2020 Vol. 47, No. S2
Article Contents

WANG Fengfeng, DENG Xiaohua, LI Dedong, WEI Xiaofeng, LYU Xiaoqiang, WANG Yanchao, LI Yongsheng. 2020. Database of 1∶50 000 Mineral Geological Map of the Hongshi Map-sheet in Kalatage Copper (-Zinc) Deposit, Hami, Xinjiang[J]. Geology in China, 47(S2): 185-195. doi: 10.12029/gc2020Z215
Citation: WANG Fengfeng, DENG Xiaohua, LI Dedong, WEI Xiaofeng, LYU Xiaoqiang, WANG Yanchao, LI Yongsheng. 2020. Database of 1∶50 000 Mineral Geological Map of the Hongshi Map-sheet in Kalatage Copper (-Zinc) Deposit, Hami, Xinjiang[J]. Geology in China, 47(S2): 185-195. doi: 10.12029/gc2020Z215

Database of 1∶50 000 Mineral Geological Map of the Hongshi Map-sheet in Kalatage Copper (-Zinc) Deposit, Hami, Xinjiang

    Fund Project: jointly funded by the projects entitled “Mineral Survey and Prospecting Prediction of Copper (-Zinc) Deposit Integrated Exploration Area in Hami, Xinjiang” (nos.: 121201004000160901–66, DD20190159–08) initiated by the China Geological Survey and the full-time innovative talent grant of high-level talent introduction project of Xinjiang (XRSH no.: [2019]39)
More Information
  • Author Bio: WANG Fengfeng, male, born in 1994, bachelor’s degree, assistant engineer, engages in mineral geological survey; E-mail: 1263417404@qq.com
  • Corresponding author: DENG Xiaohua, male, born in 1984, doctor’s degree, senior engineer, mainly engages in the research on mineral deposits and prospecting prediction; E-mail: dxh198411@126.com  
  • The database of 1∶50 000 mineral geological map of Hongshi Map-sheet (K46E009008) in Kalatage Copper (-Zinc) Deposit, Hami, Xinjiang (also referred to as the Database) was developed through field geology-specific mapping using the digital mapping system in accordance with the Technical Requirements of Solid Mineral Geological Survey (1∶50 000) (DD2019-02) and other standards and requirements in the geological industry. Meanwhile, the results of previous 1∶200 000 and 1∶50 000 regional geological surveys were fully utilized, and indoor and outdoor mapping/compilation was also carried out during database building. In this database, the suites of the Daliugou Formation of Middle-Upper Ordovician Huangcaopo Group as well as Lower Silurian Hongliuxia and Kalatage formations were reclassified. Moreover, the formation time of intrusive rocks in the map-sheet area was determined as Silurian, Devonian, and Permian, and the evolutionary sequence of magmatic rocks was established. There are eight large, medium and small mineral deposits and ore occurrences in the map-sheet area, the metallogenic epoch of which is concentrated in the Silurian and Carboniferous. The ore-hosted wall rocks are pyroclastic and subvolcanic rocks. The dominant mineral resources in this area are copper, zinc and gold, and their deposit types are mainly VMS type and subvolcanic hydrothermal vein type, which are distributed in the southeastern zone of the map-sheet area. In addition to metallic minerals, there are bentonite deposits with good prospecting potential. With a data size of about 15.1 MB, this database contains the data of five stratigraphic units and three stages of magmatic rocks. These data fully reflect the demonstration results of 1∶50 000 mineral geological survey of this map-sheet and provide references for the research and exploration of mineral resources in the survey area.

  • 加载中
  • [1] Deng X H, Wang J B, Pirajno F, Wang Y W, Li Y C, Li C, Zhou L M, Chen Y J. 2016. Re-Os dating of chalcopyrite from selected mineral deposits in the Kalatag district in the Eastern Tianshan Orogen, China[J]. Ore Geology Reviews, 77: 72−81. doi: 10.1016/j.oregeorev.2016.01.014

    CrossRef Google Scholar

    [2] Deng Y F, Song X Y, Hollings P, Chen L M, Zhou T F, Yuan F, Xie W, Zhang D Y, Zhao B B. 2017. Lithological and geochemical constraints on the magma conduit systems of the Huangshan Ni-Cu sulfide deposit, NW China[J]. Mineralium Deposita, 52(6): 845−862. doi: 10.1007/s00126-016-0703-7

    CrossRef Google Scholar

    [3] Deng X H, Wang J B, Pirajno F, Mao Q G, Long L L. 2020. A review of Cu- dominant mineral systems in the Kalatag district, East Tianshan, China[J]. Ore Geology Reviews, 117: 103284. doi: 10.1016/j.oregeorev.2019.103284

    CrossRef Google Scholar

    [4] Du L, Zhang Y Y, Huang Z Y, Li X P, Yuan C, Wu B, Long X P. 2019. Devonian to carboniferous tectonic evolution of the Kangguer Ocean in the Eastern Tianshan, NW China: Insights from three episodes of granitoids[J]. Lithos, 350–351: 105243. doi: 10.1016/j.lithos.2019.105243

    CrossRef Google Scholar

    [5] Han C M, Xiao W J, Zhao G, Mao J W, Yang J M, Wang Z L, Yan Z, Mao Q G. 2006. Geological characteristics and genesis of the Tuwu porphyry copper deposit, Hami, Xinjiang, Central Asia[J]. Ore Geology Reviews, 29(1): 77−94. doi: 10.1016/j.oregeorev.2005.07.032

    CrossRef Google Scholar

    [6] He X H, Deng X H, Bagas L, Zhang J, Li C, Zhang W D. 2020. Geology, geochronology, and fluid inclusion studies of the Xiaorequanzi VMS Cu–Zn deposit in the East Tianshan Terrane, China[J]. Canadian Journal of Earth Sciences, 57(12): 1392–1410.

    Google Scholar

    [7] Li D F, Chen H Y, Zhang L, Hollings P, Chen Y J, Lu W J, Zheng Y, Wang C M, Fang J, Chen G, Zhou G. 2016. Ore geology and fluid evolution of the giant Caixiashan carbonate-hosted Zn-Pb deposit in the Eastern Tianshan, NW China[J]. Ore Geology Reviews, 72(1): 355−372. doi: 10.1016/j.oregeorev.2015.08.007

    CrossRef Google Scholar

    [8] Li D F, Chen H Y, Sun X M, Fu Y, Liu Q F, Xia X P, Yang Q. 2019. Coupled trace element and SIMS sulfur isotope geochemistry of sedimentary pyrite: Implications on pyrite growth of Caixiashan Pb-Zn deposit[J]. Geoscience Frontiers, 10(6): 2177−2188. doi: 10.1016/j.gsf.2019.05.001

    CrossRef Google Scholar

    [9] Mao Q G, Wang J B, Xiao W J, Windley B F, Schulmann K, Yu M J, Fang T H, Li Y C. 2019. Mineralization of an intra-oceanic arc in an accretionary orogen: Insights from the Early Silurian Honghai volcanogenic massive sulfide Cu-Zn deposit and associated adakites of the Eastern Tianshan (NW China)[J]. Geological Society of America Bulletin, 131(5–6): 803−830. doi: 10.1130/B31986.1

    CrossRef Google Scholar

    [10] Mao Q G, Wang J B, Yu M J, Ao S J, Deng X H, Lü X Q, Li Y C. 2020. Re-Os and U-Pb geochronology for the Xiaorequanzi VMS deposit in the Eastern Tianshan, NW China: Constraints on the timing of mineralization and stratigraphy[J]. Ore Geology Reviews, 122: 103473. doi: 10.1016/j.oregeorev.2020.103473

    CrossRef Google Scholar

    [11] Sengör A M C, Natalin B A, Burtman V S. 1993. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia[J]. Nature, 364(6435): 299−307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [12] Shen P, Pan H D, Zhou T F, Wang J B. 2014. Petrography, geochemistry and geochronology of the host porphyries and associated alteration at the Tuwu Cu deposit, NW China: a case for increased depositional efficiency by reaction with mafic hostrock?[J]. Mineralium Deposita, 49(6): 709−731. doi: 10.1007/s00126-014-0517-4

    CrossRef Google Scholar

    [13] Sun Y, Wang J B, Lv X Q, Yu M J, Li Y C, Mao Q G, Wang Y W, Long L L. 2019. Geochronology, petrogenesis and tectonic implications of the newly discovered Cu-Ni sulfide-mineralized Yueyawan gabbroic complex, Kalatag district, north-western Eastern Tianshan, NW China[J]. Ore Geology Reviews, 109: 598−614. doi: 10.1016/j.oregeorev.2019.05.009

    CrossRef Google Scholar

    [14] Wang Y F, Chen H Y, Xiao B, Han J S, Fang J, Yang J T, Jourdan F. 2018. Overprinting mineralization in the Paleozoic Yandong porphyry copper deposit, Eastern Tianshan, NW China-Evidence from geology, fluid inclusions and geochronology[J]. Ore Geology Reviews, 100: 148−167.

    Google Scholar

    [15] Wu C Z, Xie S W, Gu L X, Samson I M, Yang T, Lei R X, Zhu Z Y, Dang B. 2018. Shear zone-controlled post-magmatic ore formation in the Huangshandong Ni-Cu sulfide deposit, NW China[J]. Ore Geology Reviews, 100: 545−560. doi: 10.1016/j.oregeorev.2017.02.015

    CrossRef Google Scholar

    [16] Xiao B, Chen H Y, Wang Y F, Han J S, Xu C, Yang J T. 2018. Chlorite and epidote chemistry of the Yandong Cu deposit, NW China: metallogenic and exploration implications for Paleozoic porphyry Cu systems in the Eastern Tianshan[J]. Ore Geology Reviews, 100: 168−182. doi: 10.1016/j.oregeorev.2017.03.004

    CrossRef Google Scholar

    [17] Xiao W J, Zhang L C, Qin K Z, Sun S, Li J L. 2004. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science, 304(304): 370−395.

    Google Scholar

    [18] Zhang L C, Xiao W J, Qin K Z, Zhang Q. 2006. The adakite connection of the Tuwu-Yandong copper porphyry belt, eastern Tianshan, NW China: trace element and Sr-Nd-Pb isotope geochemistry[J]. Mineralium Deposita, 41(2): 188−200. doi: 10.1007/s00126-006-0058-6

    CrossRef Google Scholar

    [19] 龙灵利, 王京彬, 王玉往, 邓小华, 毛启贵, 孙燕, 孙志远, 张忠义. 2019. 东天山古弧盆体系成矿规律与成矿模式[J]. 岩石学报, 35(10): 3161−3188. doi: 10.18654/1000-0569/2019.10.13

    CrossRef Google Scholar

    [20] 毛启贵, 方同辉, 王京彬, 王书来, 王宁. 2010. 东天山卡拉塔格早古生代红海块状硫化物矿床精确定年及其地质意义[J]. 岩石学报, 26(10): 3017−3026.

    Google Scholar

    [21] 毛启贵, 王京彬, 方同辉, 于明杰, 孙燕. 2017. 新疆东天山卡拉塔格地区中泥盆世玉带斑岩铜(金)矿发现的地质找矿意义[J]. 地质与勘探, 53(1): 1−11. doi: 10.3969/j.issn.1001-1986.2017.01.001

    CrossRef Google Scholar

    [22] 秦克章, 方同辉, 王书来, 王旭东. 2001. 吐哈盆地南缘古生代“天窗”卡拉塔格铜金矿化区的发现及其成矿潜力[J]. 中国地质, 28(3): 16−23. doi: 10.3969/j.issn.1000-3657.2001.03.004

    CrossRef Google Scholar

    [23] 秦克章, 方同辉, 王书来, 朱宝清, 冯益民, 于海峰, 修群业. 2002. 东天山板块构造分区?演化与成矿地质背景研究[J]. 新疆地质, 20(4): 302−307. doi: 10.3969/j.issn.1000-8845.2002.04.002

    CrossRef Google Scholar

    [24] 唐俊华, 顾连兴, 郑远川, 方同辉, 张遵忠, 高军辉, 王福田, 汪传胜, 张光辉. 2006. 东天山卡拉塔格钠质火山岩岩石学?地球化学及成因[J]. 岩石学报, 22(5): 1150−1166. doi: 10.3321/j.issn:1000-0569.2006.05.008

    CrossRef Google Scholar

    [25] 王丰丰, 邓小华, 李德东, 卫晓锋, 吕晓强, 王燕超. 2020. 新疆红石幅1∶50 000矿产地质图数据库[DB/OL].地质科学数据出版系统.(2020-12-30). DOI:10.35080/data.C.2020.P35.

    Google Scholar

    [26] 王京彬, 王玉往, 和志军. 2006. 东天山大地构造演化的成矿示踪[J]. 中国地质, 33(3): 461−469. doi: 10.3969/j.issn.1000-3657.2006.03.002

    CrossRef Google Scholar

    [1] Deng X H, Wang J B, Pirajno F, Wang Y W, Li Y C, Li C, Zhou L M, Chen Y J. 2016. Re-Os dating of chalcopyrite from selected mineral deposits in the Kalatag district in the Eastern Tianshan Orogen, China[J]. Ore Geology Reviews, 77: 72−81. doi: 10.1016/j.oregeorev.2016.01.014

    CrossRef Google Scholar

    [2] Deng Y F, Song X Y, Hollings P, Chen L M, Zhou T F, Yuan F, Xie W, Zhang D Y, Zhao B B. 2017. Lithological and geochemical constraints on the magma conduit systems of the Huangshan Ni-Cu sulfide deposit, NW China[J]. Mineralium Deposita, 52(6): 845−862. doi: 10.1007/s00126-016-0703-7

    CrossRef Google Scholar

    [3] Deng X H, Wang J B, Pirajno F, Mao Q G, Long L L. 2020. A review of Cu-dominant mineral systems in the Kalatag district, East Tianshan, China[J]. Ore Geology Reviews, 117: 103284. doi: 10.1016/j.oregeorev.2019.103284

    CrossRef Google Scholar

    [4] Du L, Zhang Y Y, Huang Z Y, Li X P, Yuan C, Wu B, Long X P. 2019. Devonian to carboniferous tectonic evolution of the Kangguer Ocean in the Eastern Tianshan, NW China: Insights from three episodes of granitoids[J]. Lithos, 350-351: 105243. doi: 10.1016/j.lithos.2019.105243

    CrossRef Google Scholar

    [5] Han C M, Xiao W J, Zhao G, Mao J W, Yang J M, Wang Z L, Yan Z, Mao Q G. 2006. Geological characteristics and genesis of the Tuwu porphyry copper deposit, Hami, Xinjiang, Central Asia[J]. Ore Geology Reviews, 29(1): 77−94. doi: 10.1016/j.oregeorev.2005.07.032

    CrossRef Google Scholar

    [6] He X H, Deng X H, Bagas L, Zhang J, Li C, Zhang W D. 2020. Geology, geochronology, and fluid inclusion studies of the Xiaorequanzi VMS Cu-Zn deposit in the East Tianshan Terrane, China[J]. Canadian Journal of Earth Sciences, 57(12): 1392−1410. doi: 10.1139/cjes-2019-0067

    CrossRef Google Scholar

    [7] Li D F, Chen H Y, Zhang L, Hollings P, Chen Y J, Lu W J, Zheng Y, Wang C M, Fang J, Chen G, Zhou G. 2016. Ore geology and fluid evolution of the giant Caixiashan carbonate-hosted Zn-Pb deposit in the Eastern Tianshan, NW China[J]. Ore Geology Reviews, 72(1): 355−372.

    Google Scholar

    [8] Li D F, Chen H Y, Sun X M, Fu Y, Liu Q F, Xia X P, Yang Q. 2019. Coupled trace element and SIMS sulfur isotope geochemistry of sedimentary pyrite: Implications on pyrite growth of Caixiashan Pb-Zn deposit[J]. Geoscience Frontiers, 10(6): 2177−2188. doi: 10.1016/j.gsf.2019.05.001

    CrossRef Google Scholar

    [9] Long Lingli, Wang Jingbin, Wang Yuwang, Deng Xiaohua, Mao Qigui, Sun Yan, Sun Zhiyuan, Zhang Zhongyi. 2019. Metallogenic regularity and metallogenic model of the paleo arc-basin system in eastern Tianshan[J]. Acta Petrologica Sinica, 35(10): 3161−3188 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.13

    CrossRef Google Scholar

    [10] Mao Qigui, Fang Tonghui, Wang Jingbin, Wang Shulai, Wang Ning. 2010. Geochronology studies of the Early Paleozoic Honghai massive sulfide deposits and its geological significance in Kalatage area, eastern Tianshan Mountain[J]. Acta Petrologica Sinica, 26(10): 3017−3026 (in Chinese with English abstract).

    Google Scholar

    [11] Mao Qigui, Wang Jingbin, Fang Tonghui, Yu Mingjie, Sun Yan. 2017. Discovery of the middle Devonian Yudai porphyric Cu (Au) deposit in the Kalatage area of eastern Tianshan Mountain, Xinjiang and and its geological prospecting significance[J]. Geology and Exploration, 53(1): 1−11 (in Chinese with English abstract).

    Google Scholar

    [12] Mao Q G, Wang J B, Xiao W J, Windley B F, Schulmann K, Yu M J, Fang T H, Li Y C. 2019. Mineralization of an intra-oceanic arc in an accretionary orogen: Insights from the Early Silurian Honghai volcanogenic massive sulfide Cu-Zn deposit and associated adakites of the Eastern Tianshan (NW China)[J]. Geological Society of America Bulletin, 131(5-6): 803−830. doi: 10.1130/B31986.1

    CrossRef Google Scholar

    [13] Mao Q G, Wang J B, Yu M J, Ao S J, Deng X H, Lü X Q, Li Y C. 2020. Re-Os and U-Pb geochronology for the Xiaorequanzi VMS deposit in the Eastern Tianshan, NW China: Constraints on the timing of mineralization and stratigraphy[J]. Ore Geology Reviews, 122: 103473. doi: 10.1016/j.oregeorev.2020.103473

    CrossRef Google Scholar

    [14] Qin Kezhang, Fang Tonghui, Wang Shulai, Wang Xudong. 2001. Discovery of the Kalatage Cu-Au mineralized district and its prospecting potentiality at the south margin of the Tu-Ha basin[J]. Geology in China, 28(3): 16−23 (in Chinese with English abstract).

    Google Scholar

    [15] Qin Kezhang, Fang Tonghui, Wang Shulai, Zhu Baoqing, Feng Yimin, Yu Haifeng, Xiu Qunye. 2002. Plate tectonics division, evolution and metallogenic settings in eastern Tianshan mountains, NW China[J]. Xinjiang Geology, 20(4): 302−308 (in Chinese with English abstract

    Google Scholar

    [16] Sengör A M C, Natalin B A, Burtman V S. 1993. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia[J]. Nature, 364(6435): 299−307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [17] Shen P, Pan H D, Zhou T F, Wang J B. 2014. Petrography, geochemistry and geochronology of the host porphyries and associated alteration at the Tuwu Cu deposit, NW China: a case for increased depositional efficiency by reaction with mafic hostrock?[J]. Mineralium Deposita, 49(6): 709−731. doi: 10.1007/s00126-014-0517-4

    CrossRef Google Scholar

    [18] Sun Y, Wang J B, Lv X Q, Yu M J, Li Y C, Mao Q G, Wang Y W, Long L L. 2019. Geochronology, petrogenesis and tectonic implications of the newly discovered Cu-Ni sulfide-mineralized Yueyawan gabbroic complex, Kalatag district, north- western Eastern Tianshan, NW China[J]. Ore Geology Reviews, 109: 598−614. doi: 10.1016/j.oregeorev.2019.05.009

    CrossRef Google Scholar

    [19] Tang Junhua, Gu Lianxing, Zheng Yuanchuan, Fang Tonghui, Zhang Zunzhong, Gao Junhui, Wang Futian, Wang Chuansheng, Zhang Guanghui. 2006. Petrology, geochemistry and genesis of the Na-rich volcanic rocks of the Kalatag area, eastern Tianshan[J]. Acta Petrologica Sinica, 22(5): 1150−1166 (in Chinese with English abstract).

    Google Scholar

    [20] Wang Fengfeng, Deng Xiaohua, Li Dedong, Wei Xiaofeng, Lyu Xiaoqiang, Wang Yanchao. 2020. Database of 1∶50 000 Mineral Geological Map of the Hongshi Map-sheet in Xinjiang[DB/OL]. Geoscientific Data & Discovery Publishing System. (2020-12-30). DOI: 10.35080/data.C.2020.P35.

    Google Scholar

    [21] Wang Jingbin, Wang Yuwang, He Zhijun. 2006. Ore deposits as a guide to the tectonic evolution in the east Tianshan mountains, NW China[J]. Geology in China, 33(3): 461−469 (in Chinese with English abstract).

    Google Scholar

    [22] Wang Y F, Chen H Y, Xiao B, Han J S, Fang J, Yang J T, Jourdan F. 2018. Overprinting mineralization in the Paleozoic Yandong porphyry copper deposit, Eastern Tianshan, NW China-Evidence from geology, fluid inclusions and geochronology[J]. Ore Geology Reviews, 100: 148−167. doi: 10.1016/j.oregeorev.2017.04.013

    CrossRef Google Scholar

    [23] Wu C Z, Xie S W, Gu L X, Samson I M, Yang T, Lei R X, Zhu Z Y, Dang B. 2018. Shear zone-controlled post-magmatic ore formation in the Huangshandong Ni-Cu sulfide deposit, NW China[J]. Ore Geology Reviews, 100: 545−560. doi: 10.1016/j.oregeorev.2017.02.015

    CrossRef Google Scholar

    [24] Xiao B, Chen H Y, Wang Y F, Han J S, Xu C, Yang J T. 2018. Chlorite and epidote chemistry of the Yandong Cu deposit, NW China: metallogenic and exploration implications for Paleozoic porphyry Cu systems in the Eastern Tianshan[J]. Ore Geology Reviews, 100: 168−182. doi: 10.1016/j.oregeorev.2017.03.004

    CrossRef Google Scholar

    [25] Xiao W J, Zhang L C, Qin K Z, Sun S, Li J L. 2004. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science, 304: 370−395. doi: 10.2475/ajs.304.4.370

    CrossRef Google Scholar

    [26] Zhang L C, Xiao W J, Qin K Z, Zhang Q. 2006. The adakite connection of the Tuwu-Yandong copper porphyry belt, eastern Tianshan, NW China: trace element and Sr-Nd-Pb isotope geochemistry[J]. Mineralium Deposita, 41(2): 188−200. doi: 10.1007/s00126-006-0058-6

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(10)

Article Metrics

Article views(2311) PDF downloads(90) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint