2024 Vol. 51, No. 2
Article Contents

SANG Shengping, LU Haijian, YE Jiacan, PAN Jiawei, LI Haibing. 2024. Sediment recycling in the northern Qaidam Basin margin during the Cenozoic: A case study from the Dahonggou section[J]. Geology in China, 51(2): 606-622. doi: 10.12029/gc20201226001
Citation: SANG Shengping, LU Haijian, YE Jiacan, PAN Jiawei, LI Haibing. 2024. Sediment recycling in the northern Qaidam Basin margin during the Cenozoic: A case study from the Dahonggou section[J]. Geology in China, 51(2): 606-622. doi: 10.12029/gc20201226001

Sediment recycling in the northern Qaidam Basin margin during the Cenozoic: A case study from the Dahonggou section

    Fund Project: Supported by Second Tibetan Plateau Comprehensive Scientific Investigation and Research Project (No.2019QZKK0901), the project of China Geological Survey (No.DD20190059), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (No.GML2019ZD0201).
More Information
  • Author Bio: SANG Shengping, female, born in 1996, master candidate, majors in structurad geology; E-mail: 1154469340@qq.com
  • Corresponding author: LU Haijian, male, born in 1981, associate researcher, majors in structural geology; E-mail: haijianlu2007@126.com
  • This paper is the result of geological survey engineering.

    Objective

    Recently, more studies show that the sediment recycling plays an important role in the inversion of the tectonic events, the identification of sediment source areas and the sources of eolian dust.

    Methods

    In order to explore the Cenozoic sediment recycling in the Qaidam Basin, this paper conducts thin section identification, detrital framework grain composition and heavy mineral analysis of sandstones, and major, trace, and rare earth elements, and clay minerals of mudstones of the Dahonggou section in the northern Qaidam Basin.

    Results

    The major, trace, and rare earth elements of mudstones are similar to the standard distribution patterns of upper continental crust (UCC) and chondrite, which may indicate that the sediments have been completely mixed or recycled; Sandstone is mainly composed of quartz, and a small amount of feldspar and lithic grains which are mainly composed of sedimentary ones. Sandstone framework detrital mode indicates a provenance type of recycled orogenic belt; The content of stable heavy minerals and ZTR (zircon, tourmaline, and rutile) index suddenly decrease in the upper portion of the section, indicating a closer source area to the section during the late stage; On the contrary, the contents of chlorite, which is easy to decompose, suddenly increase in the upper portion of the section. This observation might also shows that its source area was closer at this time.

    Conclusions

    Based on the analysis of sedimentary facies, sandstone thin section and detrital zircon U−Pb age, it was suggested that the Jurassic and Cretaceous sedimentary rocks in the thrust−fold belt of the northern Qaidam Basin experienced large−scale sediment recycling and were one of the important provenances of the Cenozoic strata in the basin; Then, the fission−track analyses of detrital apatite show that the Cenozoic sedimentary rocks in the northern margin of the Qaidam basin have experienced significant recycling at 9−7 Ma; After about 3 Ma, with fold−thrusting propagating into the basin center, the uplifted sedimentary rocks in the northern basin experienced recycling, which form the important provenance of the Quaternary lakes within the center of the Qaidam Basin and of the Quaternary loess deposits in China Loess Plateau.

  • 加载中
  • [1] BGMBQP (Bureau of Geology and Mineral Bureau of the Qinghai Province). 1991. Regional Geology of Qinghai Province[M]. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    [2] Bhatia M R, Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy & Petrology, 92(2): 181−193.

    Google Scholar

    [3] Bush M, Saylor J, Horton B, Nie J. 2016. Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: Inferences from depositional patterns and multiproxy detrital provenance signatures[J]. Lithosphere, 8: 58−82. doi: 10.1130/L449.1

    CrossRef Google Scholar

    [4] Chen N S, Zhang L, Sun M, Wang Q Y, Kusky T M. 2012. U−Pb and Hf isotopic compositions of detrital zircons from the paragneisses of the Quanji Massif, NW China: Implications for its early tectonic evolutionary history[J]. Journal of Asian Earth Sciences, 54/55: 110−130. doi: 10.1016/j.jseaes.2012.04.006

    CrossRef Google Scholar

    [5] Colombo F. 1994. Normal and reverse unroofing sequences in syntectonic conglomerates as evidence of progressive basinward deformation[J]. Geology, 22(3): 235−238. doi: 10.1130/0091-7613(1994)022<0235:NARUSI>2.3.CO;2

    CrossRef Google Scholar

    [6] Dickinson W R. 1985. Interpreting provenance relations from detrital modes of sandstones, in Zuffa G G, ed. , Provenance of Arenites: New York, D. Reidel Publishing, North Atlantic Treaty Organization (NATO) Advanced Study Institute (ASI) Series C[J]. Mathematical and Physical Sciences, 148: 333−361.

    Google Scholar

    [7] Fang X M, Zhang W L, Meng Q Y, Gao J P, Wang X M, King J, Song C H, Dai S, Miao Y F. 2007. High−resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China, and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 258(1/2): 293−306. doi: 10.1016/j.jpgl.2007.03.042

    CrossRef Google Scholar

    [8] Fosdick J C, Grove M, Graham S A, Hourigan J K, Lovera O, Romans B W. 2014. Detrital thermochronologic record of burial heating and sediment recycling in the Magallanes foreland basin, Patagonian Andes[J]. Basin Research, 27(4): 546−572.

    Google Scholar

    [9] Garver J I, Brandon M T, Roden-Tice M, Kamp P J J. 1999. Exhumation history of orogenic highlands determined by detrital fission-track thermochronology[J]. Geological Society, London, Special Publications, 154: 283−304.

    Google Scholar

    [10] Gehrels G E, Yin A, Wang X. 2003. Detrital−zircon geochronology of the northeastern Tibetan Plateau[J]. Geological Society of America Bulletin, 115: 881−896. doi: 10.1130/0016-7606(2003)115<0881:DGOTNT>2.0.CO;2

    CrossRef Google Scholar

    [11] Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N, Yin A. 2011. Detrital zircon geochronology of pre−Tertiary strata in the Tibetan−Himalayan orogen[J]. Tectonics, 30(5): TC5016.1−TC5016.27.

    Google Scholar

    [12] Heermance R V, Pullen A, Kapp P, Garzione C N, Bogue S, Ding L, Song P P. 2013. Climatic and tectonic controls on sedimentation and erosion during the Pliocene−Quaternary in the Qaidam Basin (China)[J]. Geological Society of America Bulletin, 125(5/6): 833−856. doi: 10.1130/B30748.1

    CrossRef Google Scholar

    [13] Hubert J F. 1962. A zircon−tourmaline−rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones[J]. Journal of Sedimentary Research, 32(3): 440−450.

    Google Scholar

    [14] Ingersoll R V, Bullard T F, Ford R L, Grimm J P, Pickle J D, Sares S W. 1984. The effect of grain size on detrital modes: A test of the Gazzi−Dickinson point−counting method[J]. Journal of Sedimentary Research, 54(1): 103−116.

    Google Scholar

    [15] Ji J L, Zhang K X, Clift P, Zhuang G S, Song B W, Ke X, Xu Y D. 2017. High−resolution magnetostratigraphic study of the Paleogene−Neogene strata in the northern Qaidam Basin: Implications for the growth of the northeastern Tibetan Plateau[J]. Gondwana Research, 46: 141−155. doi: 10.1016/j.gr.2017.02.015

    CrossRef Google Scholar

    [16] Jian X, Guan P, Zhang D W, Zhang W, Feng F, Liu R J, Lin S D. 2013. Provenance of Tertiary sandstone in the northern Qaidam basin, northeastern Tibetan Plateau: Integration of framework petrography, heavy mineral analysis and mineral chemistry[J]. Sedimentary Geology, 290: 109−125. doi: 10.1016/j.sedgeo.2013.03.010

    CrossRef Google Scholar

    [17] Kapp P, Pelletier J D, Rohrmann A, Heermance R, Russell J, Ding L. 2011. Wind erosion in the Qaidam basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau[J]. GSA Today, 21: 4−10.

    Google Scholar

    [18] Liu Yun. 1985. Clay Minerals of late Cretaceous Song−Liao Basin and their sedimentary environment[J]. Journal of Sedimentology, 3(4): 131−140 (in Chinese).

    Google Scholar

    [19] Liu Yongjiang, Franz N, Li Weimin, Johann G, Li Wei. 2012. Tectono−thermal events of the northern Qaidam margin−southern Qilian area, Western China[J]. Journal of Jilin University (Earth Science Edition), 42(5): 1317−1329 (in Chinese).

    Google Scholar

    [20] Liu Zechun, Wang Jian, Wang Yongjin, Sun Shiying, Chen Yan'an, Zhang Jianxin, Jiang Wenying, Fan Lianshun, Li Jianqing, Yang Fan. 1996. On lower Tertiary chronostratigraphy and climatostratigraphy of Mangyai Depression in western Qaidam Basin[J]. Journal of Stratigraphy, 20(2): 104−113 (in Chinese).

    Google Scholar

    [21] Lu H J, Ye J C, Guo L C, Pan J W, Xiong S F, Li H B. 2019. Towards a clarification of the provenance of Cenozoic sediments in the northern Qaidam basin[J]. Lithosphere, 1(12): 252−272.

    Google Scholar

    [22] McLennan S M, Hemming S R, Mcdaniel D K, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of America Special Paper, 284: 21−40.

    Google Scholar

    [23] Meng Q R, Fang X. 2008. Cenozoic tectonic development of the Qaidam Basin in the northeastern Tibetan Plateau, in Burchfiel B C, and Wang E, eds. , Investigations into the Tectonics of the Tibetan Plateau[J]. Geological Society of America Special Paper, 444: 1−24.

    Google Scholar

    [24] Menold C A, Manning C E, Yin A, Tropper P, Chen X H, Wang X F. 2009. Metamorphic evolution, mineral chemistry and thermobarometry of orthogneiss hosting ultrahighpressure eclogites in the North Qaidam metamorphic belt, western China[J]. Journal of Asian Earth Sciences, 35(3/4): 273−284. doi: 10.1016/j.jseaes.2008.12.008

    CrossRef Google Scholar

    [25] Métivier F, Gaudemer Y, Tapponnier P, Meyer B. 1998. Northeastward growth of the tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China[J]. Tectonics, 17(6): 823−842. doi: 10.1029/98TC02764

    CrossRef Google Scholar

    [26] Morton A C. 1985. A new approach to provenance studies: electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea[J]. Sedimentology, 32(4): 553−566. doi: 10.1111/j.1365-3091.1985.tb00470.x

    CrossRef Google Scholar

    [27] Morton A C, Ellis D, Fanning M, Jolley D W, Whitham A G. 2012. The importance of an integrated approach to provenance studies: A case study from the Paleocene of the Faroe−Shetland Basin, NE Atlantic[J]. Geological Society London Special Publications, 487(7): 472−481.

    Google Scholar

    [28] Nie J S, Ren X P, Saylor J E, Su Q D, Pfaff K. 2019. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau[J]. Geological Society of America Bulletin, 132(1/2): 310−320.

    Google Scholar

    [29] Palme H. 1988. Chemical Abundances in Meteorites[J]. Cosmic Chemistry, 28–51.

    Google Scholar

    [30] Pang J Z, Yu J X, Zheng D W, Wang W T, Ma Y, Wang Y Z, Li C P, Li Y J, Wang Y. 2019. Neogene expansion of the Qilian Shan, north Tibet: Implications for the dynamic evolution of the Tibetan Plateau[J]. Tectonics, 38(3): 1018−1032. doi: 10.1029/2018TC005258

    CrossRef Google Scholar

    [31] Petroleum and Natural Gas Industry Standards Writing Group. 2018. Analysis method for clay minerals and ordinary non−clay minerals in sedimentary rocks by the X−ray diffraction (SY/T 5163−2018) [S]. Beijing: Petroleum Industry Press.

    Google Scholar

    [32] Pullen A, Kapp P, Mccallister A T, Chang H, Gehrel G E, Garzione C N, Heermance R V, Ding L. 2011. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications[J]. Geology, 39(11): 1031−1034. doi: 10.1130/G32296.1

    CrossRef Google Scholar

    [33] Pu Haibo. 2011. Method of identifying clay mineral by X−Ray diffraction analysis[J]. Investigation Science and Technology, (5): 16−18 (in Chinese with English abstract).

    Google Scholar

    [34] Ren Yingxin. 1987. Separation and Identification of Heavy Sand Minerals[M]. Wuhan: China University of Geosciences Press (in Chinese).

    Google Scholar

    [35] Rieser A B, Neubauer F, Liu Y, Ge X. 2005. Sandstone provenance of north−western sectors of the intracontinental Cenozoic Qaidam basin, western China: Tectonic vs. climatic control[J]. Sedimentary Geology, 177(1−2): 1−18. doi: 10.1016/j.sedgeo.2005.01.012

    CrossRef Google Scholar

    [36] Rieser A B, Liu Y, Genser J, Neubauer F, Handler R, Friedl G, Ge X H. 2006. 40Ar/39Ar ages of detrital white mica constrain the Cenozoic development of the intracontinental Qaidam Basin, China[J]. Geological Society of America Bulletin, 118(11−12): 1522−1534. doi: 10.1130/B25962.1

    CrossRef Google Scholar

    [37] Sun G Q, Wang M, Guo J J, Wang Y T, Yang Y H. 2020. Geochemical significance of clay minerals and elements in Paleogene sandstones in the Center of the northern margin of the Qaidam Basin, China[J]. Minerals, 10(6): 505. doi: 10.3390/min10060505

    CrossRef Google Scholar

    [38] Tapponnier P. 2001. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 294(5547): 1671−1677. doi: 10.1126/science.105978

    CrossRef Google Scholar

    [39] Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution[J]. The Journal of Geology, 94(4): 57−72.

    Google Scholar

    [40] Wang Guocan, Zhang Kexin, Cao Kai, Wang An, Xu Yadong, Meng Yanning. 2010. Expanding processes of the Qinghai−Tibet Plateau during Cenozoic: An insight from spatio−temporal difference of uplift[J]. Earth Science:Journal of China University of Geosciences, 35(5): 713−727 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.086

    CrossRef Google Scholar

    [41] Wang W T, Zheng W J, Zhang P Z, Li Q, Kirby E, Yuan D Y, Zheng D W, Liu C C, Wang Z C, Zhang H P. 2017. Expansion of the Tibetan Plateau during the Neogene[J]. Nature Communications, 8: 15887. doi: 10.1038/ncomms15887

    CrossRef Google Scholar

    [42] Wang Yetong, Sun Guoqiang, Yang Yongheng, Wang Meng, Ma Fuqiang, Zhang Chengjuan, Zhao Jian, Shi Ji'an. 2019. U−Pb geochronology analysis of detrital zircons in the paleogene lower Xiaganchaigou Formation in the northern Mahai area, northern margin of Qaidam basin[J]. Journal of Lanzhou University (Natural Sciences) 55(2): 141−148, 157 (in Chinese with English abstract).

    Google Scholar

    [43] Wu Zhenhan, Hu Daogong, Wu Zhonghai, Ye Peisheng, Zhou Chunjing. 2009. Quaternary sinistral−slip thrusting in north margin of Qaidam basin[J]. Quaternary Sciences, 29(3): 599−607 (in Chinese with English abstract).

    Google Scholar

    [44] Yang Jingsui, Xu Zhiqin, Song Shuguang, Wu Cailai, Shi Rendeng, Zhang Jianxin, Wan Yusheng, Li Haibing, Jin Xiaochi, Marc J. 2000. Discovery of eclogite in Dulan, Qinghai Province and its significance for studying the HP−UHP metamorphic belt along the Central Orogenic Belt of China[J]. Acta Geologica Sinica, 74(2): 156−168 (in Chinese with English abstract).

    Google Scholar

    [45] Yang Lirong, Li Jianxing, Yue Leping, Wang Hongliang, Guo Huaijun, Zhu Xiaohui, Zhu Tao, Du Kai, Zhang Rui, Zhang Yunxiang, Gong Hujun. 2017. Stratigraphic division and tectonic−sedimentary evolution of Paleogene in Qilian Mountain and its adjacent areas[J]. Science China: Earth Sciences, 47(5): 586−600 (in Chinese).

    Google Scholar

    [46] Yin A, Rumelhart P E, Butler R, Cowgill E, Harrison T M, Foster D A, Ingersoll R V, Zhang Q, Zhou X Q, Wang X F. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 114(10): 1257−1295. doi: 10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2

    CrossRef Google Scholar

    [47] Yin A, Dang Y Q, Zhang M, McRivette M W, Burgess W P, Chen X H. 2007a. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (Part 2): Wedge tectonics in southern Qaidam basin and the eastern Kunlun Range[J]. Geological Society of America Special Papers, 433: 369−390.

    Google Scholar

    [48] Yin A, Manning C E, Lovera O, Menold C A, Chen X H, Gehrels G E. 2007b. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh−pressure (UHP) metamorphic rocks in the northern Tibetan Plateau, Northwest China[J]. International Geology Review, 49(8): 681−716. doi: 10.2747/0020-6814.49.8.681

    CrossRef Google Scholar

    [49] Yin A, Dang Y Q, Wang L C, Jiang W M, Zhou S P, Chen X H, Gehrels G E, Mcrivette M W. 2008a. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan−Nan Shan thrust belt and northern Qaidam basin[J]. Geological Society of America Bulletin, 120(7/8): 813−846. doi: 10.1130/B26180.1

    CrossRef Google Scholar

    [50] Yin An, Dang Yuqi, Zhang Min, Chen Xuanhua, McRivette M W. 2008b. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction[J]. Geological Society of America Bulletin, 120(7/8): 847−876. doi: 10.1130/B26232.1

    CrossRef Google Scholar

    [51] Yu L, Xiao A C, Wu L, Tian Y T, Rittner M, Lou Q Q, Pan X T. 2017. Provenance evolution of the Jurassic northern Qaidam Basin (West China) and its geological implications: evidence from detrital zircon geochronology[J]. International Journal of Earth Sciences, 106(8): 1−14.

    Google Scholar

    [52] Zeng Xu, Lin Tong, Wang Wei, Yan Zhandong, Hao Cuiguo, Bian Yingying, Wang Jun. 2019. Detrital zircon dating of LA−ICP−MSin the Upper Jurassic and indicative significanceof the Qaidam Basin[J]. Natural Gas Geoscience, 30(5): 662−672 (in Chinese with English abstract).

    Google Scholar

    [53] Zhang Chenyu, Wu Lei, Chen Wuke, Zhang Yongshu, Xiao Ancheng, Zhang Junyong, Chen Siyuan, Chen Hanlin. 2020. Early Cretaceous foreland−like Northeastern Qaidam Basin, Tibetan Plateau and its tectonic implications: Insights from sedimentary investigations, detrital zircon U−Pb analyses and seismic profiling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 557: 109912.

    Google Scholar

    [54] Zhu L D, Wang C S, Zheng H B, Xiang F, Yi H S, Liu D Z. 2006. Tectonic and sedimentary evolution of basins in the northeast of Qinghai−Tibet Plateau and their implication for the northward growth of the Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 241(1): 49−60.

    Google Scholar

    [55] Zhu Xiaomin. 2008. Sedimentary Petrology[M]. Bejing: Petroleum Industry Press, 90−105 (in Chinese).

    Google Scholar

    [56] Zhuang G S, Hourigan J K, Ritts B D, Kent−Corson M L. 2011. Cenozoic multiple−phase tectonic evolution of the Northern Tibetan Plateau: constraints from sedimentary records from Qaidam Basin, Hexi corridor, and Subei Basin, Northwest China[J]. American Journal of Science, 311(2): 116−152. doi: 10.2475/02.2011.02

    CrossRef Google Scholar

    [57] 石油天然气行业标准编写组. 2018. 沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法 (SY/T 5163−2018) [S] 北京: 石油工业出版社.

    Google Scholar

    [58] 刘云. 1985. 松辽盆地晚白垩世黏土矿物特微及沉积环境分析[J]. 沉积学报, (4): 131−140.

    Google Scholar

    [59] 刘永江, Franz Neubauer, 李伟民, Johann Genser, 李伟. 2012. 柴北缘−南祁连地区构造热事件[J]. 吉林大学学报(地球科学版), 42(5): 1317−1329.

    Google Scholar

    [60] 刘泽纯, 王建, 汪永进, 孙世英, 陈延安, 张建新, 姜文英, 范连顺, 李建青, 杨藩. 1996. 柴达木盆地茫崖凹陷井下下第三系的年代地层学与气候地层学研究[J]. 地层学杂志, 20(2): 104−-113.

    Google Scholar

    [61] 蒲海波. 2011. 用X射线衍射分析鉴定黏土矿物的方法[J]. 勘察科学技术, (5): 16−18.

    Google Scholar

    [62] 青海省地质矿产局. 1991. 青海省区域地质志. [M]. 北京: 地质出版社.

    Google Scholar

    [63] 任迎新. 1987. 重砂矿物分选及鉴定[M]. 武汉: 中国地质大学出版社.

    Google Scholar

    [64] 吴珍汉, 胡道功, 吴中海, 叶培盛, 周春景. 2009. 柴达木盆地北缘第四纪左旋斜冲推覆构造运动[J]. 第四纪研究, 29(3): 599−607.

    Google Scholar

    [65] 王国灿, 张克信, 曹凯, 王岸, 徐亚东, 孟艳宁. 2010. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程[J]. 地球科学(中国地质大学学报), 35(5): 713−727.

    Google Scholar

    [66] 王晔桐, 孙国强, 杨永恒, 王猛, 马富强, 张成娟, 赵健, 史基安. 2019. 柴北缘马北地区下干柴沟组下段碎屑锆石U−Pb年代学分析[J]. 兰州大学学报(自然科学版), 55(2): 141−148,157.

    Google Scholar

    [67] 杨经绥, 许志琴, 宋述光, 吴才来, 史仁灯, 张建新, 万渝生, 李海兵, 金小赤, Marc Jolivet. 2000. 青海都兰榴辉岩的发现及对中国中央造山带内高压—超高压变质带研究的意义[J]. 地质学报, 74(2): 156−168.

    Google Scholar

    [68] 杨利荣, 李建星, 岳乐平, 王洪亮, 郭怀军, 朱小辉, 朱涛, 杜凯, 张睿, 张云翔, 弓虎军. 2017. 祁连山及邻区古—新近纪地层分区与构造−沉积演化[J]. 中国科学:地球科学, 47(5): 586−600.

    Google Scholar

    [69] 曾旭, 林潼, 王薇, 闫占冬, 郝翠果, 边滢滢, 王军. 2019. 柴达木盆地上侏罗统碎屑锆石LA−ICP−MS定年及指示意义[J]. 天然气地球科学, 30(5): 662−672.

    Google Scholar

    [70] 朱筱敏. 2008. 沉积岩石学[M]. 北京: 石油工业出版社, 90−105.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(6)

Article Metrics

Article views(585) PDF downloads(61) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint