2024 Vol. 51, No. 6
Article Contents

LI Fenqi, ZHENG Rongcai, ZHANG Shizhen, LI Jun, LIU Han, QIN Yadong. 2024. Depositional characteristics and model of the deep−water debris flow of the Mid−Late Jurassic Lagongtang Formation in the Nagqu area, Tibet[J]. Geology in China, 51(6): 2028-2041. doi: 10.12029/gc20201214001
Citation: LI Fenqi, ZHENG Rongcai, ZHANG Shizhen, LI Jun, LIU Han, QIN Yadong. 2024. Depositional characteristics and model of the deep−water debris flow of the Mid−Late Jurassic Lagongtang Formation in the Nagqu area, Tibet[J]. Geology in China, 51(6): 2028-2041. doi: 10.12029/gc20201214001

Depositional characteristics and model of the deep−water debris flow of the Mid−Late Jurassic Lagongtang Formation in the Nagqu area, Tibet

    Fund Project: Supported by National natural science foundation of China (No.41972113, No.42002032) and the Second Qinghai−Tibet Scientific Research Project of the Ministry of Science and Technology of China (No.2019QZKK0706).
More Information
  • Author Bio: LI Fenqi, male, born in 1966, doctor, professor level senior engineer, engaged in basic geological research on Southern Qinghai−Tibet plateau; E−mail: lifenqi2012@163.com
  • This paper is the result of oil and gas exploration engineering.

    Objective

    The research of deep–water debris flow deposition of the Mid–Late Jurassic Lagongtang Formation on the northern margin of the Lhasa Block is important for the reconstruction on the Mesozoic tectonics–palaeogeography in the southern Qinghai−Tibetan Plateau.

    Methods

    This study conducted field investigations and microstructural analyses on the debris flow deposition of the Lagongtang Formation in the Nagqu area, and discussed its controlling factors and transport processes with previous regional geological data, and further established its depositional model.

    Results

    The lower part of the debris flow deposition consists mainly of gravelly debris flow deposits, while its upper part is characterized by sandy debris flow deposits alternating with muddy debris flow deposits, containing abundant slip collapse and sliding bodies and have a typical double structure of soft deposition. The soft depositional deformation folds and pudding structure indicate the southward flow of the debris flow.

    Conclusions

    This study indicates that the formation of the Lagongtang Formation is controlled by the Bangonghu−Nujiang suture zone, and the "source−drain−sink" of different kinds of debris flow deposition shows coupling relationships to a certain extent. The study also provides new information on the reconstruction on the structure−paleogeography of the southern Qinghai−Tibetan Plateau in Mesozoic.

  • 加载中
  • [1] Cao Yingchang, Yang Tian, Wang Yanzhong. 2017. Formation, evolution and sedmentary characteristics of supercritical sediment gravity flow[J]. Acta Petrolei Sinica, 38(6): 607−621 (in Chinese with English abstract).

    Google Scholar

    [2] Chen Guorong, Liu Hongfei, Jiang Guangwu, Zeng Qinggao, Zhao Shouren, Zhang Xiangguo. 2004. Discovery of the Shamoluo Formation in the central segment of the Bangong Co–Nujiang River suture zone, Tibet[J]. Geological Bulletin of China, 23(2): 193−202 (in Chinese with English abstract).

    Google Scholar

    [3] Chen Xi, Wang Chengshan, Hu Xiumian, Huang Yongjian, Wei Yushuai, Wang Pingkang. 2008. Petrology and evolution history from Late Jurassic to Paleogene of Gyangze Basin, southern Tibet[J]. Acta Petrologica Sinica, 24(3): 616−624 (in Chinese with English abstract).

    Google Scholar

    [4] Chen Y F, Ding L, Li Z Y, Laskowski A K, Li J X, Baral U, Qasim M, Yue Y H. 2020. Provenance analysis of Cretaceous peripheral foreland basin in Central Tibet: Implications to precise timing on the initial Lhasa-Qiangtang Collision[J]. Tectonophysics 775, 228−311.

    Google Scholar

    [5] Chen Yulu, Chen Guorong, Zhang Kuangzhong. 2015. Geological Survey Report of Bangor County Sheet at Scale 1: 250000[M]. Wuhan: China University of Geosciences Press, 45–70(in Chinese).

    Google Scholar

    [6] Cheng Dingsheng, Han Hui, Li Yongtie, Lei Zhenyu, Hu Zujun. 2001. Surface geochemical exploration of oil and gas in Biru Basin in northern Tibet[J]. Petrolum Exploraton and Development, 28(1): 45−47 (in Chinese with English abstract).

    Google Scholar

    [7] Clare M A, Talling P J, Challenor P, Malgensini G, Hunt J. 2014. Distal turbidites reveal a common distribution for large (>0.1 km3) submarine landslide recurrence[J]. Geology, 42(3): 263−266.

    Google Scholar

    [8] Deng Jinhuo, Yuan Zhenguo, Yu Jiang, Du Changfa, Tang Zongyuan, Sun Sheliang, Lu Xin, Zhong Wen, Wan Chuan, Zhong Junjing. 2017. New discovery of the basal conglomerate in the Upper Jurassic–Lower Cretaceous Shamuluo Formation in western part of Bangong Lake–Nujiang River suture zone and its geological significance[J]. Geological Review, 63(2): 302−310 (in Chinese with English abstract).

    Google Scholar

    [9] Gao Hongcan, Zheng Rongcai, Wei Qinlian, Chen Faliang, Chen Jun, Zhu Dengfeng, Liu Yun. 2012. Reviews on fluid properties and sedimentary characteristics of debris flows and turbidity currents[J]. Advances in Earth Science, 27(8): 815−827 (in Chinese with English abstract).

    Google Scholar

    [10] Haughton P, Davis C, Mccaffre Y W, Barker S. 2009. Hybrid sediment gravity flow deposits−classification, origin and significance[J]. Marine and Petroleum Geology, 26(10): 1900−1918. doi: 10.1016/j.marpetgeo.2009.02.012

    CrossRef Google Scholar

    [11] Hu Jingren, Gao Tigang, Chen Guojie. 2014. Geological Survey Report of Biru County Sheet at Scale 1∶250000[M]. Wuhan: China University of Geosciences Press, 56–80 (in Chinese).

    Google Scholar

    [12] Huang T T, Xu J F, Chen J L, Wu J B, Zeng Y C. 2017. Sedimentary record of Jurassic northward subduction of the Bangong–Nujiang ocean: Insights from detrital zircons[J]. International Geology Review, 59: 166−184. doi: 10.1080/00206814.2016.1218801

    CrossRef Google Scholar

    [13] Huang Wenao, Zhao Xiaoming, Tan Chengpeng, Ge Jiawang, Feng Shuangqi, Li Chenxi, Lu Wenming. 2020. Sedimentary model analysis of Triassic deep–water channels in Zhihelong, west Qinling Mountains[J]. Acta Sedimentologica Sinica, 38(5): 1061−1075 (in Chinese with English abstract).

    Google Scholar

    [14] Iverson R M, Reid M E, LaHusen R G. 1997. Debris−flow mobilization from landslides[J]. Annual Review of Earth and Planetary Sciences, 25: 85−138. doi: 10.1146/annurev.earth.25.1.85

    CrossRef Google Scholar

    [15] Jin Jiehua, Cao Yingchang, Wang Jian, Yang Tian, Zhou Lei. 2019a. Deep−water sandy debris flow deposits: Concepts, sedimentary processes and characteristics[J]. Geological Review, 65(3): 689−701 (in Chinese with English abstract).

    Google Scholar

    [16] Jin Jiehua, Cao Yingchang, Wang Jian, Yang Tian, Liu Juan, Wang Xinyi, Wang Shuping. 2019b. New discovery of hyperpycnal flow deposits in the El1x section of the steep slope belt in the Weixinan Sag[J]. Earth Science Frontiers, 26(4): 250−258 (in Chinese with English abstract).

    Google Scholar

    [17] Johnson A M. 1970. Physical Processes in Geology[M]. San Francisco: Freeman, 577.

    Google Scholar

    [18] Kuenen P H, Migliorini C I. 1950. Turbidity currents as a cause of graded bedding[J]. Journal of Geology, 58(2): 91−127. doi: 10.1086/625710

    CrossRef Google Scholar

    [19] Li Fenqi, Liu Wei, Geng Quanru. 2009. Zircon LA–ICP–MS U–Pb ages of the Mesozoic volcanic rocks in the Nagqu area of Gangdise in Tibet and their geological significance[J]. Acta Geoscientica Sinica, 31(6): 781−790 (in Chinese with English abstract).

    Google Scholar

    [20] Li Fenqi, Liu Wei, Zhang Shizheng, Li Yong. 2014. The evidence of earth dynamic background conversion in the North–Central Gangdese and its adjacent regions during Middle Jurassic−Early Cretaceous[J]. Geological Review, 60(6): 1297−1308 (in Chinese with English abstract).

    Google Scholar

    [21] Li Guangming, Yong Yongyuan. 2000. Sedimentary characteristics and trace elements geochemistry of Middle–Upper Jurassic turbidite in Nagqu basin, Tibet[J]. Acta Geoscientia Sinica, 21(4): 373−790 (in Chinese with English abstract).

    Google Scholar

    [22] Li S, Ding L, Carl G, Fu J J, Xu Q, Yue Y H, Henrique–Pinto R. 2017. The subduction–accretion history of the Bangong−Nujiang ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, Central Tibet[J]. Tectonophysics, 702: 42−60. doi: 10.1016/j.tecto.2017.02.023

    CrossRef Google Scholar

    [23] Li Xiangbo, Liu Huaqing, Wanyan Rong, Wei Lihua, Liao Jianbo, Ma Yuhu. 2009. First discovery of the sandy debris flow from the Triassic Yanchang Formation, Ordos Basin[J]. Lithologic Reservoirs, 21(4): 19−21.

    Google Scholar

    [24] Li Xiangbo, Wei Pingsheng, Liu Huaqing, Wang Jing. 2013. Discussion on the classification of sediment gravity flow and the deep−water sedimentary model[J]. Geological Review, 59(4): 607−614 (in Chinese with English abstract).

    Google Scholar

    [25] Liang Chao, Xie Xinong, Shi Guanzhong. 2018. Depositional mechanisms and geological significances of sediment gravity flow deposits in the Upper Member of Middle Permian Zhesi Formation in Mandula area, Inner Mongolia[J]. Geological Science and Technology Information, 37(6): 54−64 (in Chinese with English abstract).

    Google Scholar

    [26] Liu Jianping, Xian Benzhong, Zhang Li, Su Ming, Li Yuzhi, Yan Haiqing, Wang Zhen, Chen Peng. 2022. Depositional process and model of debrite dominated deep−water system in the Dongying Depression, Bohai Bay Basin[J]. Geology in China, 49(6): 1951−1969 (in Chinese with English abstract).

    Google Scholar

    [27] Ma A L, Hu X M, Garzanti E, Zhong H, Wen L. 2017. Sedimentary and tectonic evolution of the southern Qiangtang Basin: Implications for the Lhasa−Qiangtang collision timing[J]. Journal of Geophysical Research, 506: 30−47.

    Google Scholar

    [28] Meng Qingren, Qu Hongjie, Hu Jianmin. 2007. Triassic deep water deposits in west Qinling and Songpan terranes[J]. Science China Earth Sciences, 37(Supplement): 209−223 (in Chinese with English abstract).

    Google Scholar

    [29] Mulder T, Syvitski J P, Migeon S, Faugeres J, Savoye B. 2003. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 20(6/8): 861−882.

    Google Scholar

    [30] Nima Ciren, Xie Yaowu, Sha Zhaoli. 2014. Geological Survey Report of Nagqu County Sheet at Scale 1∶250000[M]. Wuhan: China University of Geosciences Press, 35–90(in Chinese).

    Google Scholar

    [31] Pan G T, Wang L Q, Li R S, Yuan S H, Ji W H, Yin F G, Zhang W P, Wang B D. 2012. Tectonic evolution of the Qinghai–Tibet Plateau[J]. Journal of Asian Earth Sciences, 53: 3−14. doi: 10.1016/j.jseaes.2011.12.018

    CrossRef Google Scholar

    [32] Qiang Kunsheng, Zhang Guangxue, Zhang Li, Lü Baofeng, Zhong Guangjian, Feng Changmao, Yi Hai, Zhao Zhongquan, Yang Zhen, Yan Wei. 2018. A study of depositional characteristics of the Jurassic strata in Chaoshan Sub–basin, northern South China Sea, and its control on reservoir beds[J]. Geology in China, 45(1): 48−58 (in Chinese with English abstract).

    Google Scholar

    [33] Shanmugam G. 1996. High–density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 66(1): 2−10. doi: 10.1306/D426828E-2B26-11D7-8648000102C1865D

    CrossRef Google Scholar

    [34] Shanmugam G. 2000. 50 years of the turbidite paradigm (1950s–1990s): Deep–water processes and facies models−a critical perspective[J]. Marine and Petroleum Geology, 17(2): 285−342. doi: 10.1016/S0264-8172(99)00011-2

    CrossRef Google Scholar

    [35] Shanmugam G. 2012. New Perspectives on Deep−water Sandstones: Origin, Recognition, Initiation and Reservoir Quality[M]. Amsterdam: Elsevier, 1–86.

    Google Scholar

    [36] Sun G Y, Hu X M, Xu Y W, BouDagher–Fadel M K. 2019. Discovery of Middle Jurassic trench deposits in the Bangong–Nujiang suture zone: Implications for the timing of Lhasa–Qiangtang initial collision[J]. Tectonophysics, 750: 344−358. doi: 10.1016/j.tecto.2018.12.001

    CrossRef Google Scholar

    [37] Talling P J, Wynn R B, Masson D G, Franz M, Cronin B T, Schiebel R, Akhmetzhanov A M, Dallmeier S, Benetti S, Weaver P P E, Georgiopoulou A, Zühlsdoff, Amy L A. 2007. Onset of submarine debris flow deposition far from original giant landslide[J]. Nature, 450(7169): 541−544.

    Google Scholar

    [38] Tang J X, Yang H H, Song Y, Wang L Q, Liu Z B, Li B L, Lin B, Peng B, Wang G H, Zeng Q G, Wang Q, Chen W, Wang N, Li Z J, Li Y B, Li Y B, Li H F, Lei C Y. 2021. The copper polymetallic deposits and resource potential in the Tibet Plateau[J]. China Geology, 4(1): 1−16.

    Google Scholar

    [39] Wang Jian, Ding Jun, Wang Chengshan, Tan Fuwen, Chen Ming, Hu Ping, Li Yalin, Gao Rui, Fang Hui, Zhu Lidong, Li Qiusheng, Zhang Minghua, Li Zhongxiong, Du baiwei, Fu Xiugen, Wan Fang, Zhang Jianlong, Chen Wenbin, Ling Xiaoming. 2009. Investigatin and Evaluation of Oil and Gas Resources Strategic Selection in the Tibetan Plateau[M]. Beijing: Geologicaol Publishing House, 30–70(in Chinese).

    Google Scholar

    [40] Wang Liquan, Pan Guitang, Ding Jun, Luo Jianning, Yan Yangji, Zheng Jiankang, Wang Peisheng, Chen Yongmin, Mo Xuanxue, Zhang Kexin, Wang Guocan, Wang Baodi, Li Rongshe, Zhu Dicheng, Xiang Shuyuan, Liu Hongfei, Jiang Xinsheng, Zhu Tongxing, Yuan Sihua, Zhang WanPin, Ji Wenhua, Geng Quanru, Dong Guochen, Yin Fuguang. 2013. Geotectonic Map and Instrucitons in Qinghai−Tibet Plateau and its Adjacent Regions(1: 1.5 million) [M]. Beijing: Geological Publishing Houses, 18–84(in Chinese with English abstract).

    Google Scholar

    [41] Wang Xianmei, Wu Xinhe, Zheng Herong, Wang Yi. 2011. Source rock features of the Middle−Upper Jurassic Lagongtang Formation in Biru Basin, Tibet Plateau[J]. Acta Petrolei Sinica, 32(1): 41−47 (in Chinese with English abstract).

    Google Scholar

    [42] Xie Guogang, Xiao Zhijian, Zou Aijian, Ouyang Kegui, Cao Shenghua, Xiao Yebin, Liao Liugen, Deng Shiquan, Feng Guosheng, Xu Ping, Liu Qinghong, Chen Zhenhua. 2015. Geological Survey Report of Kala Sheet and Ritu County Sheet at Scale 1: 250000[M]. Wuhan: China University of Geosciences Press, 45–54(in Chinese).

    Google Scholar

    [43] Xizang Bureau of Geology and Mineral Resources. 1997. Tibet Lithostratigraphy[M]. Wuhan: China University of Geosciences Press, 163–190(in Chinese).

    Google Scholar

    [44] Yang Tian, Cao Yingchang, Wang Yanzhong, Zhang Shaomin. 2015. Types, sedimentary characteristics and genetic mechanisms of deep−water gravity flows: A case study of the Middle Submember in Member 3 of Shahejie Formation in Jiyang Depression[J]. Acta Petrolei Sinica, 36(9): 1048−1059 (in Chinese with English abstract).

    Google Scholar

    [45] Yu Anguang. 1997. Gravity flow deposition in the Lagongtang Formation of the Kangyu region, Xizang[J]. Palaeogeo Gragraphy, 17(6): 39−44 (in Chinese).

    Google Scholar

    [46] Yu S M, Ma X D, Hu Y C, Chen W, Liu Q P, Song Y, Tang J X. 2022. Post−subdution evolution of the Northern Lhasa Terrane, Tibet: Constraints from geochemical anomalies, chronology and petrogeochemical characteristics[J]. China Geology, 5(1): 84−95.

    Google Scholar

    [47] Yuan Jing, Liang Huiyuan, Liang Bing, Dong Daotao, Min Wei, Song Fan, Li Heyong. 2016. Sedimentary characteristics and development model of lacustrine gravity flow: A case study of Dainan Formation in deep sag belt of Gaoyou Depression, Northern Jiangsu Basin[J]. Acta Petrolei Sinica, 37(3): 348−359 (in Chinese with English abstract).

    Google Scholar

    [48] Zeng M, Zhang X, Cao H, Ettensohn F R, Chen W B, Lang X H. 2016. Late Triassic initial subduction of the Bangong–Nujiang ocean beneath Qiangtang revealed: Stratigraphic and geochronological evidence from Gaize, Tibet[J]. Basin Research, 28: 147−157. doi: 10.1111/bre.12105

    CrossRef Google Scholar

    [49] Zhang Shizheng, Xiang Shuyuan, Wang Jun, Mao Xin. 2010. LA–ICP–Ms U–Pb geochronology of detrital zircons from Biru Basin of Tibet and its tectonic significance[J]. Geological Science and Technology Information, 29(5): 15−22 (in Chinese with English abstract).

    Google Scholar

    [50] Zhao Chenglin, Zhu Xiaomin. 2001. Sedimentary Petrology (3rd Edition)[M]. Beijing: Petroleum Industry Press, 311–325 (in Chinese).

    Google Scholar

    [51] Zheng Rongcai, Zheng Zhe, Gao Boyu, Hu Xiaoqing, Wang Changyong. 2013. Sedimentary features of the gravity flows in submarine fan of Zhujiang Formation in Baiyun Sag, Pearl River Mouth Basin[J]. Lithologic Reservoirs, 25(2): 1−8 (in Chinese with English abstract).

    Google Scholar

    [52] 操应长, 杨田, 王艳忠. 2017. 超临界沉积物重力流形成演化及特征[J]. 石油学报, 38(6): 607−621. doi: 10.7623/syxb201706001

    CrossRef Google Scholar

    [53] 陈国荣, 刘鸿飞, 蒋光武, 曾庆高, 赵守仁, 张相国. 2004. 西藏班公湖–怒江结合带中段沙木罗组的发现[J]. 地质学报, 23(2): 193−202.

    Google Scholar

    [54] 陈曦, 王成善, 胡修棉, 黄永建, 魏玉帅, 王平康. 2008. 西藏南部江孜盆地上侏罗统至古近系沉积岩石学特征与盆地演化[J]. 岩石学报, 24(3): 616–624.

    Google Scholar

    [55] 陈玉禄, 陈国荣, 张宽忠. 2015. 1: 250000班戈县幅区域地质调查报告[M]. 北京: 地质出版社, 45–70.

    Google Scholar

    [56] 程顶胜, 韩慧, 李永铁, 雷振宇, 胡祖军. 2001. 藏北比如盆地油气地表地球化学勘探[J]. 石油勘探与开发, 28(1): 45−47. doi: 10.3321/j.issn:1000-0747.2001.01.015

    CrossRef Google Scholar

    [57] 邓金火, 袁振国, 余江, 杜昌法, 唐宗源, 孙社良, 吕鑫, 钟文, 万川, 钟俊靖. 2017. 班公湖—怒江结合带西段沙木罗组底砾岩的新发现及地质意义[J]. 地质论评, 63(2): 302−310.

    Google Scholar

    [58] 高红灿, 郑荣才, 魏钦廉, 陈发亮, 陈君, 朱登锋, 刘云. 2012. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 27(8): 815−827.

    Google Scholar

    [59] 胡敬仁, 高体岗, 陈国结. 2014. 1: 250000比如县幅区域地质调查报告[M]. 武汉: 中国地质大学出版社, 1–229.

    Google Scholar

    [60] 黄文奥, 赵晓明, 谭程鹏, 葛家旺, 冯双奇, 李晨曦, 陆文明. 2020. 西秦岭直合隆地区三叠系深水水道沉积模式分析[J]. 沉积学报, 38(5): 1061−1075.

    Google Scholar

    [61] 金杰华, 操应长, 王健, 杨田, 刘娟, 王心怿, 王淑萍. 2019b. 涠西南凹陷陡坡带流一段上亚段异重流沉积新发现[J]. 地学前缘, 26(4): 250−258.

    Google Scholar

    [62] 金杰华, 操应长, 王健, 杨田, 周磊. 2019a. 深水砂质碎屑流沉积: 概念、沉积过程与沉积特征[J]. 地质论评, 65(3): 689−701.

    Google Scholar

    [63] 李奋其, 刘伟, 耿全如. 2009. 西藏冈底斯带那曲地区中生代火山岩的LA–ICP–MS锆石U–Pb年龄和地质意义[J]. 地球学报, 31(6): 781−790.

    Google Scholar

    [64] 李奋其, 刘伟, 张士贞, 李勇. 2014. 冈底斯中北部及邻区中侏罗世—早白垩世地球动力背景转换的证据[J]. 地质论评, 60(6): 1297−1308.

    Google Scholar

    [65] 李光明, 雍永源. 2000. 藏北那曲盆地中–上侏罗统拉贡塘组浊流沉积特征及微量元素地球化学[J]. 地球学报, 21(4): 373−378. doi: 10.3321/j.issn:1006-3021.2000.04.006

    CrossRef Google Scholar

    [66] 李相博, 刘化清, 完颜容, 魏立花, 廖建波, 马玉虎. 2009. 鄂尔多斯盆地三叠系延长组砂质碎屑流储集体的首次发现[J]. 岩性油气藏, 21(4): 19−21.

    Google Scholar

    [67] 李相博, 卫平生, 刘化清, 王菁. 2013. 浅谈沉积物重力流分类与深水沉积模式[J]. 地质论评, 59(4): 607−614. doi: 10.3969/j.issn.0371-5736.2013.04.002

    CrossRef Google Scholar

    [68] 梁超, 解习农, 史冠中. 2018. 内蒙古满都拉地区中二叠统哲斯组上段重力流堆积的沉积机制及地质意义[J]. 地质科技情报, 37(6): 54−64.

    Google Scholar

    [69] 刘建平, 鲜本忠, 张莉, 苏明, 李宇志, 闫海清, 王震, 陈鹏. 2022. 渤海湾盆地东营凹陷碎屑流主控型深水体系沉积过程及模式[J]. 中国地质, 49(6): 1951−1969. doi: 10.12029/gc20220618

    CrossRef Google Scholar

    [70] 孟庆任, 渠洪杰, 胡健民. 2007. 西秦岭和松潘地体三叠系深水沉积[J]. 中国科学: 地球科学, 37(增刊): 209−223.

    Google Scholar

    [71] 尼玛次仁, 谢尧武, 沙昭礼. 2014. 1∶250000那曲县幅区域地质调查报告[M]. 武汉: 中国地质大学出版社, 35–90.

    Google Scholar

    [72] 强昆生, 张光学, 张莉, 吕宝凤, 钟广见, 冯常茂, 易海, 赵忠泉, 杨振, 鄢伟. 2018. 南海北部潮汕坳陷侏罗系沉积特征及对储层的控制作用研究[J]. 中国地质, 45(1): 48−58. doi: 10.12029/gc20180105

    CrossRef Google Scholar

    [73] 王剑, 丁俊, 王成善, 谭富文, 陈明, 胡平, 李亚林, 高锐, 方慧, 朱利东, 李秋生, 张明华, 李忠雄, 杜佰伟, 付修根, 万方, 张建龙, 陈文彬, 凌小明. 2009. 青藏高原油气资源战略选区调查与评价[M]. 北京: 地质出版社, 30–70.

    Google Scholar

    [74] 王立全, 潘桂棠, 丁俊, 姚冬生, 罗建宁, 颜仰基, 郑建康, 王培生, 陈永民, 莫宣学, 张克信, 王国灿, 王保弟, 李荣社, 朱弟成, 向树元, 刘鸿飞, 江新胜, 朱同兴, 袁四化, 张万平, 计文化, 耿全如, 董国臣, 尹福光. 2013. 青藏高原及邻区地质图及说明书(1: 150万)[M]. 北京: 地质出版社, 18–84.

    Google Scholar

    [75] 王先美, 伍新和, 郑和荣, 王毅. 2011. 青藏高原比如盆地中–上侏罗统烃源岩[J]. 石油学报, 32(1): 41−47. doi: 10.7623/syxb201101006

    CrossRef Google Scholar

    [76] 谢国刚, 肖志坚, 邹爱建, 欧阳克贵, 曹圣华, 肖业斌, 廖六根, 邓世权, 冯国胜, 徐平, 刘庆宏, 陈振华. 2015. 1∶250000日土县幅区域地质调查报告[M]. 北京: 地质出版社, 45–54.

    Google Scholar

    [77] 西藏自治区地质矿产局. 1997. 西藏岩石地层[M]. 武汉: 中国地质大学出版社, 163−190.

    Google Scholar

    [78] 杨田, 操应长, 王艳忠, 张少敏. 2015. 深水重力流类型、沉积特征及成因机制—以济阳坳陷沙河街组三段中亚段为例[J]. 石油学报, 36(9): 1048−1059.

    Google Scholar

    [79] 喻安光. 1997. 西藏康玉地区拉贡塘组的重力流沉积[J]. 岩相古地理, 17(6): 39−44.

    Google Scholar

    [80] 袁静, 梁绘媛, 梁兵, 董道涛, 闵伟, 宋璠, 李鹤永. 2016. 湖相重力流沉积特征及发育模式—以苏北盆地高邮凹陷深凹带戴南组为例[J]. 石油学报, 37(3): 348−359. doi: 10.7623/syxb201603007

    CrossRef Google Scholar

    [81] 张士贞, 向树元, 万俊, 毛鑫. 2010. 西藏比如盆地碎屑锆石LA–ICP–MS U–Pb测年及其地质意义[J]. 地质科技情报, 29(5): 15−22.

    Google Scholar

    [82] 赵澄林, 朱筱敏. 2001. 沉积岩石学(第三版)[M]. 北京: 石油工业出版社, 311–325.

    Google Scholar

    [83] 郑荣才, 郑哲, 高博禹, 胡晓庆, 王昌勇. 2013. 珠江口盆地白云凹陷珠江组海底扇深水重力流沉积特征[J]. 岩性油气藏, 25(2): 1−8. doi: 10.3969/j.issn.1673-8926.2013.02.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(170) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint