286. doi: 10.2747/0020-6814.45.3.263

    CrossRef Google Scholar

    Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 308 (5723): 841-844. doi: 10.1126/science.1110873

    CrossRef Google Scholar

    Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    Wong J, Sun M, Xing G F, Li X H, Zhao G C, Wong K, Yuan C, Xia X P, Li L M. & Wu FY. 2009. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite: extension at 125-100 Ma and its tectonic significance for South China[J]. Lithos, 112: 289-305. doi: 10.1016/j.lithos.2009.03.009

    CrossRef Google Scholar

    Wu F Y, Ji W Q, Sun D H. 2012. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J]. Lithos, 150: 6-25 doi: 10.1016/j.lithos.2012.03.020

    CrossRef Google Scholar

    Wu Y B and Zheng Y F. 2004. Genesis of zircon and its constranints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49: 1554-1569. doi: 10.1007/BF03184122

    CrossRef Google Scholar

    Xie Jiancheng, Chen Si, Rong Wei, Li Quanzhong, Yang Xiaoyong, Sun Weidong. 2012. Geochronolgy, geochemistry and tectonic significance of Guniujiang A-type granite in Anhui Province[J]. Acta Petrologica Sinica, 28(12): 4007-4020.

    Google Scholar

    Xing Guangfu, Hong Wentao, Zhang Xuehui, Zhao Xilin, Ban Yizhong, Xiao Fan. 2017. Yanshanian granitic magmatisms and their mineralizations in East China[J]. Acta Petrologica Sinica, 33 (5): 1571-1590 (in Chinese with English abstract).

    Google Scholar

    Xue Huaimin. 2016. Geochronology, geochemistry and petrogenesis of volcanism in the Liyang volcanic basin on the southeastern margin of the Middle-Lower Yangtze region[J]. Geochimica, 45(3): 213-234 (in Chinese with English abstract).

    Google Scholar

    Xue Huaimin, Ma Fang, Guan Haiyan, Wang Yipeng. 2013. Geochronology and geochemistry of volcanic rocks in Huaining basin incomparison with other basins in the middle-lower Yangtze region[J]. Geology in China, 40(3): 694-714 (in Chinese with English abstract).

    Google Scholar

    Xue Huaimin, Wang Yinggeng, Ma Fang, Wang Cheng, Wang Deen, Zuo Yanlong. 2009. The Huangshan A-type granites with tetrad REE: constraints on Mesozoiclithospheric thinning of the southeastern Yangtze craton?[J]. Acta Geologica Sinica, 83(2), 247-259 (in Chinese with English abstract).

    Google Scholar

    Yan Jun, Hou Tianjie, Wang Aiguo, Wang Deen, Zhang Dingyuan, Weng Wangfei, Liu Jianmin, Liu Xiaoqiang, Li Quanzhong. 2017. Comparative study of genesis of earlier-stage metallogenic granite and later-stage barren granite in the south Anhui Province[J]. Science China: Earth Sciences, 47(11): 1269-1291.

    Google Scholar

    Yan Jun, Peng Ge, Liu Jianmin, Li Quanzhong, Chen Zhihong, Shi Lei, Liu Xiaoqiang, Jiang Zizhao. 2012. Petrogenesis of granites from Fanchang district, the Lower Yangtze region: Zircon geochronology and Hf-O isotopes constrains[J]. Acta Petrologica Sinica, 3209-3227 (in Chinese with English abstract).

    Google Scholar

    Yang S Y, Jiang S Y, Zhao K D, Jiang Y H, Ling H F, Luo L. 2012. Geochronology, geochemistry and tectonic significance of two Early Cretaceous A-type granites in the Gan-Hang Belt, Southeast China[J]. Lithos, 150: 155-70. doi: 10.1016/j.lithos.2012.01.028

    CrossRef Google Scholar

    Zhang Bangtong, Zhai Jianping, Ling Hongfei. 1989. The geological and geochemical characteristcs of the mixed crust-mantle derivation type uranium-bearing granitoids in the lower Yangzi fault depression zone[J]. Uranium Geology, 5(3): 134-143 (in Chinese with English abstract).

    Google Scholar

    Zhang S B, He Q, Zheng Y F. 2015. Geochronological and geochemical evidence for the nature of the Dongling Complex in South China[J]. Precambrian Research, 256: 17-20. doi: 10.1016/j.precamres.2014.10.013

    CrossRef Google Scholar

    Zhang S B, Zheng Y F. 2013. Formation and evolution of Precambrian continental lithosphere in South China[J]. Gondwana Research, 23(7): 1241-1260.

    Google Scholar

    Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S, Wu F Y. 2006. Zircon isotope evidence for ≥ 3.5 Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 146: 16-34. doi: 10.1016/j.precamres.2006.01.002

    CrossRef Google Scholar

    Zhou J, Jiang Y H, Xing G F, Zeng Y, Ge W Y. 2013. Geochronology and petrogenesis of Cretaceous A-type granites from the NE Jiangnan Orogen, SE China[J]. International Geology Review, 55: 1359-1383. doi: 10.1080/00206814.2013.774199

    CrossRef Google Scholar

    Zhou Jie, Jiang Yaohui, Zeng Yong, Ge Weiya. 2013. Zircon U-Pb age and Sr, Nd, Hf isotope geochemistry of Jingde pluton ineastern Jiangnan orogen, South China[J]. Geology in China, 40(5): 1379-1391 (in Chinese with English abstract).

    Google Scholar

    Zhou Taofa, Fan Yu, Yuan Feng. 2008. Advanees on petrogesnis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area[J]. Acta Petrologica Sinica, 24(8): 1665-1678 (in Chinese with English abstract).

    Google Scholar

    Zhou Xiang, Yu Xinqi, Yang Heming, Wang Deen, Du Yudiao, Ke Hongbiao. 2012. Petrogenesis and geochronology of the high Ba-Sr Kaobeijian granodiorite porphyry, Jixi County, south Anhui Province[J]. Acta Petrologica Sinica, 28(10): 3403-3417 (in Chinese with English abstract).

    Google Scholar

    Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326 (3-4): 269-287. doi: 10.1016/S0040-1951(00)00120-7

    CrossRef Google Scholar

    Zhou X M, Sun T, Shen W Z, Shu L S. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004

    CrossRef Google Scholar

    常印佛, 董树文. 1996. 论中-下扬子"一盖多底"格局与演化[J]. 火山地质与矿产, 17(1/2): 1-15.

    Google Scholar

    陈芳, 王登红, 杜建国, 许卫, 胡海风, 王克友, 余有林, 汤金来. 2014. 安徽宁国刘村二长花岗岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质学报, 88(5): 869-882.

    Google Scholar

    陈俊, 王辉, 王丽娟, 关俊朋. 2018. 滁州地区金牛侵入体的岩石成因: 拆沉下地壳熔融还是壳幔混合[J]. 中国地质, 45(1): 110-128.

    Google Scholar

    高冉, 闫峻, 李全忠, 刘晓强, 王思诺. 2017. 皖南谭山岩体成因: 年代学和地球化学制约[J]. 高校地质学报, 23(2): 227-243.

    Google Scholar

    关俊朋, 韦福彪, 孙国曦, 黄建平, 王丽娟. 2015. 宁镇中段中酸性侵入岩锆石U-Pb年龄及其成岩成矿指示意义[J]. 大地构造与成矿学, 39(2): 344-354. doi: 10.3969/j.issn.1001-1552.2015.02.014

    CrossRef Google Scholar

    侯可军, 李延河, 田有荣. 2009. LA-MC-ICPMS锆石微区原位U-Pb定年技术[J]. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    凌文黎, 高山, 郑海飞, 周炼, 赵祖斌. 1998. 扬子克拉通黄陵地区崆岭杂岩Sm-Nd同位素地质年代学研究[J]. 科学通报, 43(1): 86-89. doi: 10.3321/j.issn:0023-074X.1998.01.022

    CrossRef Google Scholar

    吕庆田, 孟贵祥, 严加永, 张昆, 赵金花, 龚雪婧. 2019. 成矿系统的多尺度探测: 概念与进展——以长江中下游成矿带为例[J]. 中国地质, 46(4): 673-689.

    Google Scholar

    毛景文, Holly S, 杜安道, 周涛发, 梅燕雄, 李永峰, 藏文栓, 李进文. 2004. 长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示[J]. 地质学报, 78(1): 121-131.

    Google Scholar

    王存智, 黄志忠, 赵希林, 褚平利, 黄文成, 宋世明, 陈志洪. 2018. 长江中下游宣城水东地区早白垩世酸性火山岩年代学、地球化学及岩石成因[J]. 岩石矿物学杂志, 37(5): 697-715. doi: 10.3969/j.issn.1000-6524.2018.05.001

    CrossRef Google Scholar

    王继强, 孙维安, 袁峰, 尚世贵, 周涛发, 钟富明, 张若飞. 2017. 庐枞盆地大倪庄铜矿床地质特征、成岩时代及成因探讨[J]. 中国地质, 44(1): 86-100.

    Google Scholar

    谢建成, 陈思, 荣伟, 李全忠, 杨晓勇, 孙卫东. 2012. 安徽牯牛降A型花岗岩的年代学、地球化学和构造意义[J]. 岩石学报, 28(12): 4007-4020.

    Google Scholar

    邢光福, 洪文涛, 张雪辉, 赵希林, 班宜忠, 肖凡. 2017. 华东地区燕山期花岗质岩浆与成矿作用关系研究[J]. 岩石学报, 33(5): 1571-1590.

    Google Scholar

    薛怀民. 2016. 长江中下游火山岩带东南缘溧阳盆地火山作用的年代学、地球化学及岩浆成因探讨[J]. 地球化学, 45(3): 213-234. doi: 10.3969/j.issn.0379-1726.2016.03.001

    CrossRef Google Scholar

    薛怀民, 马芳, 关海燕, 王一鹏. 2013. 怀宁盆地火山岩的年代学、地球化学及与长江中下游其他火山岩盆地的对比[J]. 中国地质, 40(3): 694-714. doi: 10.3969/j.issn.1000-3657.2013.03.004

    CrossRef Google Scholar

    薛怀民, 汪应庚, 马芳, 汪诚, 王德恩, 左延龙, 2009. 高度演化的黄山A型花岗岩: 对扬子克拉通东南部中生代岩石圈减薄的约束?[J]. 地质学报, 83(2), 247-259.

    Google Scholar

    闫峻, 后田结, 王爱国, 王德恩, 张定源, 翁望飞, 刘建敏, 刘晓强, 李全忠. 2017. 皖南中生代早期成矿和晚期非成矿花岗岩成因对比[J]. 中国科学: 地球科学, 47(11): 1269-1291.

    Google Scholar

    闫峻, 彭戈, 刘建敏, 李全忠, 陈志洪, 史磊, 刘晓强, 姜子朝. 2012. 下扬子繁昌地区花岗岩成因: 锆石年代学和Hf-O同位素制约[J]. 岩石学报, 28(10): 3209-3227.

    Google Scholar

    章邦桐, 翟建平, 凌洪飞. 1989. 扬子断陷带中壳幔混源型产铀花岗岩的地质地球化学特征[J]. 铀矿地质, 5(3): 134-143.

    Google Scholar

    周洁, 姜耀辉, 曾勇, 葛伟亚. 2013. 江南造山带东段旌德岩体锆石LA-ICPMS年龄和Nd-Sr-Hf同位素地球化学[J]. 中国地质, 40(5): 1379-1391. doi: 10.3969/j.issn.1000-3657.2013.05.004

    CrossRef Google Scholar

    周涛发, 范裕, 袁峰. 2008. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 24(8): 1665-1678.

    Google Scholar

    周翔, 余心起, 杨赫鸣, 王德恩, 杜玉雕, 柯宏飙. 2012. 皖南绩溪县靠背尖高Ba-Sr花岗闪长斑岩年代学及其成因[J]. 岩石学报, 28(10): 3403-3417.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(2675) PDF downloads(102) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint