2024 Vol. 51, No. 4
Article Contents

HE Guojian, HU Xiumian, LOU Fasheng, CHEN Haopeng, YANG Xiaofei, CHEN Jianzhong, WU Chunwei, ZHANG Miliang. 2024. Geochemistry and geochronology of intermediate–basic rocks in the Galwan Valley area of the North Qiangtang terrane, Karakoram[J]. Geology in China, 51(4): 1422-1440. doi: 10.12029/gc20201116001
Citation: HE Guojian, HU Xiumian, LOU Fasheng, CHEN Haopeng, YANG Xiaofei, CHEN Jianzhong, WU Chunwei, ZHANG Miliang. 2024. Geochemistry and geochronology of intermediate–basic rocks in the Galwan Valley area of the North Qiangtang terrane, Karakoram[J]. Geology in China, 51(4): 1422-1440. doi: 10.12029/gc20201116001

Geochemistry and geochronology of intermediate–basic rocks in the Galwan Valley area of the North Qiangtang terrane, Karakoram

    Fund Project: Supported by the projeet of Xinjiang Geological Exploration Fund (No.K15–1–LQ22).
More Information
  • Author Bio: HE Guojian, male, born in 1987, master candidate, senior engineer, mainly engaged in the Qinghai Tibet Plateau regional geological and mineral researches; E-mail: 541373659@qq.com
  • This paper is the result of geological survey engineering.

    Objective

    The Galwan Valley, which adjacent to the Huoshaoyun super large lead−zinc deposit, located in the Karakoram Mountains of the Northern Qiangtang terrane. A systematically lithogeochemistry and chronological studies was conducted on the newly discovered magmatic rocks in the Galwan Valley area to helps us deeply understanding the regional metallogenic dynamics and magmatic evolution history, providing a theoretical foundation for the study of regional magmatic−tectonic−mineralization processes.

    Methods

    This study reports seven samples of intermediate−basic magmatic rocks in the Galwan Valley area, including basalt, diabase, and diorite. A systematic mineralogical, major and trace element, zircon U–Pb age, and trace element analyses were conducted on these samples.

    Results

    The zircon U–Pb dating results indicate that the Bingdong diorite is emplaced at (98.9±1.2) Ma, and its whole−rock composition is characterized by low−potassium calc−alkaline features. In contrast, the zircon U–Pb dating results for the basalt show an eruption age of (232±9) Ma, with its whole−rock geochemical composition displaying calcium alkali or peralkaline characteristics. The zircon dating results show that both the diorite and basalt samples contain a large number of ~800 Ma inherited zircons, and both have age spectra featuring six distinct age peaks.

    Conclusions

    The Bingdong diorite is a product of crust−mantle mixing under a crustal thickening background, related to the remote effect of the India–Asia collision orogeny following the closure of the Neo–Tethys Ocean. The existence of numerous ~800 Ma inherited zircons in the diorite and basalt indicates that they originated from the melting of Neoproterozoic basement material. The six distinct zircon age peaks in both the diorite and basalt reflect six periods of tectono–magmatic activity, ranging from the Mesoproterozoic crystalline basement and the breakup of the Rodinia supercontinent to the closure of the Neo–Tethys Ocean and subsequent collisional orogeny.

  • 加载中
  • [1] Bi Hua, Wang Zhonggang, Wang Yuanlong, Zhu Xiaoqing. 1999. Tectono–magmatic evolution of the West Kunlun Orogenic Belt[J]. Science in China (Series D), 29(5): 398−406 (in Chinese).

    Google Scholar

    [2] Deng Wanming. 1989. A preliminary study on the basic–ultrabasic rocks of the Karakoram–Western Kunlun Mts[J]. Journal of Natural Resources, 4(3): 204−211 (in Chinese with English abstract).

    Google Scholar

    [3] Dong Lianhui, Xu Xingwang, Fan Tingbin, Qu Xun, Li Hao, Wan Jianling, An Haitao, Zhou Gang, Li Jihong, Chen Gang, Liu Chuan. 2015. Discovery of the Huoshaoyun super–large exhalative–sedimentary carbonate Pb–Zn deposit in the Western Kunlun area and its great significance for regional metallogeny[J]. Xinjiang Geology, 33(1): 41−50 (in Chinese with English abstract).

    Google Scholar

    [4] Fan Tingbin, Jin Hongzhan, Yu Yuanjun, Jiang Guopeng, Xia Mingyi. 2019. Metallogenic characteristics and prospecting progress of lead–zinc deposits in the Tianshuihai area of west Kunlun[J]. Journal of Geology, 43(2): 184−197 (in Chinese with English abstract).

    Google Scholar

    [5] Gao Yongbao, Li Kan, Teng Jiaxin, Zhao Xinmin, Zhao Xiaojian, Yan Zhouquan, Jin Moushun, Zhao Huibo, Li Xutuo. 2019. Mineralogy, geochemistry and genesis of giant Huoshaoyun Zn–Pb deposit in Karakoram area, Xinjiang, NW China[J]. 52(4): 152–169 (in Chinese with English abstract).

    Google Scholar

    [6] Geological and Mineral Resources Bureau of Xinjiang Uygur Autonomous Region. 1993. Regional Geology of Xinjiang Uygur Autonomous Region[M]. Beijing: Geological Publishing House, 136–759 (in Chinese).

    Google Scholar

    [7] Hao Jie, Zhai Mingguo. 2004. Jinning movement and Sinian system in China: Their relationship with Rodinia supercontinent[J]. Chinese Journal of Geology, 39(1): 139−152 (in Chinese with English abstract).

    Google Scholar

    [8] He Guojian, Chen Jianzhong, Zhang Miliang, Yao Jianbin, Chen Haopeng, Hu Weizheng. 2020. The discovery of Early Permian ammonite fossils in Galwan, West Kunlun, Xinjiang and its significance of lithofacies and palaeogeography[J]. Geological Bulletin of China, 42(1): 76−83 (in Chinese with English abstract).

    Google Scholar

    [9] Ji Wenhua, Li Rongshe, Chen Shoujian, He Shiping, Zhao Zhenming, Bian Xiaowei, Zhu Haiping, Cui Jigang, Ren Juangang. 2011. The discovery of Palaeoproterozoic volcanic rocks in the Bulunkuoler Group from the Tianshuihai Massif in Xinjiang of northwest China and its geological significance[J]. Science China Earth Science, 41(9): 1268−1280 (in Chinese).

    Google Scholar

    [10] Jian Kunkun, Gao Feng, Du Biao, Zhang Zhenkai, Wang Xing, Zhao Duanchang. 2019. Formation age, geochemical characteristics and tectonic setting of the basalts from Longshan Formation in Heweitan area, Karakorum[J]. Mineralogy and Petrology, 39(3): 42−51 (in Chinese with English abstract).

    Google Scholar

    [11] Le Maitre R W. 1989. A Classification of Igneous Rocks and Glossary of Terms[M]. Blackwell: Oxford, 193.

    Google Scholar

    [12] Li Xingkui, Li Cai, Wang Ming, Liu Jinheng, Luo Anbo. 2018. Nature and evolution of crustal basement beneath the Duolong ore concentration area, northern Tibet, and their constraints on the metallogenesis: Insights from U–Pb ages of inherited zircons from the Bolong volcanic–intrusive rocks[J]. Geological Bulletin of China, 37(8): 1439−1449 (in Chinese with English abstract).

    Google Scholar

    [13] Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA–ICP–MS without applying an internal standard[J]. Chemical Geology, 257: 34−43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [14] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101: 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [15] Meschede M. 1986. A method of discriminating between different types of mid–ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram[J]. Chemical Geology, 56: 207−218. doi: 10.1016/0009-2541(86)90004-5

    CrossRef Google Scholar

    [16] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 37(3/4): 215−224.

    Google Scholar

    [17] Pan Guitatng, Xiao Qinghui, Lu Songnian, Deng Jinfu, Feng Yimin, Zhang Kexin, Zhang Zhiyong, Wang Fangguo, Xing Guangfu, Hao Guojie, Feng Yanfang. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−28 (in Chinese with English abstract).

    Google Scholar

    [18] Pan Yusheng, Fang Aimin. 2010. Formation and evolution of the Tethys in the Tibetan Plateau[J]. Chinese Journal of Geology, 45(1): 92−101 (in Chinese with English abstract).

    Google Scholar

    [19] Peccerillo R, Taylor S R. 1976. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58: 63−81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [20] Pearce J A. 1982. Trace elements characteristic of lavas from destructive plate boundaries. Andesites[C]//Thorpe R S. Orogenic Andesites and Related Rocks. Chichester, England: John Wiley & Sons, 525–548.

    Google Scholar

    [21] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313–345.

    Google Scholar

    [22] Wedepohl K H. 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217−1232. doi: 10.1016/0016-7037(95)00038-2

    CrossRef Google Scholar

    [23] Whitehouse M J, Kamber B S. 2002. On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation[J]. Earth and Planetary Science Letters, 204: 333−346. doi: 10.1016/S0012-821X(02)01000-2

    CrossRef Google Scholar

    [24] Wood D A. 1980. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British terfiary volcanic province[J]. Earth and Planetary Science Letters, 50(1): 11−30. doi: 10.1016/0012-821X(80)90116-8

    CrossRef Google Scholar

    [25] Wu Liren. 1963. Metallogenic specialization of basic–ultrabasic rocks in China[J]. Scientia Geologia Sinica, (1): 29−41 (in Chinese).

    Google Scholar

    [26] Wu Yuanbao, Zheng Yongfei. 2004. Zircon genetic mineralogy and constraint on its U–Pb age[J]. Chinese Science Bulletin, 49(16): 1589−1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589

    CrossRef Google Scholar

    [27] Zhang Chuanlin, Lu Songnian, Yu Haifeng, Ye Minmin. 2007. Tectonic evolution of the west Kunlun Orogenic Belt on the northern margin of the Tibet plateau: Evidence from zircon SHRIMP and LA–ICP–MS dating[J]. Science in China (Series D), 37(2): 145−154 (in Chinese).

    Google Scholar

    [28] Zhang Chuanlin, Ma Huadong, Zhu Bingyu, Ye Xiantao, Qiu Lin, Zhao Haixiang, Liu Xiaoqiang, Ding Teng, Wang Qian, Hao Xiaoshu. 2019. Tectonic evolution of the Western Kunlun—Karakorum Orogenic Belt and its coupling with the mineralization effect[J]. Geological Review, 65(5): 1077−1102 (in Chinese with English abstract).

    Google Scholar

    [29] Zhang Huishan, Ji Wenhua, Ma Zhongping, Gao Xiaofeng, Sun Chao, Hong Jun, Lü Pengrui. 2020. Geochronology and geochemical study of the Cambrian andesite in Tianshuihai terrane: Implications for the evolution of the Proto–Tethys Ocean in the west Kunlun–Karakoram orogenic belt[J]. Acta Petrologica Sinica, 36(1): 257−278 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.21

    CrossRef Google Scholar

    [30] Zhang Yu, Tang Mingying, He Yuliang, Cui Xiaofeng, Zhang Dongyang, Zhu Mingshuai. 2023. Geochemistry, zircon U–Pb age and Hf isotopic characteristics of two−mica monzonitic granites in Dujianshan area of Western Kunlun, Xinjiang[J]. Geology in China, 50(4): 1203−1216 (in Chinese with English abstract).

    Google Scholar

    [31] Zhao Yue, Song Biao, Zhang Shuanhong, Liu Jian. 2006. Geochronology of the inherited zircons from Jurassic Nandaling basalt of the Western Hills of Beijing, North China: its implications[J]. Earth Science Frontiers, 13(2): 184−190 (in Chinese with English abstract).

    Google Scholar

    [32] Zheng Jianping, Griffin W L, Tang Huayun, Zhang Zhihai, Su Yuping, Liu Guanliang. 2008. Arcahean basement similar to the North China and Yangtze Continents may be existed beneath the Western Cathaysia[J]. Geological Journal of China Universities, 14(4): 549−557 (in Chinese with English abstract).

    Google Scholar

    [33] Zhou Nengwu, Chen Bangxue, Deng Zhongfei, Sang Mingshuai, Bai Quanjin. 2019. Discovery and significance of Early Jurassic bimodal volcanic rocks in Huoshaoyun, Karakoram[J]. Geoscience, 33(5): 990−1002 (in Chinese with English abstract).

    Google Scholar

    [34] 毕华, 王中刚, 王元龙, 朱笑青. 1999. 西昆仑造山带构造岩浆演化史[J]. 中国科学(D辑: 地球科学), 29(5): 398−406.

    Google Scholar

    [35] 邓万明. 1989. 喀喇昆仑—西昆仑地区基性—超基性岩初步考察[J]. 自然资源学报, 4(3): 204−211.

    Google Scholar

    [36] 董连慧, 徐兴旺, 范廷宾, 屈迅, 李昊, 万建领, 安海涛, 周刚, 李基宏, 陈刚, 刘川. 2015. 喀喇昆仑火烧云超大型喷流–沉积成因碳酸盐型Pb–Zn矿的发现及区域成矿学意义[J]. 新疆地质, 33(1): 41−50.

    Google Scholar

    [37] 范廷宾, 晋红展, 余元军, 蒋国鹏, 夏明毅. 2019. 西昆仑甜水海地区铅锌矿成矿特征及找矿进展[J]. 地质学刊, 43(2): 184−197.

    Google Scholar

    [38] 高永宝, 李侃, 滕家欣, 赵辛敏, 赵晓健, 燕洲泉, 金谋顺, 赵慧博, 李旭拓. 2019. 新疆喀喇昆仑火烧云超大型铅锌矿床矿物学、地球化学及成因[J]. 西北地质, 52(4): 152−169.

    Google Scholar

    [39] 郝杰, 翟明国. 2004. 罗迪尼亚超大陆与晋宁运动和震旦系[J]. 地质科学, 39(1): 139−152.

    Google Scholar

    [40] 何国建, 陈建中, 张密椋, 姚建斌, 陈浩鹏, 胡为正. 2020. 新疆西昆仑加勒万河一带早二叠世菊石化石的发现及岩相古地理意义[J]. 地质通报, 42(1): 76−83.

    Google Scholar

    [41] 计文化, 李荣社, 陈守建, 何世平, 赵振明, 边小卫, 朱海平, 崔继岗, 任绢刚. 2011. 甜水海地块古元古代火山岩的发现及其地质意义[J]. 中国科学(地球科学), 41(9): 1268−1280.

    Google Scholar

    [42] 菅坤坤, 高峰, 杜彪, 张振凯, 王星, 赵端昌. 2019. 喀喇昆仑河尾滩地区龙山组火山岩年代、地球化学特征及其构造环境[J]. 矿物岩石, 39(3): 42−51.

    Google Scholar

    [43] 李兴奎, 李才, 王明, 刘金恒, 罗安波. 2018. 藏北多龙矿集区地壳基底性质、演化及其对成矿的制约—来自波龙火山–侵入岩中继承锆石U–Pb年龄的信息[J]. 地质通报, 37(8): 1439−1449.

    Google Scholar

    [44] 潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−28.

    Google Scholar

    [45] 潘裕生, 方爱民. 2010. 中国青藏高原特提斯的形成与演化[J]. 地质科学, 45(1): 92−101. doi: 10.3969/j.issn.0563-5020.2010.01.009

    CrossRef Google Scholar

    [46] 吴利仁. 1963. 论中国基性岩、超基性岩的成矿专属性[J]. 地质科学, (1): 29−41.

    Google Scholar

    [47] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U–Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604.

    Google Scholar

    [48] 新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 136–759.

    Google Scholar

    [49] 张传林, 陆松年, 于海锋, 叶海敏. 2007. 青藏高原北缘西昆仑造山带构造演化: 来自锆石SHRIMP及LA–ICP–MS测年的证据[J]. 中国科学(D辑: 地球科学), 37(2): 145−154.

    Google Scholar

    [50] 张传林, 马华东, 朱炳玉, 叶现韬, 邱林, 赵海香, 刘晓强, 丁腾, 王倩, 郝晓姝. 2019. 西昆仑—喀喇昆仑造山带构造演化及其成矿效应[J]. 地质论评, 65(5): 1077−1102.

    Google Scholar

    [51] 张辉善, 计文化, 马中平, 高晓峰, 孙超, 洪俊, 吕鹏瑞. 2020. 甜水海地块寒武纪安山岩的地球化学和年代学研究: 对西昆仑—喀喇昆仑造山带原特提斯洋演化的启示[J]. 岩石学报, 36(1): 257−278.

    Google Scholar

    [52] 张宇, 唐名鹰, 何玉良, 崔霄峰, 张东阳, 朱明帅. 2023. 新疆西昆仑独尖山地区二云母二长花岗岩岩石地球化学、锆石U–Pb年龄与Hf同位素特征[J]. 中国地质, 50(4): 1203−1216.

    Google Scholar

    [53] 赵越, 宋彪, 张拴宏, 刘健. 2006. 北京西山侏罗纪南大岭组玄武岩的继承锆石年代学及其含义[J]. 地学前缘, 13(2): 184−190.

    Google Scholar

    [54] 郑建平, Griffin W L, 汤华云, 张志海, 苏玉平, 刘观亮. 2008. 西部华夏地区深部可能存在与华北和扬子大陆相似的太古代基底[J]. 高校地质学报, 14(4): 549−557.

    Google Scholar

    [55] 周能武, 陈邦学, 邓中飞, 桑明帅, 白权金. 2019. 喀拉昆仑火烧云一带早侏罗世双峰式火山岩的发现及意义[J]. 现代地质, 33(5): 990−1002.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(350) PDF downloads(32) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint