Citation: | MIAO Fengbin, PENG Zhongqin, WANG Zongxin, ZHANG Baomin, WANG Chuanshang, GONG Lei. 2024. Brittleness characteristics and influencing factors of marine shale of Niutitang Formation in Xuefeng region: A case study of Well XZD−1[J]. Geology in China, 51(3): 743-761. doi: 10.12029/gc20210125003 |
This paper is the result of oil and gas exploration engineering.
The brittleness evaluation of shale reservoir is of great significance for determining the favorable stratigraphic zone in shale gas exploration and development.
Based on the basic data of mineral composition, geophysical logging, rock mechanics experiment and fracture development characteristics of Lower Cambrian Niutitang Formation in Xuefeng region, the brittleness characteristics of Niutitang Formation shale are comprehensively analyzed and evaluated by mineral composition and rock mechanics parameter based on geophysical logging, and the influencing factors of shale brittleness are discussed.
The results indicate that the brittle mineral composition based on the contents of quartz, feldspar, pyrite and carbonate is the most suitable method to evaluate the brittleness of Niutitang Formation shale in this region. Taking Well XZD−1 in this area as an example, the brittleness index of Niutitang Formation shale is 59.2%−93.8%, with an average value of 74.4%, which is influenced by sedimentary environment, diagenetic evolution, burial depth, tectonism and other factors.
The stable deep−water shelf basin facies sedimentary environment and late diagenetic evolution stage determine that the overall brittleness of Niutitang Formation shale in Xuefeng region is relatively high. In this sedimentary environment, biogenic brittle minerals such as siliceous and pyrite are more abundant. The content of brittle minerals is affected by the change in water depth during sedimentation, showing a trend of increasing first and then decreasing from bottom to top, gradually decreasing overall. This leads to a similar vertical variation law in shale brittleness and the development of natural fractures, and the three complement each other. Meanwhile, such brittle minerals have a good positive correlation with organic matter content, and their contribution to shale brittleness is much greater than that of organic matter to shale plasticity. In addition, the correlation between rock mechanics parameters and brittleness index indicates that the Young's modulus plays a more important role in the evaluation of Niutitang Formation shale brittleness in this area than the Poisson's ratio.
[1] | Bai Daoyuan, Tang Fenpei, Li Bin, Zeng Guangqian, Li Yinmin, Jiang Wen. 2022. Summary of main mineralization events in Hunan Province[J]. Geology in China, 49(1): 151−180 (in Chinese with English abstract). |
[2] | Bowker K A. 2007. Barnett shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 91(4): 523−533. doi: 10.1306/06190606018 |
[3] | Deng Dafei, Mei Lianfu, Shen Chuanbo, Liu Zhaoqian, Tang Jiguang, Fan Yuanfang. 2014. Major factors of accumulation and destruction mechanisms of marine strata related hydrocarbon in the northern margin of the Jiangnan−Xuefeng Uplift[J]. Journal of Jilin University (Earth Science Edition), 44(5): 1466−1477 (in Chinese with English abstract). |
[4] | Diao Haiyan. 2013. Rock mechanical properties and brittleness evaluation of shale reservoir[J]. Acta Petrologica Sinica, 29(9): 3300−3306 (in Chinese with English abstract). |
[5] | Fang Dazhi, Zeng Hui, Wang Ning, Zhang Yong. 2015. Study on high production factors of high−pressure shale gas from Haynesville shale gas development data[J]. Oil Drilling & Production Technology, 37(2): 58−62 (in Chinese with English abstract). |
[6] | Fu Yongqiang, Ma Faming, Zeng Lixin, She Chaoyi, Chen Yan. 2011. Key techniques of experimental evaluation in the fracturing treatment for shale gas reservoirs[J]. Natural Gas Industry, 31(4): 51−54 (in Chinese with English abstract). |
[7] | Ge Hongkui, Chen Yu, Lin Yingsong. 2001. Microscopic mechanism of difference between static and dynamic elastic parameters of rock[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 25(4): 34−36 (in Chinese with English abstract). |
[8] | Gong L, Wang J, Gao S, Fu X F, Liu B, Miao F B, Zhou X P, Meng Q K. 2021. Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs[J]. Journal of Petroleum Science and Engineering, 203: 108655. doi: 10.1016/j.petrol.2021.108655 |
[9] | He Jianhua, Ding Wenlong, Wang Zhe, Lan Baofeng, Zhao Jinli, Zhao Dong. 2015. Main controlling factors of fracture network formation of volume fracturing in shale reservoirs and its evaluation method[J]. Geological Science and Technology Information, 34(4): 108−118 (in Chinese with English abstract). |
[10] | Hou Zhenkun, Yang Chunhe, Wei Xiang, Wang Lei, Wei Yuanlong, Xu Feng, Wang Hu. 2016. Experimental study on the brittle characteristics of Longmaxi Formation shale[J]. Journal of China Coal Society, 41(5): 1188−1196 (in Chinese with English abstract). |
[11] | Huang Yanran, Xiao Zhenghui, Jiao Peng, Qin Mingyan, Yu Ye, Wang Xikai, Cao Taotao. 2018. Comparison of factors for shale gas accumulation in Niutitang formation wells in northwestern Hunan and its implications[J]. Journal of Central South University (Science and Technology), 49(9): 2240−2248 (in Chinese with English abstract). |
[12] | Jarvie D M, Hill R J, Ruble T E, Pollastro R. 2007. Unconventional shale−gas systems: The Mississippian Barnett Shale of north−central Texas as one model for thermogenic shale−gas assessment[J]. AAPG Bulletin, 91(4): 475−499. |
[13] | Li Qinghui, Chen Mian, Fred P W, Jin Yan, Li Zhimeng. 2012. Influences of engineering factors on shale gas productivity: A case study from the Haynesville shale gas reservoir in North America[J]. Natural Gas Industry, 32(4): 54−59 (in Chinese with English abstract). |
[14] | Liu An, Li Xubing, Wang Chuanshang, Wei Kai, Wang Baozhong. 2013. Analysis of geochemical feature and sediment environment for hydrocarbon source rocks of Cambrian in west Hunan−Hubei Area[J]. Acta Sedimentologica Sinica, 31(6): 1122−1132 (in Chinese with English abstract). |
[15] | Mei Lianfu, Deng Dafei, Shen Chuanbo, Liu Zhaoqian. 2012. Tectonic dynamics and marine hydrocarbon accumulation of Jiangnan−Xuefeng uplift[J]. Geological Science and Technology Information, 31(5): 85−93 (in Chinese with English abstract). |
[16] | Miao Fengbin, Peng Zhongqin, Wang Chuanshang, Yue Yong, Wang Zongxin. 2019. Gas−bearing capacity and controlling factors of Niutitang Formation Shale in Well XZD−1, western margin of Xuefeng Uplift[J]. Earth Science, 44(11): 3662−3677 (in Chinese with English abstract). |
[17] | Miao Fengbin, Peng Zhongqin, Wang Zongxin, Yu Yuning, Ma Yong, Sui Zhiheng. 2020. Development characteristics and major controlling factors of shale fracture in the Lower Cambrian Niutitang Formation, western margin of Xuefeng Uplift[J]. Bulletin of Geological Science and Technology, 39(2): 31−42 (in Chinese with English abstract). |
[18] | Peng Zhongqin, Tian Wei, Miao Fengbin, Wang Baozhong, Wang Chuanshang. 2019. Geological features and favorable area prediction of shale gas in Lower Cambrian Niutitang Formation of Xuefeng ancient uplift and its periphery[J]. Earth Science, 44(10): 3512−3528 (in Chinese with English abstract). |
[19] | Pu Boling, Dong Dazhong, Wang Fengqin, Wang Yuman, Huang Jinliang. 2020. The effect of sedimentary facies on Longmaxi shale gas in southern Sichuan Basin[J]. Geology in China, 47(1): 111−120 (in Chinese with English abstract). |
[20] | Rickman R, Mullen M, Petre J, Grieser W V, Kundert D P. 2008. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett shale [C]// SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA. |
[21] | Shi Xian, Cheng Yuanfang, Jiang Shu, Cai Dongsheng, Zhang Tao. 2014. Experimental study of microstructure and rock properties of shale samples[J]. Chinese Journal of Rock Mechanics and Engineering, 33(S2): 3439−3445 (in Chinese with English abstract). |
[22] | Tang Ying, Xing Yun, Li Lezhong, Zhang Binhai, Jiang Shixin. 2012. Influence factors and evaluation methods of the gas shale fracability[J]. Earth Science Frontiers, 19(5): 356−363 (in Chinese with English abstract). |
[23] | Wang Chuanshang, Zeng Xiongwei, Li Xubing, Liu An, Bai Yunshan. 2013. The classification and correlation of the Cambrian strata in western Xuefeng Mountain area[J]. Geology in China, 40(2): 439−448 (in Chinese with English abstract). |
[24] | Wang Ruyue, Gong Dajian, Ding Wenlong, Leng Jigao, Yin Shuai, Wang Xinghua, Sun Yaxiong. 2016. Brittleness evaluation of the Lower Cambrian Niutitang shale in the Upper Yangtze region: A case study in the Cengong block, Guizhou Province[J]. Earth Science Frontiers, 23(1): 87−95 (in Chinese with English abstract). |
[25] | Wang Yuman, Wang Shufang, Dong Dazhong, Li, Xinjing, Huang Jinliang, Zhang Chenchen, Guan Quanzhong. 2016. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 23(1): 119−133 (in Chinese with English abstract). |
[26] | Wu Jingjing, Zhang Shaohe, Cao Han, Sun Pinghe. 2018. Fracability evaluation of shale gas reservoir in Lower Cambrian Niutitang Formation, northwestern Hunan[J]. Journal of Central South University (Science and Technology), 49(5): 1160−1168 (in Chinese with English abstract). |
[27] | Wu Yue, Fan Tailiang, Jiang Shu, Li Yifan, Zhang Junpeng, Ding Huaiyu. 2015. Mineralogy and brittleness features of the shale in the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in southern Sichuan basin[J]. Petroleum Geology and Recovery Efficiency, 22(4): 59−63 (in Chinese with English abstract). |
[28] | Xia Zunyi, Ma Haiyang, Fang Kun. 2019. Rock mechanical properties and fracability of continental shale in Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 41(1): 134−141 (in Chinese with English abstract). |
[29] | Xu Ganchuan, Zhong Guanghai, Xie Bing, Huang Tianjun. 2014. Petrophysical experiment−based logging evaluation method of shale brittleness[J]. Natural Gas Industry, 34(12): 38−45 (in Chinese with English abstract). |
[30] | Yuan Junliang, Deng Jingen, Zhang Dingyu, Li Dahua, Yan Wei, Chen Chaogang, Cheng Lijun, Chen Zijian. 2013. Fracability evaluation of shale−gas reservoirs[J]. Acta Petrolei Sinica, 34(3): 523−527 (in Chinese with English abstract). |
[31] | Zeng Yijin, Chen Zuo, Bian Xiaobing. 2016. Breakthrough in stagedfracturing technology for deep shale gas reservoirs in SE Sichuan basin and its implications[J]. Natural Gas Industry, 36(1): 61−67 (in Chinese with English abstract). |
[32] | Zhang Chenchen, Wang Yuman, Dong Dazhong, Guan Quanzhong. 2016. Brittleness characteristics of Wufeng−Longmaxi shale in Changning region, Southern Sichuan, China[J]. Natural Gas Geoscience, 27(9): 1629−1639 (in Chinese with English abstract). |
[33] | Zhang Jun, Ai Chi, Li Yuwei, Zeng Jia, Qiu Dezhi. 2017. Brittleness evaluation index based on energy variation in the whole process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 36(6): 1326−1340 (in Chinese with English abstract). |
[34] | Zhao Pei, Li Xianqing, Sun Jie, Lai Shouning, Fu Tongyang, Su Guiping, Tian Xingwang. 2014. Study on mineral composition and brittleness characteristics of shale gas reservoirs from the Lower Paleozoic in the Southern Sichuan Basin[J]. Geoscience, 28(2): 396−403 (in Chinese with English abstract). |
[35] | Zhao Wenzhi, Li Jianzhong, Yang Tao, Wang Shufang, Huang Jinliang. 2016. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 43(4): 499−510 (in Chinese with English abstract). |
[36] | Zhong Cheng, Qin Qirong, Zhou Jiling, Hu Dongfeng, Wei Zhihong. 2018. Brittleness evaluation of organic−rich shale in Longmaxi Formation in Dingshan Area, southeastern Sichuan[J]. Geological Science and Technology Information, 37(4): 167−174 (in Chinese with English abstract). |
[37] | 柏道远, 唐分配, 李彬, 曾广乾, 李银敏, 姜文. 2022. 湖南省成矿地质事件纲要[J]. 中国地质, 49(1): 151−180. |
[38] | 邓大飞, 梅廉夫, 沈传波, 刘昭茜, 汤济广, 凡元芳. 2014. 江南—雪峰隆起北缘海相油气富集主控因素和破坏机制[J]. 吉林大学学报(地球科学版), 44(5): 1466−1477. |
[39] | 刁海燕. 2013. 泥页岩储层岩石力学特性及脆性评价[J]. 岩石学报, 29(9): 3300−3306. |
[40] | 房大志, 曾辉, 王宁, 张勇. 2015. 从Haynesville页岩气开发数据研究高压页岩气高产因素[J]. 石油钻采工艺, 37(2): 58−62. |
[41] | 付永强, 马发明, 曾立新, 佘朝毅, 陈艳. 2011. 页岩气藏储层压裂实验评价关键技术[J]. 天然气工业, 31(4): 51−54. doi: 10.3787/j.issn.1000-0976.2011.04.012 |
[42] | 葛洪魁, 陈颙, 林英松. 2001. 岩石动态与静态弹性参数差别的微观机理[J]. 石油大学学报(自然科学版), 25(4): 34−36. |
[43] | 何建华, 丁文龙, 王哲, 蓝宝锋, 赵金利, 赵冬. 2015. 页岩储层体积压裂缝网形成的主控因素及评价方法[J]. 地质科技情报, 34(4): 108−118. |
[44] | 侯振坤, 杨春和, 魏翔, 王磊, 魏元龙, 徐峰, 汪虎. 2016. 龙马溪组页岩脆性特征试验研究[J]. 煤炭学报, 41(5): 1188−1196. |
[45] | 黄俨然, 肖正辉, 焦鹏, 秦明阳, 余烨, 王玺凯, 曹涛涛. 2018. 湘西北牛蹄塘组探井页岩气富集要素的对比和启示[J]. 中南大学学报(自然科学版), 49(9): 2240−2248. |
[46] | 李庆辉, 陈勉, Fred P Wang, 金衍, 李志猛. 2012. 工程因素对页岩气产量的影响—以北美Haynesville页岩气藏为例[J]. 天然气工业, 32(4): 54−59. |
[47] | 刘安, 李旭兵, 王传尚, 危凯, 王保忠. 2013. 湘鄂西寒武系烃源岩地球化学特征与沉积环境分析[J]. 沉积学报, 31(6): 1122−1132. |
[48] | 梅廉夫, 邓大飞, 沈传波, 刘昭茜. 2012. 江南—雪峰隆起构造动力学与海相油气成藏演化[J]. 地质科技情报, 31(5): 85−93. |
[49] | 苗凤彬, 彭中勤, 汪宗欣, 于玉宁, 马勇, 隋志恒. 2020. 雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及主控因素[J]. 地质科技通报, 39(2): 31−42. |
[50] | 苗凤彬, 彭中勤, 王传尚, 岳勇, 汪宗欣. 2019. 雪峰隆起西缘湘张地1井牛蹄塘组页岩含气性特征及控制因素[J]. 地球科学, 44(11): 3662−3677. |
[51] | 彭中勤, 田巍, 苗凤彬, 王保忠, 王传尚. 2019. 雪峰古隆起边缘下寒武统牛蹄塘组页岩气成藏地质特征及有利区预测[J]. 地球科学, 44(10): 3512−3528. |
[52] | 蒲泊伶, 董大忠, 王凤琴, 王玉满, 黄金亮. 2020. 沉积相带对川南龙马溪组页岩气富集的影响[J]. 中国地质, 47(1): 111−120. doi: 10.12029/gc20200109 |
[53] | 时贤, 程远方, 蒋恕, 蔡东升, 张涛. 2014. 页岩微观结构及岩石力学特征实验研究[J]. 岩石力学与工程学报, 33(S2): 3439−3445. |
[54] | 唐颖, 邢云, 李乐忠, 张滨海, 蒋时馨. 2012. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘, 19(5): 356−363. |
[55] | 王传尚, 曾雄伟, 李旭兵, 刘安, 白云山. 2013. 雪峰山西侧地区寒武系地层划分与对比[J]. 中国地质, 40(2): 439−448. doi: 10.3969/j.issn.1000-3657.2013.02.008 |
[56] | 王濡岳, 龚大建, 丁文龙, 冷济高, 尹帅, 王兴华, 孙雅雄. 2016. 上扬子地区下寒武统牛蹄塘组页岩储层脆性评价: 以贵州岑巩区块为例[J]. 地学前缘, 23(1): 87−95. |
[57] | 王玉满, 王淑芳, 董大忠, 李新景, 黄金亮, 张晨晨, 管全中. 2016. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘, 23(1): 119−133. |
[58] | 吴晶晶, 张绍和, 曹函, 孙平贺. 2018. 湘西北下寒武统牛蹄塘组页岩气储层可压裂性评价[J]. 中南大学学报(自然科学版), 49(5): 1160−1168. |
[59] | 伍岳, 樊太亮, 蒋恕, 李一凡, 张俊鹏, 丁怀宇. 2015. 四川盆地南缘上奥陶统五峰组—下志留统龙马溪组页岩矿物组成与脆性特征[J]. 油气地质与采收率, 22(4): 59−63. doi: 10.3969/j.issn.1009-9603.2015.04.011 |
[60] | 夏遵义, 马海洋, 房堃. 2019. 渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J]. 石油实验地质, 41(1): 134−141. doi: 10.11781/sysydz201901134 |
[61] | 徐赣川, 钟光海, 谢冰, 黄天俊. 2014. 基于岩石物理实验的页岩脆性测井评价方法[J]. 天然气工业, 34(12): 38−45. doi: 10.3787/j.issn.1000-0976.2014.12.005 |
[62] | 袁俊亮, 邓金根, 张定宇, 李大华, 闫伟, 陈朝刚, 程礼军, 陈子剑. 2013. 页岩气储层可压裂性评价技术[J]. 石油学报, 34(3): 523−527. doi: 10.7623/syxb201303015 |
[63] | 曾义金, 陈作, 卞晓冰. 2016. 川东南深层页岩气分段压裂技术的突破与认识[J]. 天然气工业, 36(1): 61−67. doi: 10.3787/j.issn.1000-0976.2016.01.007 |
[64] | 张晨晨, 王玉满, 董大忠, 管全中. 2016. 川南长宁地区五峰组—龙马溪组页岩脆性特征[J]. 天然气地球科学, 27(9): 1629−1639. doi: 10.11764/j.issn.1672-1926.2016.09.1629 |
[65] | 张军, 艾池, 李玉伟, 曾佳, 仇德智. 2017. 基于岩石破坏全过程能量演化的脆性评价指数[J]. 岩石力学与工程学报, 36(6): 1326−1340. |
[66] | 赵佩, 李贤庆, 孙杰, 赖守宁, 付铜洋, 苏桂萍, 田兴旺. 2014. 川南地区下古生界页岩气储层矿物组成与脆性特征研究[J]. 现代地质, 28(2): 396−403. doi: 10.3969/j.issn.1000-8527.2014.02.018 |
[67] | 赵文智, 李建忠, 杨涛, 王淑芳, 黄金亮. 2016. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 43(4): 499−510. doi: 10.11698/PED.2016.04.01 |
[68] | 钟城, 秦启荣, 周吉羚, 胡东风, 魏志红. 2018. 川东南丁山地区龙马溪组富有机质页岩脆性评价[J]. 地质科技情报, 37(4): 167−174. |
Location and geological characteristics of Xuefeng region
Mineral composition of Niutitang Formation shale in Well XZD−1
Ternary diagram of mineral compositions of shale
Relationship between BRITm1 and BRITm2 of Niutitang Formation shale
Distribution of rock mechanical parameters and brittleness index of Niutitang Formation in Well XZD−1
Stress strain curve of shale samples of Niutitang Formation
Relationship of mechanical parameters based on rock mechanics experiment and logging data
Sedimentary environment changes of Niutitang Formation in Well XZD−1
Characteristics of diagenetic evolution stages of Niutitang Formation shale in Xuefeng region (modified from Wu Jingjing et al., 2018)
Relationship between different bedding dip angles and brittleness index of shale (modified from Zhang Jun et al., 2017)
Development characteristics of fractures and pores in Niutitang Formation shale
Relationship between Young's modulus, Poisson's ratio and brittleness index in Niutitang Formation shale
Organic matter coexists with authigenic quartz, feldspar and pyrite
Relationship between TOC and brittle index of Niutitang Formation shale
Relationship between TOC and rock mechanical parameters of Niutitang Formation shale
Continuous well analysis on brittleness of Niutitang Formation shale in Xuefeng region