2023 Vol. 50, No. 2
Article Contents

ZHOU Zuomin, LIU Xiaoyang, GONG Penghui, REN Junping, XIE Yu, SUN Kai, WU Xingyuan, HE Fuqing, HE Shengfei, ZUO Libo, ZHANG Hang. 2023. Metallogeny and advances of chromite deposits[J]. Geology in China, 50(2): 425-441. doi: 10.12029/gc20201106002
Citation: ZHOU Zuomin, LIU Xiaoyang, GONG Penghui, REN Junping, XIE Yu, SUN Kai, WU Xingyuan, HE Fuqing, HE Shengfei, ZUO Libo, ZHANG Hang. 2023. Metallogeny and advances of chromite deposits[J]. Geology in China, 50(2): 425-441. doi: 10.12029/gc20201106002

Metallogeny and advances of chromite deposits

    Fund Project: Supported by China- aided Geological Survey and Mineral Resources Assessment for Rwanda (No. WKZB1811BJB301389), Assessment of Mineral Resources and Mining Development Environment in the Central African CopperCobalt metallogenic belt (No.DD20190439) and Research on Geological Setting, Mineralization and Prospecting Potential of Important Deposits in Central and Southern Africa (No.1212011220910)
More Information
  • Author Bio: ZHOU Zuomin, male, born in 1986, senior engineer, engaged in the research of petrology, geochemistry and geotherm; E-mail: zzm04013114@163.com
  • Corresponding author: LIU Xiaoyang, male, born in 1977, professor of engineer, engaged in the geological survey and research; E-mail: lxylyw200@163.com 
  • This paper is the result of mineral exploration engineering.

    Objective

    The formation of chromite is generally related to basic-ultrabasic rocks. However, the genetic mechanism of chromite deposit remains controversial. Deciphering the genesis of chromite deposit is of great significance for ore exploration.

    Methods

    This review work summarizes the ore types, metallogenic age, ore body characteristics and genetic mechanisms of chromite based on previous research results. New perspectives are also provided.

    Results

    The chromite resources and production are highly concentrated at South Africa, Kazakhstan, Finland and India, accounting for more than 95% of the global chromite reserves. The global chromite supply market is dominated by South Africa, Kazakhstan and Turkey. There are two major chromite types, namely primary and secondary chromite. Primary chromite is mainly stratiform and podiform, while secondary chromite is mainly seashore placer chromite (or marine placer chromite). The stratiform chromite deposit is commonly huge in scale and formed associated with the basic-ultrabasic intrusions within stable cratons. The podiform chromite deposit is widely distributed and closely symbiotic with ophiolite, but the scale of this deposit is generally small. There are obvious differences in the occurrence, fabric, structure and paragenetic association of the two different chromite types. The podiform chromite is mainly formed in the Phanerozoic, with a small amount formed in the Meso-Neoproterozoic. The stratiform chromite is mainly formed in the Proterozoic and concentrated in the Paleoproterozoic.

    Conclusions

    The genetic model of the stratiform chromite deposit is less controversial, mainly focusing on the contamination mechanism of salic roof rocks and the magma mixture. In contrast, little consensus has been reached on the genetic models of podiform chromite. The enrichment mechanism of chromium is a key issue for more scientific constraints in the future.

  • 加载中
  • Arai S. 2013. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: A good inference[J]. Earth and Planetary Science Letters, 379: 81-87. doi: 10.1016/j.epsl.2013.08.006

    CrossRef Google Scholar

    Arai S, Yurimoto H, 1994. Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products[J]. Economic Geology, 89(6): 1279-1288. doi: 10.2113/gsecongeo.89.6.1279

    CrossRef Google Scholar

    Bao Peisheng. 2019. Proterozoic ophiolite and chromite[J]. Acta Petrologica Sinia, 35(10): 2971-2988 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.03

    CrossRef Google Scholar

    Bao Peisheng, Wang Xibin. 1999. Chinese Chromite[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    Bao Peisheng, Wang Xibin, Hao Zhiguo, Peng Genyong, Zhang Rangmin, Chen Qingzhi, Yang Tinghui. 1990. A new idea about the genesis of the aluminum-rich podiform chromite deposit——with the Sartuohai chromite deposit of Xinjiang as an example[J]. Mineral Deposits, 9(2): 97-111 (in Chinese with English abstract).

    Google Scholar

    Chen Yanhong, Yang Jingsui. 2017. Formation of podiform chromitite deposits: Review and prospects[J]. Earth Science, 43(4): 991-1010 (in Chinese with English abstract).

    Google Scholar

    Das S, Basu A R, Mukherjee B K, 2017. In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone[J]. Geology, 45: 755-758.

    Google Scholar

    Eales H V, 2000. Implications of the chromium budget of the Western Limb of the Bushveld Complex[J]. South African Journal of Geology, 103(2): 141-150. doi: 10.2113/103.2.141

    CrossRef Google Scholar

    Fisher. 1929. Origin of chromite deposits[J]. Economic Geology, 24: 691-721. doi: 10.2113/gsecongeo.24.7.691

    CrossRef Google Scholar

    Gong Xuejing, Zhang Tengjiao, Xiao Rongge. 2013. Research status and progress on the genesis of podiform chromite deposits in China[J]. Geological Journal of China Universities, 19(S): 275-276 (in Chinese with English abstract).

    Google Scholar

    Griffin W L, Afonso J C, Belousova E A, Gain S E, Gong X H, González-Jiménez J M, Howell D, Huang J X, McGowan N, Pearson N J, Satsukawa T, Shi R, Williams P, Xiong Q, Yang J S, Zhang M, O Reilly S Y. 2016. Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications[J]. Journal of Petrology, 57(4): 655-684. doi: 10.1093/petrology/egw011

    CrossRef Google Scholar

    Gujar A R, Ambre N V, Iyer S D, Mislankar P G, Loveson V J. 2010a. Placer chromite along south Maharashtra, central west coast of India[J]. Current Science (Bangalore), 99(4): 492-499.

    Google Scholar

    Gujar A R, Ambre N V, Mislankar P G, Iyer S D. 2010b. Ilmenite, magnetite and chromite beach placers from South Maharashtra, central west coast of India[J]. Resource Geology, 60(1): 71-86. doi: 10.1111/j.1751-3928.2010.00115.x

    CrossRef Google Scholar

    Guo Jia, Yi Jining, Wang Hui. 2018. Comparative study on evaluation factors of global major strategic mineral lists[J]. Modern Mining, 596(12): 1-5 (in Chinese).

    Google Scholar

    Hamdy M M, Lebda E M. 2011. Al-compositional variation in ophiolitic chromitites from the south Eastern Desert of Egypt: Petrogenetic implications[J]. Journal of Geology and Mining Research, 3(9): 232-250.

    Google Scholar

    Hao Zhiguo. 1989. Review of the podiform chromitite deposits[J]. Geology and Geochemistry, (3): 15-20 (in Chinese).

    Google Scholar

    Howell D, Griffin W L, Yang J, Gain S, Stern R A, Huang J X, Jacob D E, Xu X, Stokes A J, O'Reilly S Y, Pearson N J. 2015. Diamonds in ophiolites: Contamination or a new diamond growth environment?[J]. Earth and Planetary Science Letters, 430: 284-295. doi: 10.1016/j.epsl.2015.08.023

    CrossRef Google Scholar

    Hu Zhenxing, Niu Yaoling, Liu Yi, Zhang Guorui, Sun Wenli, Ma Yuxin. 2014. Petrogenesis of ophiolite-type chromite deposits in China and some new perspectives[J]. Geological Journal of China Universities, 20(1): 9-27 (in Chinese with English abstract).

    Google Scholar

    Huang Yang, Deng Hao. 2020. FIB-TEM study of mineral inclusions in chromite[J]. Earth Science, 45(12): 4604-4616 (in Chinese with English abstract).

    Google Scholar

    Irvine T N. 1975. Crystallization sequences in the Muskox intrusion and other layered intrusions——Ⅱ. Origin of chromitite layers and similar deposits of other magmatic ores[J]. Geochimica et Cosmochimica Acta, 39: 991-1020. doi: 10.1016/0016-7037(75)90043-5

    CrossRef Google Scholar

    Irvine T N, 1977. Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: A new interpretation[J]. Geology, 5: 273-277.

    Google Scholar

    Johnson P R, Andresen A, Collins A S, Fowler A R, Fritz H, Ghebreab W, Kusky T, Stern R J. 2011. Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen[J]. Journal of African Earth Sciences, 61(3): 167-232. doi: 10.1016/j.jafrearsci.2011.07.003

    CrossRef Google Scholar

    Koleli N, Demir A. 2016. Chromite (Chapter 11)[M]. Resource Recovery and Pollution Prevention: 245-263.

    Google Scholar

    Kontinen A. 1987. An early Proterozoic ophiolite: The Jormua mafic-ultramafic complex, Northeastern Finland[J]. Precambrian Research, 35: 313-341. doi: 10.1016/0301-9268(87)90061-1

    CrossRef Google Scholar

    Lago B L, Michel R, Adolphe N. 1982. Podiform chromite ore bodies: A genetic model[J]. Journal of Petrology, 23: 103-125. doi: 10.1093/petrology/23.1.103

    CrossRef Google Scholar

    Liu Ting, Zheng Youye, Wu Jun. 2021. Genesis of Fuchuan chromitites at South Anhui, implications from the parental melts[J]. Earth Science, 46(5): 1613-1629 (in Chinese with English abstract).

    Google Scholar

    MacLeod C J, Lissenberg C J, Bibby L E. 2013. "Moist MORB" axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin[J]. Geology, 41(4): 459-462. doi: 10.1130/G33904.1

    CrossRef Google Scholar

    Matveev S, Ballhaus C. 2002. Role of water in the origin of podiform chromitite deposits[J]. Earth and Planetary Science Letters, 203(1): 235-243. doi: 10.1016/S0012-821X(02)00860-9

    CrossRef Google Scholar

    McGowan N M, Griffin W L, González-Jiménez J M, Belousova E, Afonso J C, Shi R D, McCammon C A, Pearson N J, O'Reilly S Y. 2015. Tibetan chromitites: Excavating the slab graveyard[J]. Geology, 43(2): 179-182. doi: 10.1130/G36245.1

    CrossRef Google Scholar

    Mondal S K, Mathez E A. 2007. Origin of the UG2 chromitite layer, Bushveld Complex[J]. Journal of Petrology, 48(3): 495-510. doi: 10.1093/petrology/egl069

    CrossRef Google Scholar

    Mukasa S B, Wilson A H, Carlson R W. 1998. A multielement geochronologic study of the Great Dyke, Zimbabwe: Significance of the robust and reset ages[J]. Earth and Planetary Science Letters, 164(1/2): 353-369.

    Google Scholar

    Naldrett A J, Wilson A, Kinnaird J, Yudovskaya M, Chunnett G. 2012. The origin of chromitites and related PGE mineralization in the Bushveld Complex: New mineralogical and petrological constraints[J]. Mineralium Deposita, 47(3): 209-232. doi: 10.1007/s00126-011-0366-3

    CrossRef Google Scholar

    Paktunc A D. 1990. Origin of podiform chromite deposits by multistage melting, melt segregation and magma mixing in the upper mantle[J]. Ore Geology Reviews, 5: 211-222. doi: 10.1016/0169-1368(90)90011-B

    CrossRef Google Scholar

    Parrish R R. 1989. U-Pb geochronology of the Cape Smith Belt and Sugluk block, northern Quebec[J]. Geoscience Canda, 16(3): 126-130.

    Google Scholar

    Patchett J P, Kouvo O, Hedge C E, Tatsumoto M. 1981. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes[J]. Contributions to Mineralogy and Petrology, 78: 279-297.

    Google Scholar

    Ruskov T, Spirov I, Georgieva M, Yamamoto S, Green H W, McCammon C A, Dobrzhinetskaya L F. 2010. Mossbauer spectroscopy studies of the valence state of iron in chromite from the Luobusa massif of Tibet: Implications for a highly reduced deep mantle[J]. Journal of Metamorphic Geology, 28(5): 551-560. doi: 10.1111/j.1525-1314.2010.00878.x

    CrossRef Google Scholar

    Satsukawa T, Griffin W L, Piazolo S, O Reilly S Y. 2015. Messengers from the deep: Fossil wadsleyite-chromite microstructures from the mantle transition zone[J]. Scientific Reports, 5(1): 16484. doi: 10.1038/srep16484

    CrossRef Google Scholar

    Schoenberg R, Kruger F J, Nagler, T F, Meisel T, Kramers J D. 1999. PGE enrichment in chromitite layers and the Merensky Reef of the western Bushveld Complex: A Re-Os and Rb-Sr isotope study[J]. Earth and Planetary Science Letters, 172(1): 49-64.

    Google Scholar

    Schulz K J, Deyoung J H, Seal R R, Bradley D C. 2017. Critical mineral resources of the United States: Economic and environmental geology and prospects for future supply[J]. U.S. Geological Survey Professional Paper, 1802: 1-797.

    Google Scholar

    Spandler C, Mavrogenes J, Arculus R. 2005. Origin of chromitites in layered intrusions: Evidence from chromite-hosted melt inclusions from the Stillwater Complex[J]. Geology, 33(11): 893-896. doi: 10.1130/G21912.1

    CrossRef Google Scholar

    Stern R J, Johnson P R, Kroner A, Yibas B. 2004. Neoproterozoic ophiolites of the Arabian-Nubian Shield[J]. Developments in Precambrian Geology, 13: 95-128.

    Google Scholar

    Stowe C W. 1994. Compositions and tectonic settings of chromite deposits through time[J]. Economic Geology, 89: 528-546. doi: 10.2113/gsecongeo.89.3.528

    CrossRef Google Scholar

    Su B X, Robinson P T, Chen C, Xiao Y, Melcher F, Bai Y, Gu X Y, Uysal I, Lenaz D. 2020. The occurrence, origin, and fate of water in chromitites in ophiolites[J]. American Mineralogist, 105(6): 894-903. doi: 10.2138/am-2020-7270

    CrossRef Google Scholar

    Su B, Liu X, Chen C, Robinson P T, Xiao Y, Zhou M, Bai Y, Uysal I, Zhang P. 2021. A new model for chromitite formation in ophiolites: Fluid immiscibility[J]. Science China (Earth Sciences), 64(2): 220-230. doi: 10.1007/s11430-020-9690-4

    CrossRef Google Scholar

    Teng Fei, Meng Qinglong, Xing Yi. 2021. Study on the distribution laws of the iron deposits and the features of gravity-magnetic field in the southern margin of the North China Craton[J]. Geological Survey and Research, 44(3): 71-76 (in Chinese with English abstract).

    Google Scholar

    Thayer T P. 1960. Some critical differences between alpine-type and stratiform peridotite-gabbro complexes[J]. 21st International Geological Congress Copenhagen, 13: 247-259.

    Google Scholar

    Uysal I, Akmaz R M, Kapsiotis A, Demir Y, Saka S, Avci E, Müller D. 2015. Genesis and geodynamic significance of chromitites from the Orhaneli and Harmancik ophiolites (Bursa, NW Turkey) as evidenced by mineralogical and compositional data[J]. Ore Geology Reviews, 65: 26-41. doi: 10.1016/j.oregeorev.2014.08.006

    CrossRef Google Scholar

    Vuollo J, Liipo J, Nykanen V, Piirainen T, Pekkarinen L, Tuokko I, Ekdahl E. 1995. An early Proterozoic podiform chromitite in the Outokumpu ophiolite complex, Finland[J]. Economic Geology, 90(2): 445-452. doi: 10.2113/gsecongeo.90.2.445

    CrossRef Google Scholar

    Wang Christina Yan, Zhong Hong, Cao Yonghua, Wei Bo, Chen Chen. 2020. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin, 65: 3825-3838 (in Chinese with English abstract). doi: 10.1360/TB-2020-0202

    CrossRef Google Scholar

    Wang Xibin, Bao Peisheng. 1987. The genesis of podiform chromite deposits: A case study of the Luobosa chromite deposit, Tibet[J]. Acta Geologica Sinica, (2): 166-181 (in Chinese with English abstract).

    Google Scholar

    Whattam S A, Stern R J. 2011. The 'subduction initiation rule': A key for linking ophiolites, intra-oceanic forearcs, and subduction initiation[J]. Contributions to Mineralogy and Petrology, 162(5): 1031-1045. doi: 10.1007/s00410-011-0638-z

    CrossRef Google Scholar

    Xiong F H, Yang J S, Robinson P T, Xu X Z, Liu Z, Li Y, Li J Y, Chen S Y. 2015. Origin of podiform chromitite: A new model based on the Luobusa ophiolite, Tibet[J]. Gondwana Research, 27(2): 525-542. doi: 10.1016/j.gr.2014.04.008

    CrossRef Google Scholar

    Yamamoto S, Komiya T, Hirose K, Maruyama S. 2009. Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 109(3/4): 314-322.

    Google Scholar

    Yang J S, Meng F C, Xu X Z, Robinson P T, Dilek Y, Makeyev A B, Wirth R, Wiedenbeck M, Cliff J. 2015. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 27(2): 459-485. doi: 10.1016/j.gr.2014.07.004

    CrossRef Google Scholar

    Yang J S, Wu W W, Lian D Y, Rui H C. 2021. Peridotites, chromitites and diamonds in ophiolites[J]. Nature Reviews Earth and Environment, 2(3): 198-212. doi: 10.1038/s43017-020-00138-4

    CrossRef Google Scholar

    Yang Yiheng, Zeng Le, Deng Fan, Hu Jianzhong. 2018. Geological characteristics and mineralization potential of chromite resources in China[J]. Earth Science Frontiers, 138-147 (in Chinese with English abstract).

    Google Scholar

    Zhang Baosong, Di Bingye, Huang Ning, Zhu Hongbing, Chen Jiwei, Zhang Jun. 2021 Characteristics of geophysical field and delineation of volcanic structures in Lishui volcanic basin area[J]. Geological Survey and Research, 44(1): 39-44 (in Chinese with English abstract).

    Google Scholar

    Zhang Weibo, Liu Yifei, Wang Fengxiang, Chen Xiufa, He Xuezhou, Yu Rui. 2020. New progress of the research on the Kemi chromitite deposit in Finland[J]. Geological Bulletin of China, 39(5): 746-754 (in Chinese with English abstract).

    Google Scholar

    Zhao Yage, Zhang Yanfei, Wang Chao, Jin Zhenmin, Xu Qijin. 2020. Experimental constraints on formation of low-Cr# chromitite: effect of variable H2O and Cr2O3 on boninitic-magma and harzburgite reactions[J]. Journal of Earth Science, 31: 709-722. doi: 10.1007/s12583-020-1291-0

    CrossRef Google Scholar

    Zhou Erbin. 2011. Present situation and advances in the study of podiform chromite deposits[J]. Acta Petrologica et Mineralogica, 30(3): 530-542 (in Chinese with English abstract).

    Google Scholar

    Zhou M F, Robinson P T. 1994. High-Cr and high-Al podiform chromitites, western China: Relationship to partial melting and melt/rock reaction in the upper mantle[J]. International Geology Review, 36(7): 678-686. doi: 10.1080/00206819409465481

    CrossRef Google Scholar

    Zhou M F, Robinson P T. 1997. Origin and tectonic environment of podiform chromite deposits[J]. Economic Geology, 92: 259-262. doi: 10.2113/gsecongeo.92.2.259

    CrossRef Google Scholar

    Zhou M F, Robinson P T, Bail W J. 1994. Formation of podiform chromitites by melt/rock interaction[J]. Mineral Deposita, 29: 98-101. doi: 10.1007/BF03326400

    CrossRef Google Scholar

    Zhou M F, Robinson P T, Su B X, Gao J F, Li J W, Yang J S, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 26(1): 262-283. doi: 10.1016/j.gr.2013.12.011

    CrossRef Google Scholar

    鲍佩声. 2019. 元古代蛇绿岩及铬铁矿[J]. 岩石学报, 35(10): 2971-2988. doi: 10.18654/1000-0569/2019.10.03

    CrossRef Google Scholar

    鲍佩声, 王希斌. 1999. 中国铬铁矿[M]. 北京: 科技出版社.

    Google Scholar

    鲍佩声, 王希斌, 郝梓国, 彭根永, 张让民, 陈清植, 杨廷辉. 1990. 对富铝型豆荚状铬铁矿矿床成因的新认识——以新疆萨尔托海铬铁矿矿床为例[J]. 矿床地质, 9(2): 97-111.

    Google Scholar

    陈艳虹, 杨经绥. 2018. 豆荚状铬铁矿床研究回顾与展望[J]. 地球科学, 43(4): 991-1010.

    Google Scholar

    龚雪婧, 张腾蛟, 肖荣阁. 2013. 中国豆荚状铬铁矿床成因的研究现状及进展[J]. 高校地质学报, 19(S): 275-276.

    Google Scholar

    郭佳, 易继宁, 王慧. 2018. 全球主要战略性矿产名录评价因素对比研究[J]. 现代矿业, 34(12): 1-5.

    Google Scholar

    郝梓国. 1989. 豆荚型铬铁矿床的研究现状[J]. 地质地球化学, (3): 15-20.

    Google Scholar

    胡振兴, 牛耀龄, 刘益, 张国瑞, 孙文礼, 马玉鑫. 2014. 中国蛇绿岩型铬铁矿的研究进展及思考[J]. 高校地质学报, 20(1): 9-27.

    Google Scholar

    黄阳, 邓浩. 2020. 铬铁矿矿物包裹体的聚焦离子束-透射电镜研究[J]. 地球科学, 45(12): 4604-4616.

    Google Scholar

    刘婷, 郑有业, 武珺. 2021. 皖南蛇绿岩伏川铬铁矿床成因: 铬铁矿母岩浆证据[J]. 地球科学, 46(5): 1613-1629.

    Google Scholar

    苏本勋, 刘霞, 陈晨, Robinson P T, 肖燕, 周美夫, 白洋, Uysal I, 张鹏飞. 2021. 蛇绿岩铬铁矿成矿新模型流体不混溶作用[J]. 中国科学: 地球科学, 51(2): 250-260.

    Google Scholar

    滕菲, 孟庆龙, 邢怡. 2021. 从重磁场特征分析华北陆块南缘铁矿分布规律[J]. 华北地质, 44(3): 70-76.

    Google Scholar

    王希斌, 鲍佩声. 1987. 豆荚状铬铁矿床的成因-以西藏自治区罗布莎铬铁矿床为例[J]. 地质学报, (2): 166-181.

    Google Scholar

    王焰, 钟宏, 曹勇华, 魏博, 陈晨. 2020. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 65(33): 3825-3838.

    Google Scholar

    杨毅恒, 曾乐, 邓凡, 胡建中. 2018. 中国铬铁矿资源潜力分析及找矿方向[J]. 地学前缘, 25(3): 138-147.

    Google Scholar

    张宝松, 邸兵叶, 黄宁, 朱红兵, 陈基炜, 张俊. 2021. 溧水火山岩盆地地球物理场特征及火山机构圈定[J]. 华北地质, 44(1): 39-44.

    Google Scholar

    张伟波, 刘翼飞, 王丰翔, 陈秀法, 何学洲, 于瑞. 2020. 芬兰科密铬铁矿床研究新进展[J]. 地质通报, 39(5): 746-754.

    Google Scholar

    周二斌. 2011. 豆荚状铬铁矿床的研究现状及进展[J]. 岩石矿物学杂志, 30(3): 530-542.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(4453) PDF downloads(299) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint