2020 Vol. 47, No. S1
Article Contents

WANG Wenlong, LIU Yang, ZHAO Ligang, TENG Fei, YANG Zeli. 2020. Dataset of Chronology, Geochemistry and Zircon Hf Isotopes of Permian Magmatites in the Middle Section of the Northern Margin of North China Craton[J]. Geology in China, 47(S1): 32-39. doi: 10.12029/gc2020Z104
Citation: WANG Wenlong, LIU Yang, ZHAO Ligang, TENG Fei, YANG Zeli. 2020. Dataset of Chronology, Geochemistry and Zircon Hf Isotopes of Permian Magmatites in the Middle Section of the Northern Margin of North China Craton[J]. Geology in China, 47(S1): 32-39. doi: 10.12029/gc2020Z104

Dataset of Chronology, Geochemistry and Zircon Hf Isotopes of Permian Magmatites in the Middle Section of the Northern Margin of North China Craton

    Fund Project: The geological survey projects (DD20160041, DD20190038) initiated by China Geological Survey
More Information
  • Author Bio: WANG Wenlong, male, born in 1988, master degree, majored in structural geology; E-mail: wenlon0417@163.com
  • Corresponding author: LIU Yang, male, born in 1986, master degree, majored in structural geology; E-mail: 125313766@qq.com  
  • The middle section of the northern margin of the North China Craton (also referred to as the study area) is situated in the junction between the North China Craton and Bainaimiao arc. With the Chifeng–Bayan Obo fault as the boundary, its southern and northern parts fall within different geotectonic units and have different basement features. Permian magmatites are widely distributed across the northern margin of the North China Craton and are exposed on both sides of the fault zone. Their provenance consists of very complex components, constricting fuller understanding of the petrogenesis and tectonic background of the magmatites. The Chifeng–Bayan Obo fault is covered by two geological survey projects, one involves four map sheets including the Beiliutumiao map sheet, and the other covers two map sheets including the Wulanbulage map sheet. In this paper, the testing data of chronology, geochemistry, and zircon Hf isotopes of the Permian magmatites in all six map sheets from the two projects were integrated and analyzed based on the regional geological surveys on a scale of 1∶50 000 of the two projects. The aim is to provide detailed and accurate data for further research of the provenance and the tectonic-magmatic evolution process of Permian magmatites in the study area. Furthermore, Permian intrusions are also widely exposed in the study area, which mainly include granodiorites, (quartz) diorite, monzogranite, and a small number of syenite granites. Permian volcanics are mainly distributed to the south of the fault zone and consist of andesitic and dacitic volcanics as well as a small number of rhyolitic volcanics. As shown by zircon U–Pb dating, the Permian magmatites within the study area were mainly formed in mid–late Permian, and the magmatites on the northern and southern sides of the fault zone have distinctly different zircon Hf isotopic characteristics. In short, zircon Hf isotopes are rich on the southern side but depleted on the northern side. The datasets of chronology, geochemistry and zircon Hf isotopes of Permian magmatites in the study area (also referred to as the Dataset) include three.xls files (Zircon U–Pb dating data.xls, Zircon Hf isotope data.xls and Whole-rock geochemistry data.xls), which are comprised of data on the petrogeochemistry of 104 samples, zircon U–Pb dating of 16 samples and zircon Hf isotopes of 12 samples. Samples collected for the Dataset were mainly tested in the Experiment and Test Center of Tianjin Center, China Geological Survey, and thus the data obtained are credible.

  • 加载中
  • [1] Champion DC, Bultitude RJ. 2013. The geochemical ang Sr-Nd isotopic characteristics of Paleozoic fractionated S-types granites of north Queensland: Implications for S-type granite petrogenesis[J]. Lithos, 162–163: 37−56. doi: 10.1016/j.lithos.2012.11.022

    CrossRef Google Scholar

    [2] Chen Y, Zhang ZC, Qian XQ, Li JF, Ji ZJ, Wu TR. 2020. Early to mid-Paleozoic magmatic and sedimentary records in the Bainaimiao Arc: An advancing subduction-induced terrane accretion along the northern margin of the North China Craton[J]. Gondwana Research, 79: 263−282. doi: 10.1016/j.gr.2019.08.012

    CrossRef Google Scholar

    [3] Clemens JD, Stevens G, Farina F. 2011. The enigmatic sources of I-type granites: The peritectic connexion[J]. Lithos, 126: 174−181. doi: 10.1016/j.lithos.2011.07.004

    CrossRef Google Scholar

    [4] Han BF, He GQ, Wang XC, Guo ZJ. 2011. Late Carboniferous collision between the Tarim and Kazakhstan eYili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J]. Earth-Science Reviews, 109: 74−93. doi: 10.1016/j.earscirev.2011.09.001

    CrossRef Google Scholar

    [5] Jahn BM, Wu FY, Chen B. 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 23: 82−92. doi: 10.18814/epiiugs/2000/v23i2/001

    CrossRef Google Scholar

    [6] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51: 537−571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [7] Sengör AMC, Natal'in BA, Burtman VS. 1993. Evolution of Altaid tectonic collageand Paleozoic crustal growth in Eurasia[J]. Nature, 364: 299−307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [8] Windley BF, Alexeiev D, Xiao W, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society of London, 164: 31−47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [9] Xiao WJ, Windley BF, Hao J, Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt[J]. Tectonics, 22: 1069.

    Google Scholar

    [10] Xiao WJ, Windley BF, Sun S, Li J, Huang B, Han C, Yuan C, Sun M, Chen H. 2015. A tale of amalgamation of three permo-triassic collage systems in central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43: 477−507. doi: 10.1146/annurev-earth-060614-105254

    CrossRef Google Scholar

    [11] Zhang SH, Zhao Y. 2017. Cogenetic origin of mafic microgranular enclaves in calc-alkaline granitoids: The Permian plutons in the northern North China Block[J]. Geosphere, 13: 482−517. doi: 10.1130/GES01407.1

    CrossRef Google Scholar

    [12] Zhang SH, Zhao Y, Ye H, Liu JM, Hu CZ. 2014. Origin and evolution of the Bainaimiao arc belt: implications for crustal growth in the southern Central Asian Orogenic Belt[J]. Geological Society of America Bulletin, 126: 1275−1300. doi: 10.1130/B31042.1

    CrossRef Google Scholar

    [13] Zhang SH, Zhao Y, Ye H, Liu JM, Hu ZC. 2016. Different sources involved in generation of continental arc volcanism: The Carboniferous-Permian volcanic rocks in the northern margin of the North China block[J]. Lithos, 240–243: 382−401. doi: 10.1016/j.lithos.2015.11.027

    CrossRef Google Scholar

    [14] Zhang SH, Zhao Y, Kröner A, Liu XM, Lie WX, Chen FK. 2009. Early Permian Plutons from the Northern North China Block:Constraints on Continental Arc Evolution and Convergent Margin Magmatism Relatedtothe Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 98(6): 1441−1467. doi: 10.1007/s00531-008-0368-2

    CrossRef Google Scholar

    [15] Zhao P, Chen Y, Xu B, Faure M, Shi, G, Choulet F. 2013. Did the Paleo-Asian Ocean between North China Block and Mongolia Block exist during the late Paleozoic? First paleomagnetic evidence from central-eastern Inner Mongolia, China[J]. Journal of Geophysical Research, Solid Earth, 118: 1873−1894. doi: 10.1002/jgrb.50198

    CrossRef Google Scholar

    [16] Zhou H, Zhao GC, Han YG, Wang B. 2018. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic intrusive rocks in the Damao area in Inner Mongolia, northern China: Implications for the tectonic evolution of the Bainaimiao arc[J]. Lithos, 314–315: 119−139. doi: 10.1016/j.lithos.2018.05.020

    CrossRef Google Scholar

    [17] Zhou H, Zhao GC, Li JH, Han YG, Yao JL, Wang B. 2019. Magmatic evidence for middle-late Permian tectonic evolution on the northern margin of the North China Craton[J]. Lithos, 336–337: 125−142. doi: 10.1016/j.lithos.2019.04.002

    CrossRef Google Scholar

    [18] Zhou JB, Wilde SA, Zhao GC, Han J. 2018. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews, 186: 76−93. doi: 10.1016/j.earscirev.2017.01.012

    CrossRef Google Scholar

    [19] 董晓杰, 王挽琼, 沙茜, 张金凤. 2016. 华北克拉通北缘中段二叠纪苏吉火山岩及其形成机制[J]. 岩石学报, 32(9): 2765−2779.

    Google Scholar

    [20] 耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 30(10): 1508−1513. doi: 10.3969/j.issn.1671-2552.2011.10.004

    CrossRef Google Scholar

    [21] 侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 28(4): 481−492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [22] 侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 23(10): 2595−2604. doi: 10.3969/j.issn.1000-0569.2007.02.008

    CrossRef Google Scholar

    [23] 李崇, 任留东. 2018. 辽北清原杂岩锆石年代学与地球化学测试数据集[J]. 中国地质, 45(S1): 94−101.

    Google Scholar

    [24] 李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 26(7): 2131−2140.

    Google Scholar

    [25] 罗红玲, 吴泰然, 赵磊. 2009. 华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义[J]. 岩石学报, 25(3): 515−526.

    Google Scholar

    [26] 罗照华, 黄忠敏, 柯珊. 2007. 花岗质岩石的基本问题[J]. 地质论评, 53(S1): 180−226.

    Google Scholar

    [27] 内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志[M]. 北京: 地质出版社.

    Google Scholar

    [28] 任军平, 王杰, 古阿雷, 左立波, 孙宏伟, 许康康, 吴兴源. 2019. 赞比亚东北部正长花岗岩的锆石U-Pb年龄和Lu-Hf同位素特征[J]. 地质调查与研究, 42(3): 161−165. doi: 10.3969/j.issn.1672-4135.2019.03.001

    CrossRef Google Scholar

    [29] 王师捷, 徐仲元, 董晓杰, 王挽琼, 李鹏川. 2018. 华北板块北缘中段花岗闪长岩-苏长辉长岩的锆石U-Pb年代学、地球化学特征及其形成机制[J]. 地球科学, 43(9): 3267−3284.

    Google Scholar

    [30] 王树庆, 胡晓佳, 赵华雷. 2019. 内蒙古苏左旗洪格尔地区新发现晚石炭世碱性花岗岩[J]. 地质调查与研究, 42(2): 81−85. doi: 10.3969/j.issn.1672-4135.2019.02.001

    CrossRef Google Scholar

    [31] 王挽琼, 徐仲元, 刘正宏, 赵庆英, 蒋孝君. 2013. 华北板块北缘中段早中二叠世的构造属性:来自花岗类锆石U-Pb年代学及地球化学的制约[J]. 岩石学报, 29(9): 2987−3003.

    Google Scholar

    [32] 王文龙, 刘洋, 赵利刚, 滕飞, 杨泽黎. 2020. 华北板块北缘中段二叠纪岩浆岩年代学、地球化学及锆石 Hf 同位素测试数据集[DB/OL]. 地质科学数据出版系统. (2020-06-30). DOI:10.35080/data.A.2020.P4.

    Google Scholar

    [33] 王孝磊. 2017. 花岗岩研究的若干新进展与主要科学问题[J]. 岩石学报, 33(5): 1445−1458.

    Google Scholar

    [34] 朱雪峰, 陈衍景, 王玭, 张成, 蔡云龙, 邓柯, 许强伟, 李凯月. 2018. 内蒙古毕力赫斑岩型金矿成矿岩体地球化学、锆石U-Pb年代学及Hf同位素研究[J]. 地学前缘, 25(5): 120−134.

    Google Scholar

    [1] Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region. 1991. Regional Geology of Nei Mongol (Inner Mongolia) Autonomous Region[M]. Beijing: Geological Publishing House, 1−725(in Chinese with English abstract).

    Google Scholar

    [2] Champion DC, Bultitude RJ. 2013. The geochemical ang Sr-Nd isotopic characteristics of Paleozoic fractionated S-types granites of north Queensland: Implications for S-type granite petrogenesis[J]. Lithos, 162−163: 37−56. doi: 10.1016/j.lithos.2012.11.022

    CrossRef Google Scholar

    [3] Chen Y, Zhang ZC, Qian XQ, Li JF, Ji ZJ, Wu TR. 2020. Early to mid-Paleozoic magmatic and sedimentary records in the Bainaimiao Arc: An advancing subduction-induced terrane accretion along the northern margin of the North China Craton[J]. Gondwana Research, 79: 263−282. doi: 10.1016/j.gr.2019.08.012

    CrossRef Google Scholar

    [4] Clemens JD, Stevens G, Farina F. 2011. The enigmatic sources of I-type granites: The peritectic connexion[J]. Lithos, 126: 174−181. doi: 10.1016/j.lithos.2011.07.004

    CrossRef Google Scholar

    [5] Dong Xiaojie, Wang Wanqiong, Sha Qian, Zhang Jinfeng. 2016. Suzy volcanic rocks in the northern margin of the North China Craton and its formation mechanism[J]. Acta Petrologica Sinica, 32(9): 2765−2779 (in Chinese with English abstract).

    Google Scholar

    [6] Geng Jianzhen, Li Huaikun, Zhang Jian, Zhou Hongying, Li Huimin. 2011. Zircon Hf isotopes analysis by means of LA-MC-ICP-MS[J]. Geological Bulletin of China, 30: 1508−1513 (in Chinese with English abstract).

    Google Scholar

    [7] Han BF, He GQ, Wang XC, Guo ZJ. 2011. Late Carboniferous collision between the Tarim and Kazakhstan eYili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J]. Earth-Science Reviews, 109: 74−93. doi: 10.1016/j.earscirev.2011.09.001

    CrossRef Google Scholar

    [8] Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrological Sinica, 23(10): 2595−2604 (in Chinese with English abstract).

    Google Scholar

    [9] Hou Kejun, Li Yanhe, Tian Yourong. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 28(4): 481−492 (in Chinese with English abstract).

    Google Scholar

    [10] Jahn BM, Wu FY, Chen B. 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 23: 82−92. doi: 10.18814/epiiugs/2000/v23i2/001

    CrossRef Google Scholar

    [11] Li Chong, Ren Liudong. 2018. The dataset of zircon geochronological & geochemical testing ofQingyuan Complex in Northern Liaoning province[J]. Geology in China, 45(S1): 140−150.

    Google Scholar

    [12] Li Huaikun, Zhu Shixing, Xiang Zhenqun, Su Wenbo, Lu Songnian, Zhou Hongying, Gen Jianzhen, Li Sheng, Yang Fengjie. 2010. Zircon U-Pb dating on tuffbed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton[J]. Acta Petrologica Sinica, 26(7): 2131−2140 (in Chinese with English abstract).

    Google Scholar

    [13] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51: 537−571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [14] Luo Hongling, Wu Tairan, Zhao Lei. 2009. Zircon SHRIMP U-Pb dating of Wuliangsitai Atype granite on the northern margin of the North China Plate and tectonic significance[J]. Acta Petrologica Sinica, 25(3): 515−526 (in Chinese with English abstract).

    Google Scholar

    [15] Luo Zhaohua, Huang Zhongmin, Ke Shan. 2007. Basic problems of granitic rocks[J]. Geological Review, 53(S1): 180−226 (in Chinese).

    Google Scholar

    [16] Ren Junping, Wang Jie, Gu Alei, Zuo Libo, Sun Hongwei, Xu Kangkang, Wu Xingyuan. 2019. Zircon U-Pb geochronology and Lu-Hf isotopic composition of syenogranite, northeastern Zambia[J]. Geological Survey and Research, 42(3): 161−165 (in Chinese with English abstract).

    Google Scholar

    [17] Sengör AMC, Natal'in BA, Burtman VS. 1993. Evolution of Altaid tectonic collageand Paleozoic crustal growth in Eurasia[J]. Nature, 364: 299−307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [18] Wang Shijie, Xu Zhongyuan, Dong Xiaojie, Wang Wanqiong, Li Pengchuan. 2018. Geochemical characteristicsand zircon U-Pb age of the granodiorite-norite gabbro in the northern margin of the North China Block and their formation mechanism[J]. Earth Science, 43(9): 3267−3284 (in Chinese with English abstract).

    Google Scholar

    [19] Wang Shuqing, Hu Xiaojia, Zhao Hualei. 2019. Geochronology of Late Carboniferous alkaline granite from Honger area, Sunidzuoqi, Inner Mongolia[J]. Geological Survey and Research, 42(2): 81−85 (in Chinese with English abstract).

    Google Scholar

    [20] Wang Wanqiong, Xu Zhongyuan, Liu Zhenhong, Zhao Qingying, Jiang Xiaojun. 2013. Early-Middle Permian tectonic evolution of the central-northern margin of the North China Craton: constraints from zircon u-pb ages and geochemistry of the granitoids[J]. Acta Petrologica Sinica, 29(9): 2987−3003 (in Chinese with English abstract).

    Google Scholar

    [21] Wang Wenlong, Liu Yang, Zhao Ligang, Teng Fei, Yang Zeli. 2020. Dataset of Chronology, Geochemistry and Zircon Hf Isotopes of Permian Magmatites in the Middle Section of the Northern Margin of North China Craton[DB/OL]. Geoscientific Data & Discovery Publishing System. (2020-06-30). DOI: 10.35080/data.A.2020.P4.

    Google Scholar

    [22] Wang Xiaolei. 2017. Some new research progresses and main scientific problems of granitic rocks[J]. Acta Petrologica Sinica, 33(5): 1445−1458 (in Chinese with English abstract).

    Google Scholar

    [23] Windley BF, Alexeiev D, Xiao W, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society of London, 164: 31−47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [24] Xiao WJ, Windley BF, Hao J, Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt[J]. Tectonics, 22: 1069.

    Google Scholar

    [25] Xiao WJ, Windley BF, Sun S, Li J, Huang B, Han C, Yuan C, Sun M, Chen H. 2015. A tale of amalgamation of three permo-triassic collage systems in central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43: 477−507. doi: 10.1146/annurev-earth-060614-105254

    CrossRef Google Scholar

    [26] Zhang SH, Zhao Y. 2017. Cogenetic origin of mafic microgranular enclaves in calc-alkaline granitoids: The Permian plutons in the northern North China Block[J]. Geosphere, 13: 482−517. doi: 10.1130/GES01407.1

    CrossRef Google Scholar

    [27] Zhang SH, Zhao Y, Ye H, Liu JM, Hu CZ. 2014. Origin and evolution of the Bainaimiao arc belt: implications for crustal growth in the southern Central Asian Orogenic Belt[J]. Geological Society of America Bulletin, 126: 1275−1300. doi: 10.1130/B31042.1

    CrossRef Google Scholar

    [28] Zhang SH, Zhao Y, Ye H, Liu JM, Hu ZC. 2016. Different sources involved in generation of continental arc volcanism: The Carboniferous-Permian volcanic rocks in the northern margin of the North China block[J]. Lithos, 240−243: 382−401. doi: 10.1016/j.lithos.2015.11.027

    CrossRef Google Scholar

    [29] Zhang SH, Zhao Y, Kröner A, Liu XM, Lie WX, Chen FK. 2009. Early Permian Plutons from the Northern North China Block: Constraints on Continental Arc Evolution and Convergent Margin Magmatism Relatedtothe Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 98(6): 1441−1467. doi: 10.1007/s00531-008-0368-2

    CrossRef Google Scholar

    [30] Zhao P, Chen Y, Xu B, Faure M, Shi G, Choulet F. 2013. Did the Paleo-Asian Ocean between North China Block and Mongolia Block exist during the late Paleozoic? First paleomagnetic evidence from central-eastern Inner Mongolia, China[J]. Journal of Geophysical Research, Solid Earth, 118: 1873−1894. doi: 10.1002/jgrb.50198

    CrossRef Google Scholar

    [31] Zhou H, Zhao GC, Han YG, Wang B. 2018. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic intrusive rocks in the Damao area in Inner Mongolia, northern China: Implications for the tectonic evolution of the Bainaimiao arc[J]. Lithos, 314−315: 119−139. doi: 10.1016/j.lithos.2018.05.020

    CrossRef Google Scholar

    [32] Zhou H, Zhao GC, Li JH, Han YG, Yao JL, Wang B. 2019. Magmatic evidence for middle-late Permian tectonic evolution on the northern margin of the North China Craton[J]. Lithos, 336−337: 125−142. doi: 10.1016/j.lithos.2019.04.002

    CrossRef Google Scholar

    [33] Zhou JB, Wilde SA, Zhao GC, Han J. 2018. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth Science Reviews, 186: 76−93. doi: 10.1016/j.earscirev.2017.01.012

    CrossRef Google Scholar

    [34] Zhu Xuefeng, Chen Yanjing, Wang Pin, Zhang Cheng, Cai Yunlong, Deng Ke, Xu Qiangwei, Li Kaiyue. 2018. Zircon U-Pb age, geochemistry and Hf isotopes of the causative porphyry from the Bilihe porphyry gold deposit, Inner Mongolia[J]. Earth Science Frontiers, 25(5): 120−134 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(2288) PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint