2021 Vol. 48, No. 1
Article Contents

YANG Menglian, LI Jianghai, WANG Honghao, TAO Chongzhi, ZHANG Yu. 2021. Geological landform and structure formation model of the Paleogene Ochirbat salt diapir in the western Kuqa, Xinjiang[J]. Geology in China, 48(1): 129-138. doi: 10.12029/gc20210109
Citation: YANG Menglian, LI Jianghai, WANG Honghao, TAO Chongzhi, ZHANG Yu. 2021. Geological landform and structure formation model of the Paleogene Ochirbat salt diapir in the western Kuqa, Xinjiang[J]. Geology in China, 48(1): 129-138. doi: 10.12029/gc20210109

Geological landform and structure formation model of the Paleogene Ochirbat salt diapir in the western Kuqa, Xinjiang

    Fund Project: Supported by major National Research and Development project"Basin Analysis and Oil and Gas Resource Evaluation on Both Sides of the South Atlantic"(2016ZX05033-001)
More Information
  • Author Bio: YANG Menglian, female, born in 1993, Master, engaged in petroleum geology; E-mail:11920488@qq.com
  • Corresponding author: LI Jianghai, male, born in 1965, professor, engaged in geological research; E-mail:jhli@pku.edu.cn 
  • As the Paleogene Ochirbat salt diapir in the western Kuqa foreland thrust belt is the most typical salt diapir structure in China, it can serves as a natural laboratory for the study of salt structure. Based on previous researches, the methods of field mapping, seismic interpretation, remote sensing images interpretation and InSAR (interferometric synthetic aperture radar) technique were used to analyse the salt karst landform characteristics, formation mechanism and rheological model of the Ochirbat salt diapir. The salt karst landforms are mainly developed on the surface of the salt diapir. Karst caves and gullies can be seen on the weathering surface of the diapir, while rillen karrens and miniature karst peak cluster can be seen on the fresh surface. Further more, collapse structures belonging to salt karst landforms can also be regularly seen in the diapir. The formation of the salt diapir was controlled by many factors, including the thrust fault, the erosion of the overburden, the differential loading and buoyancy, and the evolution process of the diapir can be divided into 4 main stages, including thrust piercement, erosion piercement, active piercement and passive piercement stages. It is summarized that after coming out from the underground, the salt flowed from the core to the periphery of the diapir under the gravity, forming salt glacier, and the seasonal river restricted the salt spreading to east, northeast and north directions, resulting in the asymmetric rheological model of the diapir.

  • 加载中
  • Aftabi P, Roustaie M, Alsop G I, Talbot C J. 2010. InSAR mapping and modelling of an active Iranian salt extrusion[J]. Journal of the Geological Society, 167(1):155-170. doi: 10.1144/0016-76492008-165

    CrossRef Google Scholar

    Baikpour S, Zulauf G, Dehghani M, Bahroudi A. 2010. InSAR maps and time series observations of surface displacements of rock salt extruded near Garmsar, northern Iran[J]. Journal of the Geological Society, 167(1):171-181. doi: 10.1144/0016-76492009-058

    CrossRef Google Scholar

    Barnhart W D, Lohman R B. 2012. Regional trends in active diapirism revealed by mountain range-scale InSAR time series[J]. Geophysical Research Letters, 39(8):89-106.

    Google Scholar

    Bruthans J, Asadi N, Filippi M, Vilhelm Z, Zare M. 2007. A study of erosion rates on salt diapir surfaces in the Zagros Mountains, SE Iran[J]. Environmental Geology, 53(5):1079-1089. doi: 10.1007/s00254-007-0734-6

    CrossRef Google Scholar

    Chen Shuping, Tang Liangjie, Jia Chengzhao, Pi Xuejun, Xie Huiwen. 2004. Salt tectonics in the western Kuqa depression and its relation to oil and gas distribution[J]. Acta Petrolei Sinica, 25(1):30-34, 39(in Chinese with English abstract).

    Google Scholar

    Cheng Xiaodao, Li Jianghai, Cheng Haiyan, Deng gang. 2013. Typical surface salt structure and deformation characteristics in western Kuqa depression, Tarim basin[J]. Xinjiang Petroleum Geology, 34(2):189-192(in Chinese with English abstract).

    Google Scholar

    Colón C, Webb A A G, Lasserre C, Doin M P, Baudoin P F. 2016. The variety of subaerial active salt deformations in the Kuqa foldthrust belt (China) constrained by InSAR[J]. Earth & Planetary Science Letters, 450:83-95.

    Google Scholar

    Davison I, Alsop I, Blundell D. 1996. Salt tectonics:Some aspects of deformation mechanics[J]. Geological Society London Special Publications, 100(1):1-10. doi: 10.1144/GSL.SP.1996.100.01.01

    CrossRef Google Scholar

    Frumkin A. 1994. Hydrology and denudation rates of halite karst[J]. Journal of Hydrology, 162(1-2):171-189. doi: 10.1016/0022-1694(94)90010-8

    CrossRef Google Scholar

    Frumkin A. 1994. Morphology and development of salt caves[J]. National Speleological Society Bulletin, 56:82-95.

    Google Scholar

    Frumkin A. 1996. Structure of northern Mount Sedom salt diapir(Israel) from cave evidence and surface morphology[J]. Israel Journal of Earth Sciences, 45(2):73-80.

    Google Scholar

    Frumkin A. 1998. Salt cave cross-sections and their paleoenvironmental implications[J]. Geomorphology, 23(2/4):183-191.

    Google Scholar

    Huang Shaoying, Wang Yueran, Wei Hongxing. 2009. Characteristics of salt structures and its evolution in Kuqa depression, Tarim basin[J]. Geotectonica Et Metallogenia, 33(1):117-123(in Chinese with English abstract).

    Google Scholar

    Jackson M P A, Vendeville B C. 1994. Regional extension as a geologic trigger for diapirism[J]. Geological Society of America Bulletin, 106(1):57-73. doi: 10.1130/0016-7606(1994)106<0057:REAAGT>2.3.CO;2

    CrossRef Google Scholar

    Jiří Bruthans, Filippi M, Zare M, Churackova Zdenka, Asadi N, Fuchs M, Adamovic Jiri. 2010. Evolution of salt diapir and karst morphology during the last glacial cycle:Effects of sea-level oscillation, diapir and regional uplift, and erosion (Persian Gulf, Iran)[J]. Geomorphology, 121(3):291-304.

    Google Scholar

    Johnson K S. 1997. Evaporite karst in the United States[J]. Carbonates & Evaporites, 12(1):2-14.

    Google Scholar

    Li J, Webb A A G, Mao X, Eckhoff I, Colon C, Zhang K, Wang H, Li A, He D. 2014. Active surface salt structures of the western Kuqa fold-thrust belt, northwestern China[J]. Geosphere, 10(6):1219-1234. doi: 10.1130/GES01021.1

    CrossRef Google Scholar

    Li Li. 2008. Research and development conception of salt dome geological relics in Wensu area, Xinjiang[D]. Chang'an University(in Chinese with English abstract).

    Google Scholar

    Li Yanyou, Qi Jiafu. 2012. Salt-related contractional structure and its main controlling factors of Kelasu structural zone in Kuqa depression:Insights from Physical and numerical experiments[J]. Chinese Journal of Geology, 47(3):607-617(in Chinese with English abstract).

    Google Scholar

    Lucha P, Cardona F, Gutiérrez F, Guerrero J. 2008. Natural and human-induced dissolution and subsidence processes in the salt outcrop of the Cardona Diapir (NE Spain)[J]. Environmental Geology, 53(5):1023-1035. doi: 10.1007/s00254-007-0729-3

    CrossRef Google Scholar

    Neng Yuan, Qi Jiafu, Xie Huiwen, Li Yong, Lei Ganglin, Wu Chao. 2012. Structural characteristics of northern margin of Kuqa depression, Tarim basin[J]. Geological Bulletin of China, 31(9):1510-1519(in Chinese with English abstract).

    Google Scholar

    Qi Jiafu, Lei Ganglin, Li Minggang, Gu Yongxing. 2009. Analysis of structure model and formation mechanism of Kelasu structure zone, Kuqa depression[J]. Geotectonica Et Metallogenia, 33(1):49-56(in Chinese with English abstract).

    Google Scholar

    Qi Jiafu, Li Yong, Wu Chao, Yang Shujiang. 2013. The interpretation models and discussion on the contractive structure deformation of Kuqa depression, Tarim basin[J]. Geology in China, 40(1):106-120(in Chinese with English abstract).

    Google Scholar

    Rosen P A, Hensley S, Joughin I R, Li F K, Madsen S N, Rodriguez E, Goldstein R M. 2000. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 88(3):333-382. doi: 10.1109/5.838084

    CrossRef Google Scholar

    Sesiano J. 2006. Evolution actuelle des phénomènes karstiques dans la Cordillera de la Sal (Atacama, Nord Chili)[J]. Karstologia, 47:49-54.

    Google Scholar

    Talbot C J, Pohjola V. 2009. Subaerial salt extrusions in Iran as analogues of ice sheets, streams and glaciers[J]. Earth-Science Reviews, 97(1/4):155-183.

    Google Scholar

    Tang Liangjie, Yu Yixin, Yang Wenjing, Peng Gengxin, Lei Ganglin, Jin Wenzheng. 2006. Internal deformation features of detachment layers in the front of the Kuqa foreland fold-thrust belt[J]. Geology in China, 33(5):944-951(in Chinese with English abstract).

    Google Scholar

    Tang Liangjie, Yu Yixin, Yang Wenjing, Peng Gengxin, Lei Ganglin, Ma Yujie. 2007. Paleo-uplifts and salt structures and their influence on hydrocarbon accumulations in the Kuqa depression[J]. Acta Geologica Sinica, 81(2):145-150(in Chinese with English abstract).

    Google Scholar

    Tang Pengcheng, Wang Xin, Xie Huiwen, Lei Ganglin, Huang Shaoying. 2010. The Quele area of the Kuqa depression, Tarim basin, NW China:Cenozoic salt structures, evolution and controlling factors[J]. Acta Geologica Sinica, 84(12):1735-1745(in Chinese with English abstract).

    Google Scholar

    Wang Honghao, Li Jianghai, Li Weibo, Huang Shaoying, Neng Yuan. 2016. Deformation behavior of underground salt rock in Kuqa Kelasu tectonic zone[J]. Special Oil & Gas Reservoirs, 23(4):20-24(in Chinese with English abstract).

    Google Scholar

    Wang Huiping. 2011. Ochirbat salt diapiric structure and hydrocarbon accumulation in the canyon of Xinjiang Wensu county[J]. Journal of Xi'an University of Science & Technology, 31(1):59-63(in Chinese with English abstract).

    Google Scholar

    Wang Xin, Tang Pengcheng, Xie Huiwen, Lei Ganglin, Huang Shaoying. 2009. Cenozoic salt structures and evolution in the western Kuqa depression, Tarim basin, China[J]. Geotectonica et Metallogenia, 33(1):57-65(in Chinese with English abstract).

    Google Scholar

    Wang Zhaoming, Wang Tingdong, Xiao Zhongyao, Xu Zhiming, Li Mei, Lin Feng. 2002. Migration and accumulation of natural gas in Kela-2 gas field[J]. The Chinese Science Bulletin, z1:103-108(in Chinese with English abstract).

    Google Scholar

    Warren J K. 2006. Evaporites:sediments, resources and hydrocarbons[M]. Springer Science & Business Media.

    Google Scholar

    Weinberger R, Waldmann N, Frumkin A, Gardosh M, Wdowinski S. 2006. Quaternary rise of the sedom diapir, Dead Sea basin[J]. Special Paper of the Geological Society of America, 401:33-51.

    Google Scholar

    Wu Guanghui, Wang Zhaoming, Liu Yukui, Zhang Baoshou. 2004. Kinematics characteristics of the Kuqa depression in the Tarim basin[J]. Geological Review, 50(5):476-483(in Chinese with English abstract).

    Google Scholar

    Wu Zhenyun, Yin Hongwei, Wang Xin, Xu Shijin. 2015. The structural features and formation mechanism of exposed salt diapirs in the front of fold-thrust belt, western Kuqa depression[J]. Journal of Nanjing University, (3):612-625(in Chinese with English abstract).

    Google Scholar

    Yin Hongwei, Wang Zhe, Wang Xin, Wu Zhenyun. 2011. Characteristics and mechanics of Cenozoic salt-related structures in Kuqa foreland Basins:Insights from physical modeling and discussion[J]. Geological Journal of China Universities, 17(2):308-317(in Chinese with English abstract).

    Google Scholar

    Yu Yixin, Tang Liangjie, Li Jingchang, Yang Wenjing, Jin Wenzheng, Peng Gengxin, Lei Ganglin, Wan Guimei. 2006. Influence of basement f aults on the development of salt structures in the kuga foreland fold-and-Thrust belt in the Northern Tarim basin[J]. Acta Geologica Sinica, 80(3):330-336(in Chinese with English abstract).

    Google Scholar

    Zebker H A, Goldstein R M. 1986. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research Solid Earth, 91(B5):4993-4999. doi: 10.1029/JB091iB05p04993

    CrossRef Google Scholar

    Zhao Mengjun, Lu Xuesong, Zhuo Qingong, Li Yong, Song Yan, Lei Ganglin, Wang Yuan. 2015. Characteristics and distribution law of hydrocarbon accumulation in Kuqa foreland basin[J]. Acta Petrolei Sinica, 36(4):395-404(in Chinese with English abstract).

    Google Scholar

    Zhao Mengjun, Wang Zhaoming, Zhang Shuichang, Wang Qinghua, Song Yan, Liu Shaobo, Qin Shengfei. 2005. Accumulation and features of natural gas in the Kuqa foreland basin[J]. Acta Geologica Sinica. 79(3):414-422(in Chinese with English abstract). doi: 10.1111/j.1755-6724.2005.tb00907.x

    CrossRef Google Scholar

    陈书平, 汤良杰, 贾承造, 皮学军, 谢会文. 2004.库车坳陷西段盐构造及其与油气的关系[J].石油学报, 25(1):30-34, 39. doi: 10.3321/j.issn:0253-2697.2004.01.006

    CrossRef Google Scholar

    程小岛, 李江海, 程海艳, 邓罡. 2013.库车坳陷西部地表典型盐构造样式及变形特征[J].新疆石油地质, 34(2):189-192.

    Google Scholar

    黄少英, 王月然, 魏红兴. 2009.塔里木盆地库车坳陷盐构造特征及形成演化[J].大地构造与成矿学, 33(1):117-123. doi: 10.3969/j.issn.1001-1552.2009.01.015

    CrossRef Google Scholar

    李丽. 2008.新疆温宿地区的盐丘地质遗迹研究及开发构想[D].长安大学.

    Google Scholar

    李艳友, 漆家福. 2012.库车坳陷克拉苏构造带分层收缩构造变形及其主控因素[J].地质科学, 47(3):607-617 doi: 10.3969/j.issn.0563-5020.2012.03.003

    CrossRef Google Scholar

    能源, 漆家福, 谢会文, 李勇, 雷刚林, 吴超. 2012.塔里木盆地库车坳陷北部边缘构造特征[J].地质通报, 31(9):1510-1519. doi: 10.3969/j.issn.1671-2552.2012.09.014

    CrossRef Google Scholar

    漆家福, 雷刚林, 李明刚, 谷永兴. 2009.库车坳陷克拉苏构造带的结构模型及其形成机制[J].大地构造与成矿学, 33(1):49-56. doi: 10.3969/j.issn.1001-1552.2009.01.007

    CrossRef Google Scholar

    漆家福, 李勇, 吴超, 杨书江. 2013.塔里木盆地库车坳陷收缩构造变形模型若干问题的讨论[J].中国地质, 40(1):106-120.

    Google Scholar

    汤良杰, 余一欣, 杨文静, 彭更新, 雷刚林, 金文正. 2006.库车前陆褶皱冲断带前缘滑脱层内部变形特征[J].中国地质, 33(5):944-951. doi: 10.3969/j.issn.1000-3657.2006.05.002

    CrossRef Google Scholar

    汤良杰, 余一欣, 杨文静, 彭更新, 雷刚林, 马玉杰. 2007.库车坳陷古隆起与盐构造特征及控油气作用[J].地质学报, 81(2):145-150.

    Google Scholar

    唐鹏程, 汪新, 谢会文, 雷刚林, 黄少英. 2010.库车坳陷却勒地区新生代盐构造特征, 演化及变形控制因素[J].地质学报, 84(12):1735-1745.

    Google Scholar

    汪新, 唐鹏程, 谢会文, 雷刚林, 黄少英. 2009.库车坳陷西段新生代盐构造特征及演化[J].大地构造与成矿学, 33(1):57-65. doi: 10.3969/j.issn.1001-1552.2009.01.008

    CrossRef Google Scholar

    王洪浩, 李江海, 李维波, 黄少英, 能源. 2016.库车克拉苏构造带地下盐岩变形特征分析[J].特种油气藏, 23(4):20-24. doi: 10.3969/j.issn.1006-6535.2016.04.004

    CrossRef Google Scholar

    王会萍. 2011.新疆温宿峡谷盐底辟构造与油气聚集[J].西安科技大学学报, 31(1):59-63. doi: 10.3969/j.issn.1672-9315.2011.01.012

    CrossRef Google Scholar

    王招明, 王廷栋, 肖中尧, 徐志明, 李梅, 林峰. 2002.克拉2气田天然气的运移和聚集[J].科学通报, z1:103-108.

    Google Scholar

    邬光辉, 王招明, 刘玉魁, 张宝收. 2004.塔里木盆地库车坳陷盐构造运动学特征[J].地质论评, 50(5):476-483. doi: 10.3321/j.issn:0371-5736.2004.05.005

    CrossRef Google Scholar

    吴珍云, 尹宏伟, 汪新, 徐士进. 2015.库车坳陷西段褶皱-冲断带前缘盐底辟构造特征及形成机制[J].南京大学学报(自然科学), (3):612-625.

    Google Scholar

    尹宏伟, 王哲, 汪新, 吴珍云. 2011.库车前陆盆地新生代盐构造特征及形成机制:物理模拟和讨论[J].高校地质学报, 17(2):308-317. doi: 10.3969/j.issn.1006-7493.2011.02.016

    CrossRef Google Scholar

    余一欣, 汤良杰, 李京昌, 杨文静, 金文正, 彭更新, 雷刚林, 万桂梅. 2006.库车前陆褶皱-冲断带基底断裂对盐构造形成的影响[J].地质学报, 80(3):330-336. doi: 10.3321/j.issn:0001-5717.2006.03.003

    CrossRef Google Scholar

    赵孟军, 鲁雪松, 卓勤功, 李勇, 宋岩, 雷刚林, 王媛. 2015.库车前陆盆地油气成藏特征与分布规律[J].石油学报, 36(4):395-404.

    Google Scholar

    赵孟军, 王招明, 张水昌, 王清华, 宋岩, 柳少波, 秦胜飞. 2005.库车前陆盆地天然气成藏过程及聚集特征[J].地质学报, 79(3):414-422.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(2052) PDF downloads(96) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint