2021 Vol. 48, No. 1
Article Contents

WANG Yan, WANG Denghong, WANG Yonglei, HUANG Fan. 2021. Quantitative research on spatial distribution of antimony deposits in China based on geological big data[J]. Geology in China, 48(1): 52-67. doi: 10.12029/gc20210104
Citation: WANG Yan, WANG Denghong, WANG Yonglei, HUANG Fan. 2021. Quantitative research on spatial distribution of antimony deposits in China based on geological big data[J]. Geology in China, 48(1): 52-67. doi: 10.12029/gc20210104

Quantitative research on spatial distribution of antimony deposits in China based on geological big data

    Fund Project: Supported by CGS Research Fund (No.JYYWF20183704, JYYWF20183701) and the China Geological Survey Program (No. DD20190379, DD20160346)
More Information
  • Author Bio: WANG Yan, female, born in 1983, doctor, associate researcher, engaged in the study of geographic information and deposit geology; E-mail:13534687@qq.com
  • Corresponding author: HUANG Fan, male, born in 1983, associate researcher, engaged in mineral resources research; E-mail:hfhymn@163.com
  • Big data is creating a new approach to geological research, pushing traditional qualitative geological research methods to the level of quantitative research. Antimony ore is the traditional preponderant mineral resources in China, but now it depends on import and becomes our critical metal. Based on the geological big data of antimony deposits, our studies summarize the spatial distribution regularity of antimony deposits, specifically reveal the spatial distribution of antimony in grade-Ⅰ, grade-Ⅱ and grade-Ⅲ minerogenetic belts, and quantitatively analysis the metallogenic density and intensity of antimony deposits in the provinces, cities, counties and Ⅲ level metallogenic belts in China. The research shows that antimony deposits are distributed in all metallogenic domains in China, and the south China metallogenic province is the most important one with more than 59% resources reserves in the whole world. Hunan is the province with the largest amount of antimony ore and the largest mineralization intensity in China. According to the statistics of prefectural cities, Hechi City of Guangxi has the largest number of antimony deposits and Loudi City of Hunan has the largest mineralization intensity. According to county level statistics, Hechi City in Guangxi has the largest number of antimony deposits, while Loudi City in Hunan has the strongest ore-forming intensity, up to 3330 t/km2. The statistics of the metallogenic belts shows that the western part (Ⅲ-78) of southern Yangtze uplift is a metallogenic belt with the largest number of antimony deposits and the largest ore-forming density; while, central Hunan-northcentral Guangxi (Ⅲ-86) is a metallogenic belt with the strongest ore-forming intensity in China. With the development of exploration work, the new addition of antimony resources will be transferred to the depth of crisis mines such as Banxi and Longshan in Hunan province and western areas such as Tibet. The focus of geological prospecting and mining development will also move downward and westward.

  • 加载中
  • Anonymous. 2019. The national geological big data platform was upgraded and put online[R]. The People's Daily, 2019.10.14: A13.

    Google Scholar

    Beijing Institute of Geology for Mineral Resources, China Nonferrous Metal Industry Corporation. 1987. Major Non-ferrous Metal Minerals Abroad[M]. Beijing:Metallurgical Industry Press, 1-602(in Chinese).

    Google Scholar

    Bristol R S, Euliss N H, Booth N L, Burkardt N, Diffendorfer J E, Gesch D B, McCallum B E, Mille D M, Morman S A, Poore B S, Signel R P, Viger R J. 2012. Science strategy for Core Science Systems in the U.S. Geological Survey, 2013-2023[M]. U.S. Geological Survey.

    Google Scholar

    Bruce H. Wilkinsoni, Stephen E. Kesler. 2009. Quantitative identification of metallogenic Epochs and provinces:Application to phanerozoic porphyry copper deposits[J]. Economic Geology, 104(5):607-622. doi: 10.2113/gsecongeo.104.5.607

    CrossRef Google Scholar

    Chang Liheng, Zhu Yueqin, Wang Xinqing, Zhang Xuan, Liu Yujiang, Wu shuo. 2018. Construction of minerals knowledge base in big data environment:A case study of tungsten ore[J]. China Mining Magazine, 27(9):93-108(in Chinese with English abstract).

    Google Scholar

    Chen Jianping, Li Jing, Cui Ning, Yu Pingping. 2015. The construction and application of geological cloud under the big data background[J]. Geological Bulletin of China, 34(7):1260-1265(in Chinese with English abstract).

    Google Scholar

    Chen Jianping, Xiang Jie, Hu Qiao, Yang Wei, Lai Zili, Hu Bin, Wei Wei. 2016. Quantitative geoscience and geological big data development:A review[J]. Acta Geologica Sinica (English Edition), 90(4):1490-1515. doi: 10.1111/1755-6724.12782

    CrossRef Google Scholar

    Ding Jianhua, Yang Yiheng, Deng Fan. 2013. Resource potential and metallogenic prognosis of antimony deposits in China[J]. Geology in China, 40(3):846-858(in Chinese with English abstract).

    Google Scholar

    Deng Zhonghua, Li Zhifang. 2013. The evolution of scientific research paradigm:The fourth paradigm of scientific research in the Era of big data[J]. Information and Documentation Services, 4:19-23(in Chinese with English abstract).

    Google Scholar

    Felice Frankel, Rosalind Reid. 2008. Big data:Distilling meaning from data[J]. Nature, 455(4):30.

    Google Scholar

    Huang Shaofang, Liu Xiaohong. 2016. Thinking about the application of geological big data and geological information development[J]. China Mining Magazine, 25(8):166-170(in Chinese with English abstract).

    Google Scholar

    Li Jingzhe, Zhou Yongzhang, Zhang Jinliang, Wang Shugong, Ding Lin. 2018. Eustatic fluctuations of the neogene K successions of Huizhou Sag:High resolution quantitative analysis and applocation of Bays-Laplace principle with big data[J]. Acta Petrologica Sinica, 34(2):372-382(in Chinese with English abstract).

    Google Scholar

    Linda G S, Belnap J, Goldhaber M, Goldstein A, Haeussler P J, Ingebritsen S E, Jones J W, Plumlee G S, Thieler E R, Thompson R S, Back J M. 2011. Geology for a Changing World 2010-2020 Implementing The U.S Geological Survey Science Strategy:U.S. Geological Survey Circular 1369[M]. U.S. Geological Survey, 2011.

    Google Scholar

    Liu Bo, Wei Liuchun. 2019. Study on metallogenic characteristics of non-ferrous metals mines under the background of large data[J]. World Nonferrous Metals, 5:217-218(in Chinese with English abstract).

    Google Scholar

    Liu Jianming, Ye Jie, He Binbin, Zhang Ruibin, Li Yongbing. 2002. Sedex-type antimony deposits in giant antimony metallogenic belt, South China[J]. Mineral Deposits, 21(S):169-171(in Chinese with English abstract).

    Google Scholar

    Liu Xuejiao, Liu Su, Peng Siyuan. 2018. The present situation and codemand situation analysis of antimony resources in China[J]. Western Resources, 4:201-203(in China).

    Google Scholar

    Luo Jianmin, Wang Xiaowei, Zhang Qi, Song Bingtian, Yang Zhongming, Zhao Yanqing. 2019. Application of geological big data to quantitative target area optimization for regional mineral prospecting in China[J]. Earth Science Frontier, 26(4):76-83(in Chinese with English abstract).

    Google Scholar

    Mei Yanxiong, Pei Rongfu, Yang Defeng, Dai Zixi, Li Jinwen, Xu Congrong, Qu Hongying. 2009. Global metallogenic domains and districts[J]. Mineral Deposits, 28(4):383-389(in Chinese with English abstract).

    Google Scholar

    Mengyi Ren, Jianping Chen, Ke Shao, Sheng Zhang. 2016. Metallogenic information extraction and quantitative prediction process of seafloor massive sulfide resources in the Southwest Indian Ocean[J]. Ore Geology Reviews, 76:108-121. doi: 10.1016/j.oregeorev.2016.01.008

    CrossRef Google Scholar

    Michael H. Stephenson. 2019. The uses and benefits of big data for geological surveys[J]. Acta Geologica Sinica, 93(supp.1):64-65.

    Google Scholar

    Peng Boyang, Chen Youliang, Liu Kun, He Zhongyang, Yuan Wei. 2015. Discussion of antimony distribution feature in Tibet[J]. Acta Mineralogica Sinica, 428-429(in Chinese with English abstract).

    Google Scholar

    Song Miaomiao, Li Zhe, Zhou Bin, Li Chaoling. 2014. Cloud computing model for big geological data processing[J]. Applied Mechanics and Material, 475-476:306-311.

    Google Scholar

    Tan Yongjie, Qu Honggang, Wen Min. 2018. On big data of geological survey[J]. Geomatics world, 25(2):7-11(in Chinese with English abstract).

    Google Scholar

    Tan Yongjie. 2019. Big Data and Geological Big Data[M]. Beijing:Geological Publishing House (in Chinese).

    Google Scholar

    Tony H, Stewant T, Kristin T. 2009. The Fourth Paradigm[M]. Microsoft Press.

    Google Scholar

    USGS. 2019. Mineral Commodity Summaries, 2019: U.S. Geological Survey[R].

    Google Scholar

    Wang Denghong, Liu Xinxing, Liu Lijun. 2015. Characteristics of big geodata and its application to study of minerogenetic regularity and minerogenetic series[J]. Mineral Deposits, 34(6):1143-1154(in Chinese with English abstract).

    Google Scholar

    Wang Denghong, Xu Zhigang, Sheng Jifu, Zhu Mingyu, Xu Jue, Yuan Zhongxin, Bai Ge, Qu Wenjun, Li Huaqin, Chen Zhenghui, Wang Chenghui, Huang Fan, Zhang Changqing, Wang Yonglei, Ying Lijuan, Li Houmin, Gao Lan, Sun Tao, Fu Yong, Li Jiankang, Wu Guang, Tang Juxing, Feng Chengyou, Zhao Zheng, Zhang Daquan. 2014. Progress on the study of regularity of major mineral resources and regional metallogenic regularity in China:A review[J]. Acta Geologica Sinica, 88(12):2176-2191(in Chinese with English abstract).

    Google Scholar

    Wang Huaitao, Luo Jianmin, Wang Jinrong, Du Jun, Song Bingtian, Wang Yuxi, Wang Xiaowei, Zhou Yuqi. 2018. Quantitative classification and metallogenic prognosis of basic-ultrabasic rocks based on big data:Taking the Beishan area as an example[J]. Acta Petrologica Sinica, 34(11):3195-3206(in Chinese with English abstract).

    Google Scholar

    Wang Xiu, Wang Jianping, Liu Chonghao, Zhang Fangfang. 2014. Situation analysis and sustainable development strategy of antimony resources in China.[J]. China Mining Magazine, 23(5):9-13(in Chinese with English abstract).

    Google Scholar

    Wang Yan, Wang Denghong, Sheng Jifu, Huang Fan, Chen Zhenghui. 2018. Quantitative analysis of metallogenic density and intensity of tungsten in China[J]. China Tungsten Industry, 33(1):17-31(in Chinese with English abstract).

    Google Scholar

    Wang Yonglei, Chen Yuchuan, Wang Denghong, Xu Jue, Chen Zhenghui, Liang Ting. 2013. The principal antimony concentration areas in China and their resource potentials[J]. Geology in China, 40(5):1366-1378(in Chinese with English abstract).

    Google Scholar

    Wang Yonglei, Xu Jue, Zhang Changqing, Wang Chenghui, Chen Zhenghui, Huang Fan. 2014. Summary of metallogenic regularities of antimony deposits in China[J]. Acta Geologica Sinica, 88(12):2208-2215(in Chinese with English abstract).

    Google Scholar

    Wu Chonglong, Liu Gang. 2019. Big data and future development of geological science[J]. Geological Bulletin of China, 38(7):1081-1088(in Chinese with English abstract).

    Google Scholar

    Wu Yongliang, Jia Zhijie, Chen Jianping, Zhu Yueqin. 2017. Construction and prediction of prospecting model based on big data intelligence[J]. China Mining Magazine, 26(9):79-84(in Chinese with English abstract).

    Google Scholar

    Xiang Jie, Chen Jianping, Xiao Keyan, Li Shi, Zhang Zhiping, Zhang Ye. 2019. 3D metallogenic prediction based on machine learning:A case study of the Lala copper deposit in Sichuan Province[J]. Geological Bulletin of China, 38(12):2010-2021(in Chinese with English abstract).

    Google Scholar

    Xiao Qiming, Zeng Duren, Jin Fuqiu, Yang Mingyue, Yang Zhifang. 1993. Time-space distribution feature and exploration guide of China's Sb-deposits[J]. Gold, 9-14(in Chinese with English abstract).

    Google Scholar

    Xu Zhigang, Chen Yuchuan, Wang Denghong, Chen Zhenghui, Li Houmin. 2008. The Scheme of the Classification of the Minerogenetic Units in China[M]. Beijing:Geological Publishing House, 1-138(in Chinese with English abstract).

    Google Scholar

    Yu Pingping, Chen Jianping, Cai Fushan, Zheng Xiao, Yu miao, Xu bin. 2015. Research on model driven quantitative prediction and evaluation of mineral resources based on geological big data concept[J]. Geological Bulletin of China, 34(7):1333-1343(in Chinese with English abstract).

    Google Scholar

    Zhang Guolin, Yao Jinyan, Gu Xiangping. 1998. Time and spatial distribution regularities and deposit types of antimony in China[J]. Mineral Resources and Geology, 12(5):306-312(in Chinese with English abstract).

    Google Scholar

    Zhao Gongye. 2018. Analysis on the development direction of antimony deposits in China[J]. China Metal Bulletin, 5:17-18(in Chinese).

    Google Scholar

    Zhao Pengda. 2019. Characteristics and rational utilization of geological big data[J]. Earth Science Frontiers, 26(4):1-5(in Chinese with English abstract).

    Google Scholar

    Zhou Xiaoxi, Deng Fan, Wan Lin, Yang Jun. 2019. Design and implementation of information management platform for big data of uranium[J]. Coal Geology & Exploration, 47(1):6-14(in Chinese with English abstract).

    Google Scholar

    Zhou Yanjing, Li Jianwu, Wang Gaoshang, Xia Ye, Qiu Nanping. 2014. Distribution and development situation of global antimony resources[J]. China Mining Magazine, 23(10):13-16(in Chinese with English abstract).

    Google Scholar

    常力恒, 朱月琴, 汪新庆, 张旋, 刘雨江, 吴硕. 2018.大数据环境下的矿产知识库构建:以钨矿为例[J].中国矿业, 27(9):93-108.

    Google Scholar

    陈建平, 李婧, 崔宁, 于萍萍. 2015.大数据背景下地质云的构建与应用[J].地质通报, 34(7):1260-1265. doi: 10.3969/j.issn.1671-2552.2015.07.002

    CrossRef Google Scholar

    丁建华, 杨毅恒, 邓凡. 2013.中国锑矿资源潜力及成矿预测[J].中国地质, 40(3):846-858. doi: 10.3969/j.issn.1000-3657.2013.03.016

    CrossRef Google Scholar

    邓仲华, 李志芳. 2013.科学研究范式的演化——大数据时代的科学研究第四范式[J].情报资料工作, 4:19-23. doi: 10.3969/j.issn.1002-0314.2013.04.004

    CrossRef Google Scholar

    黄少芳, 刘晓鸿. 2016.地质大数据应用与地质信息化发展的思考[J].中国矿业, 25(8):166-170. doi: 10.3969/j.issn.1004-4051.2016.08.035

    CrossRef Google Scholar

    李景哲, 周永章, 张金亮, 王树功, 丁琳. 2018.惠州凹陷新近系K系列海平面变化定量分析及大数据应用展望[J].岩石学报, 34(2):372-382.

    Google Scholar

    刘波, 韦柳春. 2019.大数据背景下的有色金属矿山成矿特征研究[J].世界有色金属, 5:217-218.

    Google Scholar

    刘建明, 叶杰, 何斌斌, 张瑞斌, 李永兵. 2002.华南巨型锑矿带中的Sedex型锑矿床[J].矿床地质, 21(S):169-171.

    Google Scholar

    刘雪娇, 刘朔, 彭思远. 2018.锑矿资源现状及我国锑矿共需形势分析[J].西部资源, 4:201-203.

    Google Scholar

    罗建民, 王晓伟, 张琪, 宋秉田, 杨忠明, 赵彦庆. 2019.地质大数据方法在区域找矿靶区定量优选中的应用[J].地学前缘, 26(4):76-83.

    Google Scholar

    梅燕雄, 裴荣富, 杨德凤, 戴自希, 李进文, 徐丛荣, 瞿泓滢. 2009.全球成矿域和成矿区带[J].矿床地质, 28(4):383-389. doi: 10.3969/j.issn.0258-7106.2009.04.001

    CrossRef Google Scholar

    彭渤洋, 陈友良, 刘堃, 何忠痒, 袁为. 2015.西藏地区锑矿成矿规律探讨[J].矿物学报, 428-429.

    Google Scholar

    谭永杰, 屈红刚, 文敏. 2018.论地质调查工作大数据[J].地理信息世界. 25(2):7-11. doi: 10.3969/j.issn.1672-1586.2018.02.002

    CrossRef Google Scholar

    谭永杰. 2019.话说大数据与地质大数据[M].北京:地质出版社.

    Google Scholar

    王登红, 刘新星, 刘丽君. 2015.地质大数据的特点及其在成矿规律、成矿系列研究中的应用[J].矿床地质, 34(6):1143-1154.

    Google Scholar

    王登红, 徐志刚, 盛继福, 朱明玉, 徐珏, 袁忠信, 白鸽, 屈文俊, 李华芹, 陈郑辉, 王成辉, 黄凡, 张长青, 王永磊, 应立娟, 李厚民, 高兰, 孙涛, 付勇, 李建康, 武广, 唐菊兴, 丰成友, 赵正, 张大权. 2014.全国重要矿产和区域成矿规律研究进展综述[J].地质学报, 88(12):2176-2191.

    Google Scholar

    王怀涛, 罗建民, 王金荣, 杜君, 宋秉田, 王玉玺, 王晓伟, 周煜祺. 2018.基于大数据的基性-超基性岩定量分类及成矿预测研究——以北山地区为例[J].岩石学报, 34(11):3195-3206.

    Google Scholar

    王修, 王建平, 刘冲昊, 张方方. 2014.我国锑资源形势分析及可持续发展策略[J].中国矿业, 23(5):9-13. doi: 10.3969/j.issn.1004-4051.2014.05.004

    CrossRef Google Scholar

    王岩, 王登红, 盛继福, 黄凡, 陈郑辉. 2018.中国钨矿成矿密度和成矿强度的定量分析[J].中国钨业. 33(1):17-31. doi: 10.3969/j.issn.1009-0622.2018.01.004

    CrossRef Google Scholar

    王永磊, 陈毓川, 王登红, 徐珏, 陈郑辉, 梁婷. 2013.中国锑矿主要矿集区及其资源潜力探讨[J].中国地质, 40(5):1366-1378. doi: 10.3969/j.issn.1000-3657.2013.05.003

    CrossRef Google Scholar

    王永磊, 徐珏, 张长青, 王成辉, 陈郑辉, 黄凡. 2014.中国锑矿成矿规律概要[J].地质学报, 88(12):2208-2215.

    Google Scholar

    吴冲龙, 刘刚. 2019.大数据与地质学的未来发展[J].地质通报, 38(7):1081-1088.

    Google Scholar

    吴永亮, 贾志杰, 陈建平, 朱月琴. 2017.基于大数据智能的找矿模型构建与预测[J].中国矿业, 26(9):79-84.

    Google Scholar

    肖启明, 曾笃仁, 金富秋, 杨明跃, 阳志芳. 1993.中国锑矿床时空分布规律及找矿方向[J].黄金, 9-14.

    Google Scholar

    徐志刚, 陈毓川, 王登红, 陈郑辉, 李厚民. 2008.中国成矿区带划分方案[M].北京:地质出版社, 1-138.

    Google Scholar

    佚名. 2019.国家地质大数据平台升级上线[N].人民日报, 2019年10月14日13版.

    Google Scholar

    于萍萍, 陈建平, 柴福山, 郑啸, 于淼, 徐彬. 2015.基于地质大数据理念的模型驱动矿产资源定量预测[J].地质通报, 34(7):1333-1343. doi: 10.3969/j.issn.1671-2552.2015.07.011

    CrossRef Google Scholar

    向杰, 陈建平, 肖克炎, 李诗, 张志平, 张烨. 2019.基于机器学习的三维矿产定量预测——以四川拉拉铜矿为例[J].地质通报, 38(12):2010-2021.

    Google Scholar

    张国林, 姚金炎, 谷相平. 1998.中国锑矿床类型及时空分布规律[J].矿产与地质. 12(5):306-312.

    Google Scholar

    赵工业. 2018.浅析我国锑业的发展方向[J].中国金属通报, 5:17-18.

    Google Scholar

    赵鹏大. 2019.地质大数据特点及其合理开发利用[J].地学前缘, 26(4):1-5.

    Google Scholar

    中国有色金属工业总公司北京矿产地质研究所. 1987.国外主要有色金属矿产[M].北京:冶金工业出版社, 1-602.

    Google Scholar

    周小希, 邓凡, 万林, 杨君. 2019.铀矿大数据综合管理信息平台设计与实现[J].煤田地质与勘探. 47(1):6-14.

    Google Scholar

    周艳晶, 李建武, 王高尚, 夏烨, 邱南平. 2014.全球锑矿资源分布及开发现状[J].中国矿业, 23(10):13-16. doi: 10.3969/j.issn.1004-4051.2014.10.004

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Tables(1)

Article Metrics

Article views(4001) PDF downloads(267) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint