2024 Vol. 51, No. 2
Article Contents

GAO Ke, SONG Yang, LIU Zhibo, YANG Huanhuan, LIN Bin, LI Faqiao. 2024. Constraints on metallogenic age from cryptoexplosive breccia in Naruo Cu(Au) deposit, Xizang[J]. Geology in China, 51(2): 385-398. doi: 10.12029/gc20201104002
Citation: GAO Ke, SONG Yang, LIU Zhibo, YANG Huanhuan, LIN Bin, LI Faqiao. 2024. Constraints on metallogenic age from cryptoexplosive breccia in Naruo Cu(Au) deposit, Xizang[J]. Geology in China, 51(2): 385-398. doi: 10.12029/gc20201104002

Constraints on metallogenic age from cryptoexplosive breccia in Naruo Cu(Au) deposit, Xizang

    Fund Project: Supported by the projects of China Geological Survey (No.DD20242518, No.DD20230031, No.DD20190167, No.DD20190147), National Natural Science Foundation of China (No.41702080, No.91955208), National Key Research and Development Program (No.2018YFC0604103).
More Information
  • Author Bio: GAO Ke, male, born in 1987, senior engineer, mainly engaged in the study of mineral deposits and metallogenic regularities; E-mail: gaokely@163.com
  • This paper is the result of mineral exploration engineering.

    Objective

    The Naruo deposit is one of four super large deposits in Duolong ore district. It is composed of porphyry and breccia type orebodies. Previous researches have focused on porphyry orebody, while the research on cryptoexplosive breccia ore bodies is relatively weak. The temporal relationship between cryptic explosion processes and mineralization remains inadequately studied. The cryptoexplosive breccia is generally produced in a cylindrical shape, with the breccia composed of feldspar quartz sandstone and granodiorite porphyry, and the cement mainly composed of rock powder.

    Methods

    This study is to explore the age relationship between the formation and mineralization of cryptoexplosive breccia through chronological evidence.

    Results

    Zircon mineralogy shows that the zircon edge of the granite diorite porphyry (NR1) is characterized by dissolution, weak oscillation zone, and incomplete recrystallization. Zircons in cement (NR1) is characterized by fine crystalline form, clear oscillatory zone. The trace element characteristics of these two types of zircons show that the source of two stages of magma is continental crust. The rare earth distribution curves are relatively steep, with enrichment of heavy rare earth elements, loss of light rare earth elements, significant positive Ce and negative Eu anomalies. LA−ICP−MS zircon U−Pb dating results show that the zircon 206Pb/238U age of granite diorite porphyry is between 117.3 Ma and 125.4 Ma, with weighted average age of (120.8±1.4) Ma, indicating the diagenetic age of 120.8 Ma. The zircon 206Pb / 238U age of cement is between 113.5 Ma and 119.9 Ma, with weighted average age of (116.4±1.2) Ma, indicating the cryptoexplosive age of 116.4 Ma.

    Conclusions

    The results in this study show two stages of diagenesis in Naruo deposit, ~120 Ma and ~117 Ma, respectively. Mineralization occurred between 116 Ma and 117 Ma, rather than ~120 Ma. The chronological data shows that the mineralization and cryptoexplosion are controlled by contemporaneous magmatism, with cryptoexplosion occurring first and mineralization occurring later, and there are differences in the time and space of magma evolution.

  • 加载中
  • [1] Bai Ronglong. 2016. Geochemical Characteristics and Genesis of Magmatic Rocks for Duolong Ore Concentrated Area in Tibet[D]. Chengdu: Chengdu University of Tecnology, 1–75 (in Chinese with English abstract).

    Google Scholar

    [2] Chen Hua'an, Zhu Xiangping, Ma Dongfang, Huang Hanxiao, Li Guangming, Li Yubin, Li Yuchang, Wei Lujie, Liu Chaoqiang. 2013. Geochronology and geochemistry of the Bolong porphyry Cu–Au deposit, Tibet and its mineralizing significance[J]. Acta Geologica Sinica, 87(10): 1593−1611 (in Chinese with English abstract).

    Google Scholar

    [3] Corfu F. 2003. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 53(1): 469−500. doi: 10.2113/0530469

    CrossRef Google Scholar

    [4] Ding Shuai. 2014. The Study of Geological Characteristics of Naruo Copper (gold) deposit in Gaize, Tibet[D]. Chengdu: Chengdu University of Tecnology, 1–70 (in Chinese with English abstract).

    Google Scholar

    [5] Fang Xiang, Tang Juxing, Li Yanbo, Wang Qin, Ding Shuai, Zhang Zhi, Yang Chao, Li Yubin, Chen Hongqi, Wei Lujie, Ni Ma. 2014. Metallogenic element spatial distribution of the Naruo copper (gold) deposit in the Duolong ore concentration area of Tibet and its geochemical exploration model[J]. Geology in China, 41(3): 936–950 (in Chinese with English abstract).

    Google Scholar

    [6] Fu Jiajun, Zhao Yuanyi, Guo Shuai. 2014. Geochemical characteristics and significance of granodiorite porphyry in the Duolong ore concentration area, Tibet[J]. Acta Petrologica et Mineralogica, 33(6): 1039−1051 (in Chinese with English abstract).

    Google Scholar

    [7] Gao Ke, Duo Ji, Tang Juxing, Song Yang, Liu Zhibo, Fang Xiang, Yang Huanhuan, Wang Qin, Song Junlong. 2017. Geochronology and geochemistry of cryptoexplosive breccia from the Naruo Cu (Au) deposit, Tibet[J]. Geology in China, 44(3): 618−619 (in Chinese with English abstract).

    Google Scholar

    [8] Gao Ke, Song Yang, Liu Zhibo, Yang Huanhuan, Wang Yiyun. 2023. Sulfur and lead isotope composition and tracing for sources of ore-forming materials in the Naruo Cu(Au) deposit, in Tibet[J]. Sedimentary Geology and Tethyan Geology,43(1):145−155(in Chinese with English abstract).

    Google Scholar

    [9] Gao Ke, Tang Juxing, Song Yang, Liu Zhibo, Fang Xiang, Yang Huanhuan, Wang Qin, Lin Bin, Song Junlong. 2016. Fluid inclusion study of the cryptoexplosive breccias of the Naruo deposit in Tibet[J]. Geology and Exploration, 52(5): 815−825 (in Chinese with English abstract).

    Google Scholar

    [10] Grimes C B, John B E, Kelemen P B, Mazdab F K, Wooden J L, Cheadle M J, Hanghoj K, Schwartz J J. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology, 35(7): 643−646. doi: 10.1130/G23603A.1

    CrossRef Google Scholar

    [11] Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid–state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4): 423−439. doi: 10.1046/j.1525-1314.2000.00266.x

    CrossRef Google Scholar

    [12] Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53(1): 27−62. doi: 10.2113/0530027

    CrossRef Google Scholar

    [13] Johnston W P, Lowell J D. 1961. Geology and origin of mineralized breccias pipes in Copper Basin, Arizona[J]. Economic Geology, 56(5): 916−940. doi: 10.2113/gsecongeo.56.5.916

    CrossRef Google Scholar

    [14] Li Changmin. 2009. A review on the minerageny and situ microanalytical dating techniques of zircons[J]. Geological Survey and Research, 33(3): 161−174 (in Chinese with English abstract).

    Google Scholar

    [15] Li J X, Qin K Z, Li G M, Xiao B, Zhao J X, Cao M J, Chen L. 2013. Petrogenesis of ore–bearing porphyries from the Duolong porphyry Cu–Au deposit, central Tibet: evidence from U–Pb geochronology, petrochemistry and Sr–Nd–Hf–O isotope characteristics[J]. Lithos, 160(1): 216−227.

    Google Scholar

    [16] Li X K, Li C, Sun Z M, Wang M. 2017. Origin and tectonic setting of the giant Duolong Cu–Au deposit, South Qiangtang Terrane, Tibet: Evidence from geochronology and geochemistry of Early Cretaceous intrusive rocks[J]. Ore Geology Reviews, 80: 61−78. doi: 10.1016/j.oregeorev.2016.06.025

    CrossRef Google Scholar

    [17] Liati A, Gebauer D, Wysoczanski R. 2002. U–Pb SHRIMP–dating of zircon domains from UHP garnet–rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece): Evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism[J]. Chemical Geology, 184(3): 281−299.

    Google Scholar

    [18] Lu Yuanfa. 2004. Geokit—A geochemical tookit for Microsoft Excel[J]. Geochimica, 33(5): 459−464 (in Chinese with English abstract).

    Google Scholar

    [19] Lü Lina. 2012. The model of the Fe–rich and Cu(Au) deposit in the western Bangong–Nujiang Metallogenic belt, Tibet[J]. Beijing: Chinese Academy of Geological Sciences, 1–219 (in Chinese with English abstract).

    Google Scholar

    [20] Moller A, O’Brien P J, Kennedy A, Kroer A. 2003. Linking growth episldes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh–temperature granulites of Rogaland (SW Norway)[J]. Geological Society London Special Publications, 220(1): 65−81. doi: 10.1144/GSL.SP.2003.220.01.04

    CrossRef Google Scholar

    [21] Pidgeoon R T. 1992. Recrystallisation of oscillatory–zoned zircon: Some geochronological and petrological implications[J]. Contributions to Mineralogy and Petrology, 110(4): 463−472. doi: 10.1007/BF00344081

    CrossRef Google Scholar

    [22] Qu Xiaoming, Wang Ruijiang, Dai Jingjing, Li Youguo, Qi Xun, Xin Hongbo, Song Yang, Du Dedao. 2012. Discovery of Xiongmei porphyry copper deposit in middle segment of Bangonghu–Nujiang suture zone and its significance[J]. Mineral Deposits, 31(1): 1−12 (in Chinese with English abstract).

    Google Scholar

    [23] Rizvanova N G, Lenchnkov O A, Belous A E, Bezme N I, Maslenikov A V, Komarov A N, Makeev A F, Levskiy L K. 2000. Zircon reaction and stability of the U–Pb isotope system during the interaction with carbonate fluid: Experimental hydrothermal study[J]. Contributions to Mineralogy and Petrology, 139(1): 101−134. doi: 10.1007/s004100050576

    CrossRef Google Scholar

    [24] Ross P S, Jebrak M, Walker B M. 2002. Discharge of hydrothermal fluids from a magma chamber and Concomitant Formation of a stratified breccia zone at the Questa porpryry molybdenum deposit[J]. Economic Geology, 97(8): 1679−1699. doi: 10.2113/gsecongeo.97.8.1679

    CrossRef Google Scholar

    [25] Rubatto D, Gebauer D. 2000. Use of cathodoluminescence for U–Pb zircon dating by IOM Microprobe: Some examples from the western Alps[J]. Cathodoluminescence in Geoscience, Springer–Verlag Berlinn Heidelberg, Germany, 373–400.

    Google Scholar

    [26] Sillitoe R H, Halls C, Grant J N. 1975. Porphyry tin deposits in Bolivia[J]. Economic Geology, 70(6): 913−927.

    Google Scholar

    [27] Sillitoe R H, Hedenquist J W. 2003. Linkage between volcanotectonic settings, ore fluid compositions, and epithermal precious metal deposits[J]. Society of Economic Geologists, Special Publication 10: 315–343.

    Google Scholar

    [28] Sillitoe R H. 1985. Ore–related breccias in volcanoplutonic arcs[J]. Economic Geology, 80(6): 1467−1514. doi: 10.2113/gsecongeo.80.6.1467

    CrossRef Google Scholar

    [29] Tang Juxing. 1995. Characteristics and study significance of gold–bearing hydrothermal cryptoexplosion breccias[J]. Journal of Chengdu Institute of Technology, 22(3): 59−64 (in Chinese with English abstract).

    Google Scholar

    [30] Tomaschek F, Kennedy A K, Villa I M, Lagos M, Ballhaus C. 2003. Zircons from Syros, Cycaldes, Greece–recrystallization and mobilization of zircon during high–pressure metamorphism[J]. Journal of Petrology, 44(11): 1977−2002. doi: 10.1093/petrology/egg067

    CrossRef Google Scholar

    [31] Vavra G, Schmid R, Gebauer D. 1999. Internal morphology, habit and U–Th–Pb microanalysis of amphibole to granulite facies zircon: Geochronology of the Ivren Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology, 134(4): 380−404. doi: 10.1007/s004100050492

    CrossRef Google Scholar

    [32] Wang Shengquan, Liu Xuewu. 2009. Geological characteristic and ore–controlling significance of the cryptoexploed breccia in Niujuan silver deposit, in Hebei province[J]. Contributions to Geology & Mineral Resources Research, 24(2): 139−141 (in Chinese with English abstract).

    Google Scholar

    [33] Wang Zhaobo, Si Rongjun, Zhong Weiguo, Yang Xuesheng. 2003. Features of ore–forming fluid evolution trend curves of crypto–explosive breccia pipe–type deposits[J]. Geology Geochemistry, 31: 62−67 (in Chinese with English abstract).

    Google Scholar

    [34] Wu Yuanbao, Zheng Yongfei. 2014. Study on the origin mineralogy of zircon and its restriction to U–Pb age[J]. Chinese Science Bulletin, 49(16): 1589−1604 (in Chinese with English Abstract).

    Google Scholar

    [35] Xie Guangdong. 1993. Relations between the hydrothermal boiling action and gold mineralization and their significances[J]. Geological Science and Technology Information, 12: 61−67 (in Chinese with English abstract).

    Google Scholar

    [36] Xu Z Q, Dilek K, Cao H, Yang J S, Robinson P, Ma C Q, Li H, Jolivet M, Roger F, Chen X J. 2015. Paleo–Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 105: 320−337. doi: 10.1016/j.jseaes.2015.01.021

    CrossRef Google Scholar

    [37] Yang Chao, Tang Juxing, Wang Yiyun, Yang Huanghuan, Wang Qin, Sun Xingguo, Feng Jun, Yin Xianbo, Ding Xianbo, Fang Xiang, Zhang Zhi, Li Yubin. 2014. Fluid and geological characteristics researches of Southern Tiegelong epithermal porphyry Cu–Au deposit in Tibet[J]. Mineral Deposits, 33(6): 1287−1305 (in Chinese with English abstract).

    Google Scholar

    [38] Yang Huanhuan, Wang Qin, Li Yanbo, Lin Bin, Song Yang, Wang Yiyun, He Wen, Li Hongwei, Li She, Li Jianli, Liu Changcheng, Feng Shibin, Xin Tang, Fu Xuelian, Liang Xinjuan, Zhang Qi, Wang Beiqi, Li Yang. 2022. Geology and mineralization of the Tiegelongnan supergiant porphyry−epithermal Cu (Au, Ag) deposit (10 Mt) in western Tibet, China: A review[J]. China Geology, 5(1):136‒159.

    Google Scholar

    [39] Yang K, Bodnar R J. 2004. Orthomagmathic origin for the llkwang Cu–W breccias pipe deposit, southeastern Kyongsang Basin, South Korea[J]. Journal of Asian Earth Sciences, 24(2): 259−270. doi: 10.1016/j.jseaes.2003.12.001

    CrossRef Google Scholar

    [40] Zhang Zengfeng. 1991. General features and genetic mechanism of crypto–explosive breccias[J]. Geological Science and Technology Information, 10(4): 1−5 (in Chinese with English abstract).

    Google Scholar

    [41] Zhang Zhi. 2015. Metallogenic Regularity and Metallogenic Prediction for Ga'erqiong–Galale Copper–gold Concentrated Area, Tibet[D]. Chengdu: Chengdu University of Tecnology (in Chinese).

    Google Scholar

    [42] Zhou X, Fei G C, Zhou Y, Wen C Q, Zhang Y, Yue X Y. 2015. Chronology and crust–mantle mixing of ore–forming porphyry of the Bangongco: Evidence from zircon U–Pb age and Hf isotopes of the Naruo porphyry copper gold deposit[J]. Acta Geologica Sinica (English Edition), 89(1): 217−228 doi: 10.1111/1755-6724.12406

    CrossRef Google Scholar

    [43] Zhu Xiangping, Chen Huaan, Liu Hongfei, Ma Dongfang, Li Guangming, Zhang Hong, Liu Chaoqiang, Wei Lujie. 2015a. Geochronology and geochemistry of porphyries from the Naruo porphyry copper deposit, Tibet and their metallogenic significance[J]. Acta Geologica Sinica, 89(1): 109–128 (in Chinese with English abstract).

    Google Scholar

    [44] Zhu Xiangping, Chen Huaan, Liu Hongfei, Ma Dongfang, Li Guangming, Huang Hanxiao, Zhang Hong, Liu Chaoqiang, Wei Lujie. 2015b. Zircon U–Pb ages, geochemistry of the porphyries from the Duobuza porphyry Cu–Au deposit, Tibet and their metallogenic significance[J]. Acta Geologica Sinica, 89(3): 534−548 (in Chinese with English abstract).

    Google Scholar

    [45] 白荣龙. 2016. 西藏多龙矿集区岩浆岩地球化学特征及成因研究[D]. 成都: 成都理工大学, 1–75.

    Google Scholar

    [46] 陈华安, 祝向平, 马东方, 黄瀚霄, 李光明, 李玉彬, 李玉昌, 卫鲁杰, 刘朝强. 2013. 西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J]. 地质学报, 87(10): 1593−1611.

    Google Scholar

    [47] 丁帅. 2014. 西藏改则县拿若铜(金)矿地质特征研究[D]. 成都: 成都理工大学.

    Google Scholar

    [48] 方向, 唐菊兴, 李彦波, 王勤, 丁帅, 张志, 杨超, 李玉彬, 陈红旗, 卫鲁杰, 尼玛. 2014. 西藏多龙矿集区拿若铜(金)矿床成矿元素空间分布规律及地球化学勘查模型[J]. 中国地质, 41(3): 936−950. doi: 10.3969/j.issn.1000-3657.2014.03.019

    CrossRef Google Scholar

    [49] 符家骏, 赵元艺, 郭硕. 2014. 西藏多龙矿集区花岗闪长斑岩地球化学特征及其意义[J]. 岩石矿物学杂志, 33(6): 1039−1051. doi: 10.3969/j.issn.1000-6524.2014.06.004

    CrossRef Google Scholar

    [50] 高轲, 多吉, 唐菊兴, 宋扬, 刘治博, 方向, 杨欢欢, 王勤, 宋俊龙. 2017. 西藏拿若铜(金)矿床隐爆角砾岩锆石U–Pb年代学及地球化学特征[J]. 中国地质, 44(3): 618−619.

    Google Scholar

    [51] 高轲, 宋扬, 刘治博, 杨欢欢, 王艺云. 2023. 西藏拿若铜(金)矿床硫、铅同位素组成及成矿物质来源[J]. 沉积与特提斯地质, 43(1):145−155.

    Google Scholar

    [52] 高轲, 唐菊兴, 宋扬, 方向, 杨欢欢, 王勤, 林彬, 宋俊龙. 2016. 西藏拿若铜(金)矿床隐爆角砾岩流体包裹体研究[J]. 地质与勘探, 52(5): 815−825.

    Google Scholar

    [53] 李长民. 2009. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 33(3): 161−174.

    Google Scholar

    [54] 路远发. 2004. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 33(5): 459−464.

    Google Scholar

    [55] 吕丽娜. 2012. 西藏班公湖–怒江成矿带西段富铁与铜(金)矿床模型[D]. 北京: 中国地质科学院, 1–219.

    Google Scholar

    [56] 曲晓明, 王瑞江, 代晶晶, 李佑国, 戚迅, 辛洪波, 宋扬, 杜德道. 2012. 西藏班公湖–怒江缝合带中段雄梅斑岩铜矿的发现及意义[J]. 矿床地质, 31(1): 1−12.

    Google Scholar

    [57] 唐菊兴. 1995. 含金热液隐爆角砾岩的特征及研究意义[J]. 成都理工学院学报, 22(3): 59−64.

    Google Scholar

    [58] 王胜权, 刘学武. 2009. 河北牛圈银矿隐爆角砾岩地质特征及控矿作用[J]. 地质找矿论丛, 24(2): 139−141.

    Google Scholar

    [59] 王照波, 司荣军, 仲卫国, 杨学生. 2003. 隐爆角砾岩筒矿床成矿流体演化趋势曲线特征[J]. 地质地球化学, 31(4): 62−67.

    Google Scholar

    [60] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U–Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604.

    Google Scholar

    [61] 谢广东. 1993. 热液沸腾作用与金矿化的关系及其找矿意义[J]. 地质科技情报, 12(3): 61−67.

    Google Scholar

    [62] 杨超, 唐菊兴, 王艺云, 杨欢欢, 王勤, 孙兴国, 冯军, 印贤波, 丁帅, 方向, 张志, 李玉彬. 2014. 西藏铁格隆南浅成低温热液型–斑岩型Cu–Au矿床流体及地质特征研究[J]. 矿床地质, 33(6): 1287−1305.

    Google Scholar

    [63] 章增凤. 1991. 隐爆角砾岩的特征及其形成机制[J]. 地质科技情报, 10(4): 1−5.

    Google Scholar

    [64] 张志. 2015. 西藏尕尔穷—嘎拉勒铜金矿集区成矿规律与成矿预测[D]. 成都: 成都理工大学.

    Google Scholar

    [65] 祝向平, 陈华安, 刘鸿飞, 马东方, 李光明, 张红, 刘朝强, 卫鲁杰. 2015a. 西藏拿若斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J]. 地质学报, 89(1): 109−128.

    Google Scholar

    [66] 祝向平, 陈华安, 刘鸿飞, 马东方, 李光明, 黄瀚霄, 张红, 刘朝强, 卫鲁杰. 2015b. 西藏多不杂斑岩铜矿斑岩锆石U–Pb年龄、岩石地球化学特征及其成矿意义[J]. 地质学报, 89(3): 534−548.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1025) PDF downloads(85) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint