2020 Vol. 47, No. S1
Article Contents

YANG Jiyuan, ZHANG Jiahui, WANG Huichu, TIAN Hui, REN Yunwei, BAI Chundong, LI Jie, ZHU Benhong, KANG Chenkai, ZHOU Jing. 2020. 1∶50 000 Geological Map Database of the Dongliumafang Map-sheet at the Junction of Shanxi, Hebei and Inner Mongolia[J]. Geology in China, 47(S1): 146-161. doi: 10.12029/gc2020Z114
Citation: YANG Jiyuan, ZHANG Jiahui, WANG Huichu, TIAN Hui, REN Yunwei, BAI Chundong, LI Jie, ZHU Benhong, KANG Chenkai, ZHOU Jing. 2020. 1∶50 000 Geological Map Database of the Dongliumafang Map-sheet at the Junction of Shanxi, Hebei and Inner Mongolia[J]. Geology in China, 47(S1): 146-161. doi: 10.12029/gc2020Z114

1∶50 000 Geological Map Database of the Dongliumafang Map-sheet at the Junction of Shanxi, Hebei and Inner Mongolia

    Fund Project: Jointly funded by China Geological Survey Project “Geological and Mineral Survey in Tianzhen and Fengning Areas of Yanshan—Taihang Metallogenic Belt” (DD20160042), “Regional Geological Survey in Huai’an in Hebei—Liangcheng in Inner Mongolia Area” (DD2019003), “2019—2020 Geological Survey Standardardization and Standard revision” (DD20190472) and National Natural Foundation of China Project “Origin of the MORB-type High-pressure Mafic Granulites Associated with the Khondalite Series in Tianzhen Area” (41902196)
More Information
  • Author Bio: YANG Jiyuan, male, born in 1990, assistant engineer, engages in geological and mineral survey; E-mail: yangjiyuanda@163.com
  • Corresponding author: ZHANG Jiahui, male, born in 1986, assistant researcher, engages in early Precambrian geology and regional geological survey; E-mail: zhangjiahuijd@163.com  
  • The Dongliumafang Map-sheet (K50E023002) is located in the Hengshan-Sanggan high-pressure granulite belt at the junction of Shanxi, Hebei and Inner Mongolia. The 1∶50 000 Geological Map Spatial Database of Dongliumafang Map-sheet was compiled in accordance with the Technical Requirement for Regional Geological Survey (1∶50 000) (DD 2019−01) newly issued by China Geological Survey and other relevant uniform standards and requirements, by using modern mapping technology for metamorphic rock area and digital mapping acquisition system. The map-sheet gave a detailed definition of the strata, magmatic rocks, metamorphism and tectonic structure in the Neoarchean-Cenozoic era in the area: four tectonic-lithostratigraphic units of the Neoarchean Sanggan Group and the Paleoproterozoic Jining Group, and 13 Mesoproterozoic-Cenozoic stratigraphic units have been established; the evolutionary series of Neoarchean-Paleoproterozoic and Mesoproterozoic-Mesozoic (metamorphic) intrusive rocks have been established; the structural deformation style of three periods of Early Precambrian, and the fracture structure in the Mesozoic-Cenozoic Indosinian, Yanshanian and Himalayan periods have been identified; two types of high-pressure basic granulites with different protolith properties have been identified, with metamorphic periods divided. The map-sheet uses special line segments and patterns to express the plastic rheological characteristics and structural deformation style of deep crustal rocks in the ancient orogenic belt, and has reconstructed the evolution process of Paleoproterozoic orogenic tectonics. The database adopts a MapGIS format and comprises 1∶50 000 geological map library, map appearance and corner maps, and contains nine data pieces of zircon U-Pb age, with a data volume of 53.8 MB. The 1∶50 000 Geological Map of Dongliumafang Map-sheet has innovated the mapping techniques for high-grade metamorphic areas as well as map expression methods, setting an example for mapping work on high-grade metamorphic rock areas.

  • 加载中
  • [1] Guo JH, O'Brien PJ, Zhai MG. 2002. High-pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance[J]. Journal of Metamorphic Geology, 20(8): 741−756. doi: 10.1046/j.1525-1314.2002.00401.x

    CrossRef Google Scholar

    [2] Guo JH, Sun M, Chen FK, Zhai MG. 2005. Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-pressure Granulites in the Sanggan Area, North China Craton: Timing of Paleoproterozoic Continental Collision[J]. Journal of Asian Earth Sciences, 24: 629−642. doi: 10.1016/j.jseaes.2004.01.017

    CrossRef Google Scholar

    [3] Liao Y, Wei CJ. 2019. Ultrahigh-temperature mafic granulite in the Huai’an Complex, North China Craton: Evidence from phase equilibria modelling and amphibole thermometers[J]. Gondwana Research, 76: 62−76. doi: 10.1016/j.gr.2019.05.010

    CrossRef Google Scholar

    [4] Liu DY, Nutman AP, Compston W, Wu JS, Shen QH. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton[J]. Geology, 20: 339−342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2

    CrossRef Google Scholar

    [5] Liu DY, Wilde SA, Wan YA, Wu JS, Zhou HY, Dong CY, Yin XY. 2008. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton[J]. American Journal Science, 308: 200−231. doi: 10.2475/03.2008.02

    CrossRef Google Scholar

    [6] Wan YS, Liu DY, Song B, Wu JS, Yang CH, Zhang ZQ, Geng YS. 2005. Geochemical and Nd isotopic compositions of 3. 8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance[J]. Journal of Asian Earth Science, 24: 563−575. doi: 10.1016/j.jseaes.2004.02.009

    CrossRef Google Scholar

    [7] Wan YS, Liu DY, Nutman A, Zhou HY, Dong CY, Yin XY, Ma MZ. 2012. Multiple 3. 8-3. 1 Ga tectono-magmatic events in a newly discovered area of ancient rocks (the Shengousi Complex), Anshan, North China Craton[J]. Journal of Asian Earth Sciences, 54–55: 18−30. doi: 10.1016/j.jseaes.2012.03.007

    CrossRef Google Scholar

    [8] Wang YF, Li XH, Jin W, Zhang JH. 2015. Eoarchean ultra-depleted mantle domains inferred from ca. 3.81 Ga Anshan trondhjemitic gneisses, North China Craton[J]. Precambrian Research, 263: 88−107. doi: 10.1016/j.precamres.2015.03.005

    CrossRef Google Scholar

    [9] Wang LJ, Guo JH, Peng P, Liu F, Windley BF. 2015. Lithological Units at the Boundary Zone Between the Jining and Huai’an Complexes (Central-Northern Margin of the North China Craton): a Paleoproterozoic Tectonic Mélange?[J]. Lithos, 227: 205−224. doi: 10.1016/j.lithos.2015.04.006

    CrossRef Google Scholar

    [10] Wei CJ, Qian JH, Zhou XW. 2014. Paleoproterozoic crustal evolution of the Hengshan-Wutai-Fuping region, North China Craton[J]. Geoscience Frontiers, 5(4): 485−497. doi: 10.1016/j.gsf.2014.02.008

    CrossRef Google Scholar

    [11] Zhao GC, Sun M, Wilde SA, Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 136(2): 177−202. doi: 10.1016/j.precamres.2004.10.002

    CrossRef Google Scholar

    [12] Zhao GC, Wilde SA, Sun M, Guo JH, Kröner A, Li SZ, Li XP, Zhang J. 2008. SHRIMP U-Pb zircon geochronology of the Huai'an Complex: Constraints on Late Archean to paleoproterozoic magmatic and metamorphic events in the trans-North China Orogen[J]. American Journal of Science, 308(3): 270−303. doi: 10.2475/03.2008.04

    CrossRef Google Scholar

    [13] Zhao GC, Wilde SA, Guo JH, Cawood PA, Sun M, Li XP. 2010. Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton[J]. Precambrian Research, 177: 266−276. doi: 10.1016/j.precamres.2009.12.007

    CrossRef Google Scholar

    [14] Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH, Yin CQ. 2012. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrain Research, 222: 55−76.

    Google Scholar

    [15] Zhang HF, Wang HZ, Santosh M, Zhai MG. 2016. Zircon U-Pb ages of Paleoproterozoic Mafic Granulites from the Huai’an Terrane, North China Craton (NCC): Implications for Timing of Cratonization[J]. Precambrian Research, 272: 244−263. doi: 10.1016/j.precamres.2015.11.004

    CrossRef Google Scholar

    [16] 耿元生, 沈其韩, 任留东. 2010. 华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制[J]. 岩石学报, 26(7): 1945−1966.

    Google Scholar

    [17] 刘宇光, 郭敬辉. 1993. 冀西北地区早前寒武纪地质. 赵宗溥著. 中朝准地台前寒武纪地壳演化[M]. 北京: 科学出版社, 284–330.

    Google Scholar

    [18] 田辉, 张家辉, 王惠初, 任云伟, 王权. 2019. 怀安杂岩中含BIF岩石组合的形成时代及产出构造背景[J]. 地球科学, 44(1): 37−51.

    Google Scholar

    [19] 万渝生, 董春艳, 任鹏, 白文倩, 颉颃强, 刘守偈, 谢世稳, 刘敦一. 2017. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化: 综述[J]. 岩石学报, 33(5): 1405−1419.

    Google Scholar

    [20] 王惠初, 于海峰, 苗培森, 赵凤清, 相振群. 2011. 前寒武纪地质学研究进展与前景[J]. 地质调查与研究, 34(4): 241−252, 312. doi: 10.3969/j.issn.1672-4135.2011.04.001

    CrossRef Google Scholar

    [21] 翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解[J]. 中国科学: 地球科学, 30(S1): 129−137.

    Google Scholar

    [22] 翟明国. 2009. 华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题[J]. 岩石学报, 25(8): 1753−1771.

    Google Scholar

    [23] 翟明国. 2011. 克拉通化与华北陆块的形成[J]. 中国科学: 地球科学, 41(8): 1037−1046.

    Google Scholar

    [24] 翟明国, 胡波, 彭彭, 赵太平. 2014. 华北中—新元古代的岩浆作用与多期裂谷事件[J]. 地学前缘, 21(1): 100−119.

    Google Scholar

    [25] 张家辉, 金巍, 郑培玺, 王亚飞, 李斌, 蔡丽斌, 王庆龙. 2013. 鞍山地区营城子古太古代片麻岩杂岩的识别与锆石U-Pb年代学研究[J]. 岩石学报, 29(2): 399−413.

    Google Scholar

    [26] 张家辉, 金巍, 王亚飞, 李斌, 蔡丽斌. 2018. 鞍山地区始-古太古代花岗质地壳的形成及演化——深沟寺杂岩的岩石学、年代学及地球化学证据[J]. 地质学报, 92(5): 887−907. doi: 10.3969/j.issn.0001-5717.2018.05.001

    CrossRef Google Scholar

    [27] 张家辉, 田辉, 王惠初, 施建荣, 任云伟, 初航, 常青松, 钟焱, 张阔, 相振群. 2019a. 华北克拉通怀安杂岩中早前寒武纪两期变质表壳岩的重新厘定: 岩石学及锆石U-Pb年代学证据[J]. 地球科学, 44(1): 1−22.

    Google Scholar

    [28] 张家辉, 王惠初, 田辉, 任云伟, 施建荣, 常青松, 相振群, 初航, 王家松. 2019b. 华北克拉通怀安杂岩新太古代和古元古代富铝变质表壳岩的地球化学特征及构造意义[J]. 地质学报, 93(7): 1618−1638.

    Google Scholar

    [29] 张家辉, 王惠初, 田辉, 任云伟, 常青松, 施建荣, 相振群. 2019c. 华北克拉通怀安杂岩中“MORB”型高压基性麻粒岩的成因及其构造意义[J]. 岩石学报, 35(11): 3506−3528.

    Google Scholar

    [30] 张家辉, 王惠初, 田辉, 任云伟, 杨济远. 2020. 晋冀蒙交界东六马坊幅 1∶50 000 地质图数据库[DB/OL].地质科学数据出版系统. (2020-06-30).  DOI:10.35080/data.A.2020.P14.

    Google Scholar

    [1] Geng Yuansheng, Shen Qihan, Ren Liudong. 2010. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton[J]. Acta Petrologica Sinica, 26(7): 1945−1966 (in Chinese with English abstract).

    Google Scholar

    [2] Guo JH, O'Brien PJ, Zhai MG. 2002. High-pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance[J]. Journal of Metamorphic Geology, 20(8): 741−756. doi: 10.1046/j.1525-1314.2002.00401.x

    CrossRef Google Scholar

    [3] Guo JH, Sun M, Chen FK, Zhai MG. 2005. Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-pressure Granulites in the Sanggan Area, North China Craton: Timing of Paleoproterozoic Continental Collision[J]. Journal of Asian Earth Sciences, 24: 629−642. doi: 10.1016/j.jseaes.2004.01.017

    CrossRef Google Scholar

    [4] Liao Y, Wei CJ. 2019. Ultrahigh-temperature mafic granulite in the Huai’an Complex, North China Craton: Evidence from phase equilibria modelling and amphibole thermometers[J]. Gondwana Research, 76: 62−76. doi: 10.1016/j.gr.2019.05.010

    CrossRef Google Scholar

    [5] Liu DY, Nutman AP, Compston W, Wu JS, Shen QH. 1992. Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton[J]. Geology, 20: 339−342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2

    CrossRef Google Scholar

    [6] Liu DY, Wilde SA, Wan YA, Wu JS, Zhou HY, Dong CY, Yin XY. 2008. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton[J]. American Journal Science, 308: 200−231. doi: 10.2475/03.2008.02

    CrossRef Google Scholar

    [7] Liu Yuguang, Guo Jinghui. 1993. Precambrian Geology in Northwest Hebei Province. Zhao Zongpu (eds).The Precambrian crustal evolution of the Sino Korean paraplatform [M]. Beijing: Science Press, 284 - 330(in Chinese).

    Google Scholar

    [8] Tian Hui, Zhang Jiahui, Wang Huichu, Ren Yunwei, Wang Quan. 2019. Formation age and tectonic setting of iron-bearing formation in Huai’an complex, North China Craton[J]. Earth Science, 44(1): 37−51 (in Chinese with English abstract).

    Google Scholar

    [9] Wan YS, Liu DY, Song B, Wu JS, Yang CH, Zhang ZQ, Geng YS. 2005. Geochemical and Nd isotopic compositions of 3. 8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance[J]. Journal of Asian Earth Science, 24: 563−575. doi: 10.1016/j.jseaes.2004.02.009

    CrossRef Google Scholar

    [10] Wan Yusheng, Dong Chunyan, Ren Peng, Bai Wenqian, Xie Hangqiang, Liu Shujie, Xie Shiwen, Liu Dunyi. 2017. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton: A synthesis[J]. Acta Petrologica Sinica, 33(5): 1405−1419 (in Chinese with English abstract).

    Google Scholar

    [11] Wan YS, Liu DY, Nutman A, Zhou HY, Dong CY, Yin XY, Ma MZ. 2012. Multiple 3. 8-3. 1 Ga tectono-magmatic events in a newly discovered area of ancient rocks (the Shengousi Complex), Anshan, North China Craton[J]. Journal of Asian Earth Sciences, 54−55: 18−30. doi: 10.1016/j.jseaes.2012.03.007

    CrossRef Google Scholar

    [12] Wang Huichu, Yu Haifeng, Miao Peisen, Zhao Fengqing, Xiang Zhenqun. 2011. Precambrian research in China: New advances and perspectives[J]. Geological Survey and Research, 34(4): 241−252, 312 (in Chinese with English abstract).

    Google Scholar

    [13] Wang LJ, Guo JH, Peng P, Liu F, Windley BF. 2015. Lithological Units at the Boundary Zone Between the Jining and Huai’an Complexes (Central-Northern Margin of the North China Craton): a Paleoproterozoic Tectonic Mélange?[J]. Lithos, 227: 205−224. doi: 10.1016/j.lithos.2015.04.006

    CrossRef Google Scholar

    [14] Wang YF, Li XH, Jin W, Zhang JH. 2015. Eoarchean ultra-depleted mantle domains inferred from ca. 3. 81 Ga Anshan trondhjemitic gneisses, North China Craton[J]. Precambrian Research, 263: 88−107. doi: 10.1016/j.precamres.2015.03.005

    CrossRef Google Scholar

    [15] Wei CJ, Qian JH, Zhou XW. 2014. Paleoproterozoic crustal evolution of the Hengshan-Wutai-Fuping region, North China Craton[J]. Geoscience Frontiers, 5(4): 485−497. doi: 10.1016/j.gsf.2014.02.008

    CrossRef Google Scholar

    [16] Zhai Mingguo, Bian Aiguo, Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic[J]. Science in China Series D: Earth Sciences, 43(S1): 219−232. doi: 10.1007/BF02911947

    CrossRef Google Scholar

    [17] Zhai Mingguo. 2009. Two kinds of granulites (HT-HP and HT-UHT) in North China Craton: Their genetic relation and geotectonic implications[J]. Acta Petrologica Sinica, 25(8): 1753−1771 (in Chinese with English abstract).

    Google Scholar

    [18] Zhai Mingguo. 2011. Cratonization and the Ancient North China Continent: A summary and review[J]. Science China Earth Sciences, 54(8): 1110−1120. doi: 10.1007/s11430-011-4250-x

    CrossRef Google Scholar

    [19] Zhai Mingguo, Hu Bo, Peng Peng, Zhao Taiping. 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC[J]. Earth Science Frontiers, 21(1): 100−119 (in Chinese with English abstract).

    Google Scholar

    [20] Zhao GC, Sun M, Wilde SA, Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 136(2): 177−202. doi: 10.1016/j.precamres.2004.10.002

    CrossRef Google Scholar

    [21] Zhao GC, Wilde SA, Sun M, Guo JH, Kröner A, Li SZ, Li XP, Zhang J. 2008. SHRIMP U-Pb zircon geochronology of the Huai'an Complex: Constraints on Late Archean to paleoproterozoic magmatic and metamorphic events in the trans-North China Orogen[J]. American Journal of Science, 308(3): 270−303. doi: 10.2475/03.2008.04

    CrossRef Google Scholar

    [22] Zhao GC, Wilde SA, Guo JH, Cawood PA, Sun M, Li XP. 2010. Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton[J]. Precambrian Research, 177: 266−276. doi: 10.1016/j.precamres.2009.12.007

    CrossRef Google Scholar

    [23] Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH, Yin CQ. 2012. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrain Research, 222: 55−76.

    Google Scholar

    [24] Zhang HF, Wang HZ, Santosh M, Zhai MG. 2016. Zircon U-Pb ages of Paleoproterozoic Mafic Granulites from the Huai’an Terrane, North China Craton (NCC): Implications for Timing of Cratonization[J]. Precambrian Research, 272: 244−263. doi: 10.1016/j.precamres.2015.11.004

    CrossRef Google Scholar

    [25] Zhang Jiahui, Jin Wei, Zheng Peixi, Wang Yafei, Li Bin, Cai Libing, Wang Qinglong. 2013. Identification and zircon U-Pb geochronology of the Yingchengzi Paleoarchean gneiss complex, Anshan area[J]. Acta Petrologica Sinica, 29(2): 399−413 (in Chinese with English abstract).

    Google Scholar

    [26] Zhang Jiahui, Jin Wei, Wang Yafei, Li Bin, Cai Libin. 2018. Formation and evolution of Eo-Paleoarchean granitic crust in the Anshan Area: Evidence from petrology, geochronology and geochemistry of the Shengousi complex[J]. Acta Geologica Sinica, 92(5): 887−907 (in Chinese with English abstract).

    Google Scholar

    [27] Zhang Jiahui, Tian Hui, Wang Huichu, Shi Jianrong, Ren Yunwei, Chu Hang, Chang Qingsong, Zhong Yan, Zhang Kuo, Xiang Zhenqun. 2019a. Re-definition of the two-stage early-Precambrian meta-supracrustal rocks in the Huai'an Complex, North China Craton: Evidences from petrology and zircon U-Pb geochronology[J]. Earth Science, 44(1): 1−22 (in Chinese with English abstract).

    Google Scholar

    [28] Zhang Jiahui, Wang Huichu, Tian Hui, Ren Yunwei, Shi Jianrong, Chang Qingsong, Xiang Zhenqun, Chu Hang, Wang Jiasong. 2019b. Geochemistry of the Neoarchean and Paleoproterozoic Al-rich metamorphic supracrustal rocks in the Huai’an complex, North China craton and its tectonic significances[J]. Acta Geologica Sinica, 93(7): 1618−1638 (in Chinese with English abstract).

    Google Scholar

    [29] Zhang Jiahui, Wang Huichu, Tian Hui, Ren Yunwei, Chang Qingsong, Shi Jianrong, Xiang Zhenqun. 2019c. Petrogenesis of the MORB type high-pressure mafic granulite from the Huai'an complex in North China Craton and its tectonic implications[J]. Acta Petrologica Sinica, 35(11): 3506−3528 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.16

    CrossRef Google Scholar

    [30] Zhang Jiahui, Wang Huichu, Tian Hui, Ren Yunwei, Yang Jiyuan. 2020. 1∶50 000 Geological Map Database of the Dongliumafang Map-sheet at the Junction of Shanxi, Hebei and Inner Mongolia[DB/OL]. Geoscientific Data & Discovery Publishing System. (2020-06-30). DOI: 10.35080/data.A.2020.P14.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(26)

Article Metrics

Article views(2335) PDF downloads(114) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint