Citation: | OUYANG Yuan, LIU Hong, LI Guangming, MA Dongfang, ZHANG Linkui, HUANG Hanxiao, ZHANG Jinghua, ZHANG Tengjiao, LIU Xiao, ZHAO Yinbing, LI Fu. 2023. Mineral search prediction based on Random Forest algorithm——A case study on porphyry-epithermal copper polymetallic deposits in the western Gangdise meatallogenic belt[J]. Geology in China, 50(2): 303-330. doi: 10.12029/gc20201026001 |
The paper is the result of geological survey engineering.
The core problem of prospecting prediction is the nonlinear relationship between mineral distribution and mineral-controlling geological factors. Big data and machine learning technology have shown great advantages in solving such complex nonlinear relationship problems. The prediction dataset of small-scale geochemical remote information has the characteristics of high and extremely unbalanced, which is difficult to adapt by traditional logical assumptions or statistical analysis. Therefore, this paper attempts to introduce the random forest algorithm into the field of small-scale prospecting to explore the application of big data and machine learning technology in small-scale mineralization prediction.
In recent years, several Porphyry-epithermal copper polymetallic deposits (such as Luerma, Bolazha, Daruo, Hongshan, and Luobuzhen, etc.) have been discovered in the western Gangdise mineralized belt, which proved that the western Gangdise belt has great prospecting potential for porphyry and epithermal Cu-Au polymetallic deposits. Combined with the comprehensive information of typical deposits, regional geology, geophysics, geochemistry, and remote sensing, this paper uses the random forest method to carry out the prospecting prediction of porphyry and epithermal Cu-Au polymetallic deposits in the western Gangdise belt.
This work has delineated 11 porphyry copper polymetallic prospect areas (including 2 levels Ⅰ prospect areas, 3 level Ⅱ prospect areas, and 6 level Ⅲ prospect areas), of which Luobuzhen, Dajiacuo, Daruo, Balaza, Gaerqiong, and Budongla have great prospecting potential and are expected to find new ore deposits or points.
The under-sampling random forest prediction model based on big data machine learning is expected to adapt to the high-dimensional and extremely unbalanced characteristics of prediction data of comprehensive geophysical and geochemical remote information and provide direction for regional prospecting prediction at the scale of the metallogenic belt. The prospective area determined in this work is expected to find new deposits (points), which opens a new vision for ore prospecting and exploration in the Gangdise metallogenic belt.
Andreoletti G, Lanata C M, Trupin L, Paranjpe I, Jain T S, Nititham J, Taylor K E, Combes A J, Maliskova L, Ye C J, Katz P, Dal E M, Yazdany J, Criswell L A, Sirota M. 2021. Transcriptomic analysis of immune cells in a multi-ethnic cohort of systemic lupus erythematosus patients identifies ethnicity-and disease-specific expression signatures[J]. Communications Biology, 488: 4838. |
Asadi S, Roshan S E, Kattan M W. 2021. Random forest swarm optimization-based for heart diseases diagnosis[J]. Journal of biomedical informatics, 115(24): 103690. |
Bonvalot S, Balmino G, Briais A, Kuhn M, Peyrefitte A, Vales N, Biancale R, Gabalda G, Reinquin F, Sarrailh M. 2012. World Gravity Map[M]. Commission for the Geological Map of the World. Eds. BGI-CGMW-CNES-IRD, Paris. |
Cai Huihui, Zhu Wei, Li Muxuan, Liu Yuanyuan, Li Longbin, Liu Chang. 2019. Prediction method of tungsten-molybdenum prospecting target area based on deep learning[J]. Journal of Geo-Information Science, 21(6): 928-936. |
Chen Jin, Mao Xiancheng, Liu Zhankun Deng Hao. 2020. Three-dimensional metallogenic prediction based on random forest classification algorithm for the Dayingezhuang gold deposit[J]. Geotectonica et Metallogenia, 44(2): 231-241 (in Chinese with English abstract). |
Chen Xin, Zheng Youye, Gao Sunbao, Wu Song, Jiang Xiaojia, Jiang Junsheng, Cai Pengjie, Lin Cheng'gui. 2020. Ages and petrogenesis of the late Triassic andesitic rocks at the Luerma porphyry Cu deposit, western Gangdese, and implications for regional metallogeny[J]. Gondwana Research, 85: 103-123. doi: 10.1016/j.gr.2020.04.006 |
Cheng Qiuming. 2007. Singularity-generalized self-similarity-fractal spectrum (3S) models[J]. Earth Science——Journal of China University of Geosciences, 14(5): 1-10 (in Chinese with English abstract). |
Cutler D R, Jr Edwards T C E., Beard K H, Hess K T. 2007. Random forests for classification in ecology[J]. Ecology, 88(11): 2783-2792. doi: 10.1890/07-0539.1 |
Dai Jingjing, Qu Xiaoming, Xin Hongbo, 2010. Extraction of alteration mineral information using ASTER remote sensing data in Duolong area, Tibet, China[J]. Geological Bulletin of China, 9(5): 752-759 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.05.016 |
El B H, Rahouti M., El B M. 2021. Identification of SARS-CoV-2 origin: using Ngrams, Principal Component Analysis and Random Forest Algorithm[J]. Informatics in Medicine Unlocked, 24: 100577. doi: 10.1016/j.imu.2021.100577 |
Fang Kuangnan, Wu Jianbin, Zhu Jianping, Xie Bangchang. 2011. A review of technologies on random forests[J]. Statistics & Information Forum, 26(3): 32-38 (in Chinese With English abstract). |
Fouedjio F. 2020. Exact conditioning of regression random forest for spatial prediction[J]. Artificial Intelligence in Geosciences, 1: 11-23. doi: 10.1016/j.aiig.2021.01.001 |
Gao Shunbao. 2015. Copper-iron Polymetal Metallogenic Regularity and Election of Targeet Areas in the Western of Gangdis Metallogenic Belt, Tibet[D]. Wuhan: China University of Geosciences (Wuhan), 1-110 (in Chinese with English abstract). |
Geng Quanru, Li Wengchang, Wang Li, Zeng Xiangting, Peng Zhimin, Zhang Xiangfeng, Zhang Zhang, Cong Feng, Guan Junlei. 2021. Paleozoic tectonic framework and evolution of the central and western Tethys[J]. Sedimentary Geology and Tethyan Geology, 41(2): 297-315 (in Chinese with English abstract) |
Han Shanchu, Jiang Yao, Pan Jiayong, Wan Hong, Huang Tianyu. 2021. Isotopic geochemical characteristics of Yuejingou copper deposit in Gangdise metallogenic belt, Tibet[J]. Journal of East China Institute of Technology (Natural Science Edition), 44(5): 423-432. |
Hardeep S R, Naresh K, Prabha G. 2022. Machine learning-based modeling to predict inhibitors of acetylcholinesterase[J]. Molecular Diversity, 26(1): 331-340. doi: 10.1007/s11030-021-10223-5 |
Hou Zengqian, Cook N J. 2009. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue[J]. Ore Geology Reviews, 36: 2-24. doi: 10.1016/j.oregeorev.2009.05.001 |
Huang Faming, Ye Zhou, Yao Chi, Li Yuanyao, Yin Kunlong, Huang Jinsong, Jiang Qinghui. 2020. Uncertainties of landslide susceptibility prediction: Different attribute interval divisions of environmental factors and different data based models[J]. Earth Science, 45(12): 4535-4549 (in Chinese with English abstract). |
Huang Hanxiao, Li Guangming, Liu Hong, Zhang Hongming, Zhang Linkui, Yu Huai, Jiao Yanjie, Liang Wei. 2018. An low sulfide epithermal gold-silver polymetallic deposit newly discovered in the western section of the Gangdise metallogenic belt[J]. Geology in China, 45(3): 628-629 (in Chinese with English abstract). |
Huang Hanxiao, Li Guangming, Liu Hong, Zhang Linkui, Cao Huawen, Zhou Qing, Wang Xinxin, Yan Guoqiang. 2019. Zircon U-Pb, molybdenite Re-Os and quartz vein Rb-Sr geochronology of the Luobuzhen Au-Ag and Hongshan Cu deposits, Tibet, China: Implications for the oligocene-miocene porphyry-epithermal metallogenic system[J]. Minerals, 9(8): 476-491. doi: 10.3390/min9080476 |
Huang Hanxiao, Zhang Linkui, Liu Hong, Li Guangming, Huang Yong, Lan Shuangshuang, Lü Menghong. 2019. Major types, mineralization and potential prospecting areas in western section of the Gangdise metallogenic belt, Tibet[J]. Earth Science, 44(6): 1876-1887 (in Chinese With English abstract). |
Huang Yong, Li Guangming, Ding Jun, Dai Jie, Yan Guoqiang, Dong Suiliang, Huang Hanxiao. 2017. Origin of the newly discovered Zhunuo porphyry Cu-Mo-Au deposit in the western part of the Gangdese porphyry copper belt in the southern Tibetan plateau, SW China[J]. Acta Geologica Sinica (English edition), 91(1): 109-134. doi: 10.1111/1755-6724.13066 |
Huang Yong, Ren Minghua, Liang Wei, Li Guangming, Heilbronn K., Dai Zuowen, Wang Yiyun, Zhang Li. 2020. Origin of the oligocene Tuolangla porphyry-skarn Cu-W-Mo deposit in Lhasa terrane, southern Tibet[J]. China Geology, 3: 369-384. |
Huang Yonggao, Han Fei, LI Yingxu, Jia Xiaochuan, Yang Xuejun, Li Guangming, Yang Qingsong. 2020. The discovery of Early Jurassic volcanism in the Nanmulin Basin, Tibet: Constraints from zircon U-Pb age[J]. Geology in China, 47(4): 1266-1267(in Chinese with English abstract). |
Lang Xinghai, Guo Wenbo, Wang Xuhui, Deng Yulin, Yang Zongyao, Xie Fuwei, Li Zhuang, Zhang Zhong, Jiang Kai. 2019. Petrogenesis and tectonic implications of the ore-bearing porphyries in the Xiongcun district: Constraints from the geochronology and geochemistry[J]. Acta Petrologica Sinica, 35(7): 2105-2123 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.10 |
Lang Xinhai, Deng Yulin, Wang Xuhui, Tang Juxing, Xie Fuwei, Yang Zongyao, Yin Qing, Jiang Kai. 2020. Reduced fluids in porphyry copper-gold systems reflect the occurrence of the wall-rock thermogenic process: An example from the No. 1 deposit in the Xiongcun district, Tibet, China[J]. Ore Geology Reviews, 118: 103-212. |
Langroodi A K, Vahdatikhaki F, Doree A. 2021. Activity recognition of construction equipment using fractional random forest[J]. Automation in Construction, 122: 103465. doi: 10.1016/j.autcon.2020.103465 |
Leo B. 2001. Random forests[J]. Mach Learn, 45(1): 5-32. doi: 10.1023/A:1010933404324 |
Li Cangbai, Xiao Keyan, Li Nan, Song Xianglong, Zhang Shuai, Wang Kai, Chu Wenkai, Cao R. 2020. Comparative study of support vector machine, random forest and artificial neural Network machine learning algorithms ingeochemical anomaly information extraction[J]. Acta Geoscientia Sinica, 41(2): 309-319. |
Li Guangming, Pan Guitang, Wang Gaoming, Huang Zhiming, Gao Dafa. 2004. Evaluation and prospecting value of mineral resources in Gangdise metallogenic belt, Tibet, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 31(1): 22-27 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2004.01.004 |
Li Guangming, Zhang Linkui, Zhang Zhi, Xiao Xiangbiao, Liang Wei, Hou Chunqiu. 2021. New exploration progresses, resource potentials and prospecting targets of strategic minerals in the southern Qinghai-Tibet Plateau[J]. Sedimentary Geology and Tethyan Geology, 41(2): 351-360. |
Li Jinghui. 2008. Metallogenic systems and regularity of porphyry-type molybdenum deposit in Dabieshan mountain[J]. Journal of East China Institute of Technology (Natural Science Edition), 31(1): 25-30. |
Lin Jinxiang, Qin Kezhang, Lin Guangming, Lin Jindeng, Xiao Bo, Jiang Huazhai, Han Fengjie, Huang Shufeng, Chen Lei, Zhao Junxing. 2001. Zircon U-Pb geochronology and garnet composition of the Qiangdui Cu-Mo deposit in the eastern section of Gangdese and their significances[J]. Geology and Prospecting, 47(1): 11-19 (in Chinese with English abstract). |
Liu Hong, Huang Hanxiao, Li Guangming, Li Wenchang, Li Youguo, Ma Dongfang, Huang Yong, Zhou Qing, and Fu Jiangang. 2022a. Petrogenesis of the Early Cretaceous Xiabie Co I-type granite in southern Qiangtang, Tibet (Xizang), China: Evidences from whole-rock geochemistry, Rb-Sr, Sm-Nd, and Pb isotopes, and LA-ICP-MS zircon U-Pb ages and Lu-Hf isotopes[J]. Acta Geologica Sinica (English edition), 96(3): 919-937. doi: 10.1111/1755-6724.14777 |
Liu Hong, Huang Hanxiao, Li Guangming, Li Wenchang, Zhang Linkui, Lan Shuangshuang, Lü Menghong, Song Wenjie. 2022b. Subduction-related Late Triassic Luerma porphyry copper deposit, western Gangdese, Tibet, China: Evidence from geology, geochemistry, and geochronology[J]. Ore Geology Reviews, 154: 105253. doi: 10.1016/j.oregeorev.2022.105253. |
Liu Hong, Huang Hanxiao, Li Guangming, Xiao Wanfang, Zhang Zhilin, Liu Bo, Ma Dongfang, Dong Lei, Ma Dong. 2015. Factor analysis in geochemical survey of the Shangxu gold deposit, northern Tibet[J]. Geology in China, 42(4): 1126-1136 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2015.04.026 |
Liu Hong, Huang Hanxiao, Ouyangyuan, Zhang Jinghua, Zhang Tengjiao, Li Fu, Xiao Qiliang, Zeng Jian, Hou Qian, Wen Dengkui, Duan Shengyi. 2020a. Soil's geologic investigation in Daliangshan, Xichang, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 40(1): 91-105 (in Chinese with English abstract). |
Liu Hong, Huang Hanxiao, Zhang Linkui, Li Guangming, Lü Menghong, Yan Guoqiang, Huang Yong, Lan Shuangshuang, Xie Hui. 2019b. Origin and evolution of ore-forming fluids in Luerma porphyry copper deposit from the western Gangdise[J]. Earth Science, 44(6): 1935-1956 (in Chinese With English abstract). |
Liu Hong, Huang Hanxiao, Li Guangming, Zhang Linkui, Ouyang Yuan, Xiang Anping., Huang Yong, Lü Menghong, Lan Shuangshuang. 2021a. Luerma, a newly discovered Late Triassic porphyry copper-gold ore spot in the western Gangdise metallogenic belt, Tibet[J]. Sedimentary Geology and Tethyan Geology, 40(6): 569-581 (in Chinese with English abstract). |
Liu Hong, Li Guangming, Huang Hanxiao, Zhang Linkui, Lü Menghong, Lan Shuangshuang, Xiehui. 2019a. The discovery of the Late Triassic porphyry type Cu deposit from Gangdise metallogenic belt, Tibet[J]. Geology in China, 46(5): 1238-1240 (in Chinese with English abstract). |
Liu Hong, Li Guangming, Li Wenchang, Huang Hanxiao, Li, Youguo, Ouyang, Yuan, Zhang, Xiangfei, Zhou Qing. 2022. Petrogenesis and tectonic setting of the Late Early Cretaceous Kong Co A-type granite in the northern margin of Central Lhasa subterrane, Tibet[J]. Acta Petrologica Sinica, 38 (1): 230-252 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.01.15 |
Liu Hong, Li Guangming, Li Wenchang, Zhang Jinghua, Huang Hanxiao, Li Youguo, Zhang Zhilin, Zhang Tengjiao. 2021b. Epithermal mineralization at the Budongla gold deposit, in Zhongba, Tibet: Evidences from Fluid Inclusions and H-O Isotopes[J]. Mineral Deposits, 40(2): 311-328 (in Chinese With English abstract). |
Liu Hong, Li Guangming, Zhang Zhilin, Huang Hanxiao, Xiao Wanfeng. 2014b. Geochemical analysis of rock debris in Muru Area, Gerze County, Tibet[J]. Metal Mine, 43(11): 105-108 (in Chinese with English abstract). |
Liu Hong, Li Youguo, Li Wenchang, Li Guangming, Ma Dongfang, Ouyang Yuan, Huang Hanxiao, Zhang Zhilin, Li Tong, Wu Junyi, 2022c. Petrogenesis of the late Cretaceous Budongla Mg-rich monzodiorite pluton in the central Lhasa subterrane, Tibet, China: Wholerock geochemistry, zircon U-Pb dating, and zircon Lu-Hf isotopes[J]. Frontiers in Earth Science, 10: 927695. doi: 10.3389/feart.2022.927695 |
Liu Hong, Lü Xinbiao, Li Chuncheng, Liu Ge, Shang Shichao, Wang Lin, Zhang Wei, Mao Rongwei. 2013. Metallogenic conditions and ore-searching prospect at depth of the Jincheng gold ore deposit in Luoshan county, Henan province[J]. Geology and Prospecting, 49(2): 265-273 (in Chinese with English abstract). |
Liu Hong, Lü Xinbiao, Yuan Qian, Ke Changshu, Zhu Qiaoqiao, Liu Xiao, Wang Yuqi, Zhang Shanming. 2014a. A study on geology and prospecting potential of Louziwan district of gaoliangdian Fe-Cu deposit, Xinyang area, Henan province, China[J]. Acta Mineralogica Sinica, 34(3): 337-342 (in Chinese with English abstract). |
Liu Hong, Xia Xiangbiao, Huang Hanxiao, Zhang Linkui, Lan Shuangshuang, Lü Menghong, Ai Jinbiao, Xie Hui. 2019c. Geochemical statistics analysis of stream sediment and prospecting potential of Xuexiumaer area in western Gangdese metallogenic belt, Tibet[J]. Journal of Guilin University of Technology, 39(5): 847-855 (in Chinese with English abstract). |
Liu Hong, Zhang Hui, Li Guangming, Huang Hanxiao, Xiao Wanfeng, You Qin, Ma Dongfang, Zhang Hai, Zhang Hong. 2016. Petrogenesis of the Early Cretaceous Qingcaoshan strongly peraluminous S-type granitic pluton, southern Qiangtang, northern Tibet: Constraints from whole-rock geochemistry and zircon U-Pb geochronology[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 52(5): 848-860 (in Chinese with English abstract). |
Liu Hong, Zhang Linkui, Huang Hanxiao, Li Guangmin, Yu Huai, Huang Yong, Liang Wei, Yan Guoqiang, Zhang Hongming, Chen Xiaoping. 2020c. Evolution of ore-forming fluids in the Luobuzhen epithermal gold-silver deposit in western Gangdise: fluid inclusion and H-O isotope evidence[J]. Earth Science Frontiers, 27(4): 49-65 (in Chinese with English abstract). |
Liu Hong, Zhang Linkui, Huang Hanxiao, Li Guangming, Ouyang Yuan, Lü Menghong, Liu Han, Lan Shuangshuang, Yan Guoqiang, 2019d. Petrogenesis of Late Triassic Luerma monzodiorite in western Gangdise, Tibet, China[J]. Earth Science, 44(7): 2339-2352 (in Chinese with English abstract). |
Liu Weidong, Tang Zhipeng, Xiao Yan, Han Mengyao, Jiang Wanbei. 2019. Identifying the key factors influencing Chinese carbon intensity using machine learning, the random forest algorithm, and evolutionary analysis[J]. Acta Geographica Sinica, 74(12): 2592-2603 (in Chinese with English abstract). doi: 10.11821/dlxb201912012 |
Luciano A C D S, Picoli M C A, Duft D G, Rocha J V, Leal M R. L V, Le M G. 2021. Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm[J]. Computers and Electronics in Agriculture, 184: 106063. doi: 10.1016/j.compag.2021.106063 |
Makungwe M, Chabala L M, Chishala B H, Lark R M. 2021. Performance of linear mixed models and random forests for spatial prediction of soil pH[J]. Geoderma, 379(4): 115079. |
Mao J W, Pirajno F, Lehmann B, Lehman B, Luo M C, Berzina A. 2014. Distribution of porphyry deposits in the eurasian continent and their corresponding tectonic settings[J]. Journal of Asian Earth Sciences, 79(2): 576-584. |
Milanović S, Marković N, Pamučar D, Gigović L, Kostić P, Milanović S D. 2020. Forest fire probability mapping in eastern Serbia: Logistic Regression versus random forest method[J]. Forests, 12(1): 1-15. doi: 10.3390/f12010001 |
Mo Xuanxue, Niu Yaolin, Dong Guochen, Zhao Zhidan, Hou Zengqian, Zhou Su, Ke Shan. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 250(1): 49-67. |
Mpanya D, Celik T, Klug E, Ntsinjana H. 2021. Predicting mortality and hospitalization in heart failure using machine learning: A systematic literature review[J]. IJC Heart & Vasculature, 34: 100773. |
Naeini E Z, Prindle K. 2018. Machine learning and learning from machines[J]. The Leading Edge, 37(12): 886-893. doi: 10.1190/tle37120886.1 |
Ni Pei, Chui Zhe, Pan Junyi. 2020. An integrated investigation of ore-forming fluid evolution in porphyry and epithermal deposits and their implication on exploration[J]. Earth Science Frontiers, 27(2): 60-78 (in Chinese with English abstract). |
Ouyang Yuan, Liu Hong, Huang Hanxiao, Li Guangming, Yang Wunian, Xiao Wanfeng, Zhang Zhilin, Ma Chengyi, Ma Buying. 2016. Study on geochemical multivariate statistics analysis and prospecting potential of Shangxu-Daze area in the northern Tibet[J]. Acta Mineralogica Sinica, 36(4): 586-594 (in Chinese with English abstract). |
Ouyang Yuan, Yang Wunian, Huang, Huanxiao, Liu Hong, Zhang Jianlong, Zhang Jjinhua. 2017. Metallogenic dynamics background of Ga'erqiong Cu-Au deposit in Tibet, China[J]. Earth Sciences Research Journal, 21(2): 51-65. |
Ouyang Yuan. 2020. Metallogenic Regularity and Metallogenic Prediction of Porphyry Copper Deposits in the Western of Gangdise Metallogenic Belt, Tibet[D]. Chengdu: Chengdu University of Technology, 1-110 (in Chinese with English abstract). |
Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution[J]. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract). |
Pan Guitang, Wang Liquan, Li Rongshe, Li Rongshe, Yuan Shihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet plateau[J]. Journal of Asian Earth Sciences, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018 |
Pan Guitang, Wang Liquan, Geng Quanru, Yin Fuguang, Wang Baodi, Wang Dongbing, Peng Zhimin, Ren Fei. 2020. Space-time structure of the Bangonghu-Shuanghu-Nujiang-Changning-Menglian Mega-suture zone: A discussion on geology and evolution of the Tethys Ocean[J]. Sedimentary Geology and Tethyan Geology, 40(3): 1-19 (in Chinese with English abstract) |
Pan Guitang, Wang Liquan, Li Xingzhen, Wang Jiemin, Xu Qiang. 2001. The tectonic framework and spatial allocation of the archipelagic arc-basin systems on the Qinghai-Xizang Plateau[J]. Sedimentary Geology and Tethyan Geology, 21(3): 1-26 (in Chinese with English abstract) doi: 10.3969/j.issn.1009-3850.2001.03.001 |
Panagiotis G. Asteris, Mohammadreza Koopialipoor, Danial J. Armaghani, Evgenios A. Kotsonis, Paulo B. Lourenço. 2021. Prediction of cement-based mortars compressive strength using machine learning techniques[J]. Neural Computing and Applications, 33: 13089-13121. doi: 10.1007/s00521-021-06004-8 |
Prasad A M, Iverson L R, Liaw A. 2006. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction[J]. Ecosystems, 9(2): 181-199. doi: 10.1007/s10021-005-0054-1 |
Qin Yaozu, Wu Weicheng, Xie Lifeng, Ou Penghui, Huang Xiaolan. 2021. Applicayion of machine learning based mineral prospectivity mapping in the Yuexi antimony orefield, Hunan Province[J]. Journal of East China University of Technology (Natual Science), 44(1): 28-40 (in Chinese with English abstract). |
Sillitoe R H. 2010. Porphyry copper systems[J]. Economic Geology, 105: 3-41. doi: 10.2113/gsecongeo.105.1.3 |
Song S H. 2021. Random forest approach in modeling the flow stress of 304 stainless steel during deformation at 700℃-900℃[J]. Materials, 14(7): 1812. doi: 10.3390/ma14071812 |
Song Shufang, He Ruysng. 2021. Importance measure index system based on random forest[J]. Journal of National University of Defense Technology, 43(2): 25-32(in Chinese with English abstract). |
Song Yang, Tang Juxing, Qu Xiaoming, Wang Denghong, Xin Hongbo, Yang Chao, Lin Bin, Fan Shufang. 2014. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition[J]. Advances in Earth Science, 29(7): 795-809 (in Chinese with English abstract). |
Tang Juxing, Duo Ji, Liu Hongfei, Lang Xinghai, Zhang Jinshu, Zheng Wenbao, Ying Lijuan. 2012. Minerogenetic series of ore deposits in the east part of the Gangdise metallogenic belt[J]. Acta Geoscientia Sinica, 33(4): 393-410 (in Chinese with English abstract). doi: 10.3975/cagsb.2012.04.02 |
Tang Juxing, Yang Huanhuan, Song Yang, Wang Liqiang, Liu Zhibo, Li Baolong, Lin Bin, Peng Bo, Wang Genhou, Zeng Qinggao, Wang Qin, Chen Wei, Wang Nan, Li Zhijun, Li Yubin, Li Yanbo, Li Haifeng, Lei Chuanyang. 2021. The copper polymetallic deposits and resource potential in the Tibet Plateau[J]. China Geology, 4: 1-16. |
Tang Juxing, Zhang Li, Li Zhijun, Chen Jianping, Huang Wei, Wang Qian. 2006. Porphyry copper deposit controlled by structural nose trap: Yulong porphyry copper deposit in eastern Tibet[J]. Mineral Deposits, 25(6): 652-662. doi: 10.3969/j.issn.0258-7106.2006.06.002 |
Tang Yuan, Liu Yuping, Wang Peng, Tang Wenqing, Qin Yadong, Gong Xiaodong, Wang Dongbing, Wang Baodi. 2021. A new understanding of Demala Group complex in Chayu area, southeastern Qinghai-Tibet Plateau: Evidence from zircon U-Pb and mica 40Ar/39Ar dating[J]. China Geology, 4: 77-94. |
Wan C H, Lee L H, Rajkumar R, Isa D. 2012. A hybrid text classification approach with low dependency on parameter by integrating K-nearest neighbor and support vector machine[J]. Expert Systems with Applications, 39(15): 11880-11888. doi: 10.1016/j.eswa.2012.02.068 |
Wang Liquan, Wang Baodi, Li Guangming, Wang Dongbing, Peng Zhimin. 2021. Major progresses of geological survey and research in East Tethys: An overview[J]. Sedimentary Geology and Tethyan Geology, 41(2): 283-296 (in Chinese with English abstract). |
Wu Huoxing, Fu Bin, Gao Ren, Fan Tao, Zha Zhiqiang, Tong Jizhong, Chen Tiandi. 2020. Characteristics analysis and prospecting potential prediction of newly discovered ore bodies in the Jiujiang Chengmenshan copper deposit[J]. Journal of East China Institute of Technology (Natural Science Edition), 43(2): 115-120. |
Xiang Jie, Chen Jianping, Xiao Keyan, Li Shi, Zhang Zhiping, Zhang Ye. 2019. 3D metallogenic prediction based on machine learning: A case study of the Lala copper deposit in Sichuan Province[J]. Geological Bulletin of China, 38(12): 2010-2021. doi: 10.12097/j.issn.1671-2552.2019.12.009 |
Xiao Keyan, Lou Debo, Sun Li, Li Jingchao, Ye Tianzhu. 2013. Some progresses of mineral prediction theory and method in important mineral resource potential assessment of China[J]. Journal of Jilin University (Earth Science Edition), 43(3): 1053-1082. |
Xu Zhiqin, Dilek Y, Cao Hui, Yang Jingsui, Robinson Paul, Ma Changqian, Li Huaqi, Jolivet Marc, Roger Franoise, Chen Xijie. 2015. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 105: 320-337. doi: 10.1016/j.jseaes.2015.01.021 |
Xu Zhiqin, Yang Jinsui, Li Wenchang, Li Huaqi, Cai Zhihui, Yan Zhen, Ma Changqian. 2013. Paleo-tethys system and accretionary orogen in the Tibet plateau[J]. Acta Petrologica Sinica, 29(6): 1847-1860 (in Chinese with English abstract). |
Yang Jinsui, Xu Zhiqing, Li Tianfu, Li Huaqi, Li Zhaoli, Ren Yufeng, Xu Xiangzheng, Chen Songyong. 2007. Oceanic subduction-type eclogite in the Lhasa block, Tibet, China: Remains of the paleo-tethys ocean basin?[J]. Geological Bulletin of China, 26(10): 1277-1287 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2007.10.006 |
Yang Zhiming, Hou Zengqian, Chang Zhaoshan, Li Qiuyun, Liu Yunfei, Qu Huanchun, Sun Maoyu, Xu Bo. 2016. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones[J]. Lithos, 245(3): 243-257. |
Ye Tianzhu. 2013. Theoretical framework of methodology of deposit modeling and integrated geological information for mineral resource potential assessment[J]. Journal of Jilin University (Earth Science Edition), 43(4): 1053-1072. |
Zadeh M H, Tangestani M H, Roldan F V, Yusta I. 2014. Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran[J]. Ore Geology Reviews, 62(6): 191-198. |
Zeng Yuanchuan, Chen Jianlin, Xu Jifeng, Lei Ming, Xiong Qiuwei. 2017. Origin of Miocene Cu-bearing porphyries in the Zhunuo region of the southern Lhasa subterrane: Constraints from geochronology and geochemistry[J]. Gondwana Research, 41: 51-64. doi: 10.1016/j.gr.2015.06.011 |
Zhang Shihong, Xiao Keyan. 2020. Random forest-based mineralization prediction of the Lala-type cu deposit in the Huili area, Sichuan Province[J]. Geology and Exploration, 56(2): 239-252 (in Chinese with English abstract). |
Zhang Shizhen, Qin Yadong, Li Yong, Li Fengqi, Gong Xiaodong. 2021. U-Pb dating for detrital zircons from the Jiejunazhuo Formation in Xuru Co area and its geological significances[J]. Sedimentary Geology and Tethyan Geology, 41(1): 24-32. |
Zhang Ye, Li Mingchao, Han Shuai, Ren Qiubing, Zhu Yueqin. 2020. Machine learning methods application in gold mineralization prediction based on gold unit data[J]. Geotectonica et Metallogenia, 44(2): 183-191. |
Zhang Yujun, Zeng Chaoming, Chan Hui. 2003. The Methods for Extraction of alteration anomalies from the ETM+(TM) data and their application: Method selection and technological flow chart[J]. Remote Sensing for Land & Resources, 2: 44-50 (in Chinese with English abstract). |
Zhang Zhenjie, Cheng Qiuming, Yang Jie, Wu Guopeng, Ge Yunzhao. 2021. Machine learning for mineral prospectivity: A case study of iron polymetallic mineral prospectivity in Southwestern Fujian[J]. Earth Science Frontiers 28(3): 281-215 (in Chinese with English abstract). |
Zhao Jinxiang, Qin Kezhang, Li Guangming, Li Jinxiang, Xiao Bo, Chen Lei, Yang Yueheng, Li Chao, Liu Yongsheng. 2014. Collision-related genesis of the sharang porphyry molybdenum deposit, tibet: Evidence from zircon U-Pb ages, Re-Os ages and Lu-Hf isotopes[J]. Ore Geology Reviews, 56: 312-326. doi: 10.1016/j.oregeorev.2013.06.005 |
Zhao Pengda. 2007. Quantitative mineral prediction and deep mineral exploration[J]. Earth Science Frontiers, 14(5): 1-10 (in Chinese With English Abstract). doi: 10.3321/j.issn:1005-2321.2007.05.001 |
Zhao Xiliang, Gong Chen, He Jun, Peng Jianhua, Huang Shaochun, Yang Zhilong. 2013. Discovery of porphyry copper deposit and its significance of Dajiacuo in Cuoqin county, Tibet[J]. Journal of East China Institute of Technology (Natural Science Edition), 36(6): 13-20 (in Chinese with English abstract) |
Zheng Youye, Sun Xiang, Gao Sunbao, Gao Shunbao, Wu Song, Xu Jing, Jiang Junsheng, Chen Xin, Zhao Zhongying, Liu Yan. 2015. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt[J]. Journal of Asian Earth Sciences, 103: 23-39. doi: 10.1016/j.jseaes.2014.11.036 |
Zhou Qing, Jiang Yaohui, Zhao Peng, Liao Shiyong, Jin Guodong, Liu Zheng, Jia Ruya. 2012. SHRIMP U-Pb dating on hydrothermal zircons: Evidence for an Early Cretaceous epithermal event in the Middle Jurassic Dexing porphyry copper deposit, southeast China[J]. Economic Geology, 107: 1507-1514. doi: 10.2113/econgeo.107.7.1507 |
Zhu Dicheng, Pan Guitang, Chung Shenlin, Liao Zhongli, Li Guangming. 2008. SHRIMP zircon age and geochemical constraints on the origin of lower Jurassic volcanic rocks from the Yeba fromation, southern Gangdese, south Tibet[J]. International Geology Review, 50(5): 442-471. doi: 10.2747/0020-6814.50.5.442 |
Zhu Yusheng, Xiao Keyan, Ma Yubo, Ding Jianhua. 2013. Review and status of mineralization belt study in China[J]. Journal of Geology, 37(3): 349-357. doi: 10.3969/j.issn.1674-3636.2013.03.349 |
蔡惠慧, 朱伟, 李孜轩, 刘园园, 李龙斌, 刘畅. 2019. 基于深度学习的钨钼找矿靶区预测方法研究[J]. 地球信息科学学报, 21(6): 928-936. |
陈进, 毛先成, 刘占坤. 邓浩. 2020. 基于随机森林算法的大尹格庄金矿床三维成矿预测. 大地构造与成矿学[J]. 44(2): 231-241. doi: 10.16539/j.ddgzyckx.2020.02.007 |
成秋明. 2006. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法[J]. 地球科学, 31(3): 337-348. doi: 10.3321/j.issn:1000-2383.2006.03.009 |
代晶晶, 曲晓明, 辛洪波. 2010. 基于ASTER遥感数据的西藏多龙矿集区示矿信息的提取[J]. 地质通报, 9(5): 752-759. doi: 10.3969/j.issn.1671-2552.2010.05.016 |
方匡南, 吴见彬, 朱建平, 谢邦昌. 2011. 随机森林方法研究综述[J]. 统计与信息论坛, 26(3): 32-38. doi: 10.3969/j.issn.1007-3116.2011.03.006 |
高顺宝. 2015. 西藏冈底斯西段铜铁多金属成矿作用与找矿方向[D]. 武汉: 中国地质大学(武汉), 1-120. |
耿全如, 李文昌, 王立全, 曾祥婷, 彭智敏, 张向飞, 张璋, 丛峰, 关俊雷. 2021. 特提斯中西段古生代洋陆格局与构造演化[J]. 沉积与特提斯地质, 41(2): 297-315. doi: 10.19826/j.cnki.1009-3850.2021.02012 |
韩善楚, 姜垚, 潘家永, 万弘, 黄天宇. 2021. 西藏冈底斯成矿带跃进沟铜矿床同位素地球化学特征研究[J]. 东华理工大学学报(自然科学版), 44(5): 423-432. doi: 10.3969/j.issn.1674-3504.2021.05.003 |
黄发明, 叶舟, 姚池, 李远耀, 殷坤龙, 黄劲松, 姜清辉. 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响[J]. 地球科学, 45(12): 4535-4549. |
黄瀚霄, 李光明, 刘洪, 张洪铭, 张林奎, 余槐, 焦彦杰, 陈小平, 梁维. 2020. 冈底斯西段罗布真浅成低温热液型银金矿的成矿流体演化: 来自流体包裹体、H-O同位素的证据[J]. 地学前缘, 27(4): 50-65. |
黄瀚霄, 李光明, 刘洪, 张洪铭, 张林奎, 余槐, 焦彦杰, 梁维. 2018. 冈底斯成矿带西段首次发现低硫化型浅成低温热液型矿床——罗布真金银多金属矿床[J]. 中国地质, 45(3): 628-629. |
黄瀚霄, 张林奎, 刘洪, 李光明, 黄勇, 兰双双, 吕梦鸿. 2019. 西藏冈底斯成矿带西段矿床类型、成矿作用和找矿方向[J]. 地球科学, 44(6): 1876-1887. |
黄永高, 韩飞, 李应栩, 贾小川, 杨学俊, 李光明, 杨青松. 2020. 西藏南木林盆地发现早侏罗世火山作用——来自锆石U-Pb年龄的证据[J]. 中国地质, 47(4): 1266-1267. |
郎兴海, 郭文铂, 王旭辉, 邓煜霖, 杨宗耀, 谢富伟, 李壮, 张忠, 姜楷. 2019. 西藏雄村矿集区含矿斑岩成因及构造意义: 来自年代学及地球化学的约束[J]. 岩石学报, 35(7): 2105-2123. |
李苍柏, 肖克炎, 李楠, 宋相龙, 张帅, 王凯, 楚文楷, 曹瑞. 2020. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报, 41(2): 309-319. |
李光明, 潘桂棠, 王高明, 黄志英, 高大发. 2004. 西藏冈底斯成矿带矿产资源远景评价与展望[J]. 成都理工大学学报(自然科学版), 31(1): 22-27. doi: 10.3969/j.issn.1671-9727.2004.01.004 |
李光明, 张林奎, 张志, 夏祥标, 梁维, 侯春秋. 2021. 青藏高原南部的主要战略性矿产: 勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 41(2): 351-360. |
李金祥, 秦克章, 李光明, 林金灯, 肖波, 江化寨, 韩逢杰, 黄树峰, 陈雷, 赵俊兴. 2001. 冈底斯东段羌堆铜钼矿床年代学、矽卡岩石榴石成分及其意义[J]. 地质与勘探, 47(1): 11-19. |
李靖辉. 2008. 大别山(北麓)斑岩型钼矿床成矿系列及成矿规律[J]. 东华理工大学学报(自然科学版), 31(1): 25-30. doi: 10.3969/j.issn.1674-3504.2008.01.005 |
刘洪, 黄瀚霄, 李光明, 肖万峰, 张智林, 刘波, 马东方, 董磊, 马东. 2015. 因子分析在藏北商旭金矿床地球化学勘查中的应用[J]. 中国地质, 42(4): 1126-1136. doi: 10.3969/j.issn.1000-3657.2015.04.026 |
刘洪, 黄瀚霄, 欧阳渊, 张景华, 张腾蛟, 李富, 肖启亮, 曾建, 侯谦, 文登奎, 段声义. 2020a. 基于地质建造的土壤地质调查及应用前景分析-以大凉山区西昌市为例[J]. 沉积与特提斯地质, 40(1): 91-105. |
刘洪, 黄瀚霄, 张林奎, 李光明, 欧阳渊, 黄勇, 吕梦鸿, 兰双双. 2021a. 冈底斯西段打加错地区鲁尔玛晚三叠世斑岩型铜(金)矿点的地质特征及发现意义[J]. 沉积与特提斯地质, 41(6): 569-581. |
刘洪, 李光明, 黄瀚霄, 张林奎, 吕梦鸿, 兰双双, 解惠. 2019a. 西藏冈底斯成矿带发现晚三叠世斑岩型铜矿[J]. 中国地质, 46(5): 1238-1240. |
刘洪, 李光明, 李文昌, 黄瀚霄, 李佑国, 欧阳渊, 张向飞, 周清. 2022. 西藏中拉萨地块北部早白垩世晚期控错A型花岗岩的成因及构造环境研究[J]. 岩石学报, 38(1): 230-252. |
刘洪, 李光明, 李文昌, 张景华, 李佑国, 张智林, 黄瀚霄, 欧阳渊, 张腾蛟. 2021b. 西藏仲巴县布东拉金矿床的浅成低温热液成矿作用: 来自流体包裹体和H-O同位素的证据[J]. 矿床地质, 40(2): 311-328. |
刘洪, 李光明, 张智林, 黄瀚霄, 肖万峰. 2014b. 西藏改则县木如地区岩屑地球化学分析[J]. 金属矿山, 43(11): 105-108. |
刘洪, 吕新彪, 李春诚, 刘阁, 尚世超, 王林, 张伟, 毛荣威. 2013. 河南罗山金城金矿床成矿条件与深部找矿前景分析[J]. 地质与勘探, 49(2): 265-273. |
刘洪, 吕新彪, 袁迁, 柯长书, 朱乔乔, 柳潇, 王玉奇, 张善明. 2014a. 河南信阳高梁店铁铜矿床娄子湾矿段地质特征与找矿方向[J]. 矿物学报, 34(3): 337-342. |
刘洪, 夏祥标, 黄瀚霄, 张林奎, 兰双双, 吕梦鸿, 艾金彪, 解惠. 2019b. 西藏冈底斯成矿带西段学修玛尔幅水系沉积物地球化学统计分析与找矿前景[J]. 桂林理工大学学报(自然科学版), 39(4): 847-855. |
刘洪, 张晖, 李光明, 黄瀚霄, 肖万峰, 游钦, 马东方, 张海. 2016. 藏北羌塘南缘早白垩世青草山强过铝质S型花岗岩的成因: 地球化学和LA-ICP-MS锆石U-Pb年代学的约束[J]. 北京大学学报(自然科学版), 52(5): 848-860. |
刘洪, 张林奎, 黄瀚霄李光明, 余槐, 黄勇, 梁维, 闫国强, 张洪铭, 陈小平. 2020b. 冈底斯西段罗布真浅成低温热液型银金矿的成矿流体演化: 来自流体包裹体、H-O同位素的证据[J]. 地学前缘, 27(4): 50-65. |
刘洪, 张林奎, 黄瀚霄, 李光明, 吕梦鸿, 闫国强, 黄勇, 兰双双, 解惠. 2019c. 冈底斯西段鲁尔玛斑岩型铜(金)矿成矿流体性质及演化[J]. 地球科学, 44(6): 1935-1956. |
刘洪, 张林奎, 黄瀚霄, 李光明, 欧阳渊, 吕梦鸿, 刘函, 兰双双, 闫国强. 2019d. 西藏冈底斯西段鲁尔玛晚三叠世二长闪长岩的成因[J]. 地球科学, 44(7): 2339-2352. |
刘卫东, 唐志鹏, 夏炎, 韩梦瑶, 姜宛贝. 2019. 中国碳强度关键影响因子的机器学习识别及其演进[J]. 地理学报, 74(12): 2592-2603. |
倪培, 迟哲, 潘君屹. 2020. 斑岩型和浅成低温热液型矿床成矿流体与找矿预测研究: 以华南若干典型矿床为例[J]. 地学前缘, 27(2): 60-78. |
欧阳渊, 刘洪, 黄瀚霄, 李光明, 杨武年, 肖万峰, 张智林, 马成义, 马步英. 2016. 藏北商旭-达则地区水系沉积物地球化学多元统计分析与找矿方向[J]. 矿物学报, 36(4): 586-594. |
欧阳渊. 2020. 西藏冈底斯成矿带西段斑岩型铜矿成矿规律与成矿预测研究[D]. 成都: 成都理工大学, 1-110. |
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521-533. |
潘桂棠, 王立全, 耿全如, 尹福光, 王保弟, 王冬兵, 彭智敏, 任飞. 2020. 班公湖-双湖-怒江-昌宁-孟连对接带时空结构——特提斯大洋地质及演化问题[J]. 沉积与特提斯地质, 40(3): 1-19. |
潘桂棠, 王立全, 李兴振, 王洁民, 徐强. 2001. 青藏高原区域构造格局及其多岛弧盆系的空间配置[J]. 沉积与特提斯地质, 21(3): 1-26. |
秦耀祖, 吴伟成, 谢丽凤, 欧鹏辉, 黄小岚. 2021. 基于机器学习的找矿预测模型在湖南岳溪锑矿田的应用[J]. 东华理工大学学报(自然科学版), 44(1): 28-40. |
宋述芳, 何入洋. 2021. 基于随机森林的重要性测度指标体系[J]. 国防科技大学学报, 43(2): 25-32. |
宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 2014. 西藏班公湖-怒江成矿带研究进展及一些新认识[J]. 地球科学进展, 29(7): 795-809. |
唐菊兴, 多吉, 刘鸿飞, 郎兴海张金树郑文宝应立娟. 2012. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J]. 地球学报, 33(4): 393-410. |
唐菊兴, 张丽, 李志军, 陈建平, 黄炜, 王强. 2006. 西藏玉龙铜矿床——鼻状构造圈闭控制的特大型矿床[J]. 矿床地质, 25(6): 652-662. |
王立全, 王保弟, 李光明, 王冬兵, 彭智敏. 2021. 东特提斯地质调查研究进展综述[J]. 沉积与特提斯地质, 41(2): 283-296. |
吴火星, 付斌, 高任, 樊涛, 查志强, 童继中, 陈天迪. 2020. 九江城门山铜矿新发现矿体特征分析及找矿潜力预测[J]. 东华理工大学学报(自然科学版), 43(2): 115-120. |
向杰, 陈建平, 肖克炎, 李诗, 张志平, 张烨. 2019. 基于机器学习的三维矿产定量预测——以四川拉拉铜矿为例[J]. 地质通报, 38(12): 2010-2021. |
肖克炎, 娄德波, 孙莉, 李景朝, 叶天竺. 2013. 全国重要矿产资源潜力评价一些基本预测理论方法的进展[J]. 吉林大学学报(地球科学版), 43(4): 1073-1082. |
许志琴, 杨经绥, 李文昌, 李化启, 蔡志慧. 闫臻, 马昌前. 2013. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 29(6): 1847-1860. |
杨经绥, 许志琴, 李天福, 李化启, 李兆丽, 任玉峰, 徐向珍, 陈松永. 2007. 青藏高原拉萨地块中的大洋俯冲型榴辉岩: 古特提斯洋盆的残留?[J] 地质通报, 26(10): 1277-1287. |
叶天竺. 2013. 矿床模型综合地质信息预测技术方法理论框架[J]. 吉林大学学报(地球科学版), 43(4): 1053-1072. |
张士红, 肖克炎. 2020. 基于随机森林的四川省会理地区"拉拉式"铜矿成矿预测[J]. 地质与勘探, 56(2): 239-252. |
张士贞, 秦雅东, 李勇, 李奋其, 巩小栋. 2021. 西藏许如错地区洁居纳卓组碎屑锆石U-Pb年龄及其地质意义[J]. 沉积与特提斯地质, 41(1): 24-32. |
张野, 李明超, 韩帅, 任秋兵, 朱月琴. 2020. 基于金矿规格单元数据的机器学习方法在成矿建模分析中的应用[J]. 大地构造与成矿学, 44(2): 183-191. |
张玉君, 曾朝铭, 陈薇. 2003. ETM+(TM)蚀变遥感异常提取方法研究与应用-方法选择和技术流程[J]. 国土资源遥感, 2: 44-50. |
张振杰, 成秋明, 杨玠, 武国朋, 葛云钊. 2021. 机器学习与成矿预测: 以闽西南铁多金属矿预测为例[J]. 地学前缘, 28(3): 281-215. |
赵鹏大. 2007. 成矿定量预测与深部找矿[J]. 地学前缘, 14(5): 1-10. |
赵希良, 龚臣, 何俊, 彭建华, 黄韶春, 杨志龙. 2013. 西藏措勤县打加错地区斑岩型铜矿点发现及其意义[J]. 东华理工大学学报(自然科学版), 36(6): 13-20. |
朱裕生, 肖克炎, 马玉波, 丁建华. 2013. 中国成矿区带划分的历史与现状[J]. 地质学刊, 37(3): 349-357. |
Mineral geological map of the Gangdise metallogenic belt (a, modified from Liu Hong et al., 2019a, b, 2020a; b, modified from Liu Hong et al., 2019c, 2020b)
Schematic diagram of random forest model
Schematic diagram of receiver operating characteristic curve(ROC)
Mineral geological map of the western Gangdise metallogenic belt (modified from Huang Hanxiao et al., 2019)
Summary of the geotectonic and metallogenic evolution of the western Gangdise metallogenic belt (modified from Huang Hanxiao et al., 2019)
The satellite gravity isogram map of the western Gangdise metallogenic belt(after the University of California public data)
The detail maps of satellite gravity wavelet analysis of the western Gangdise metallogenic (after the University of California public data)
The aeromagnetic △T pole isogram map of the western Gangdise metallogenic belt (after the AGRS public data)
The detail maps of aeromagnetic △T pole wavelet analysis of the western Gangdise metallogenic belt (after the AGRS public data)
The distribution map of inferred rock mass based on △T pole abnormal in the western Gangdise metallogenic belt
Cluster analysis chart of geochemical elements in the western Gangdise metallogenic belt
Component plot in rotated space of geochemical elements in the western Gangdise metallogenic belt
Geochemical maps (a, b) and factor score isogram maps (c, d) in the western Gangdise metallogenic belt
Geochemical subdivisions map in the western Gangdise metallogenic belt
Remote sensing prospecting information maps in the western Gangdise metallogenic belt
Remote sensing comprehensive prospecting information map in the western Gangdise metallogenic belt
The comparison of the ore units amountin data set uni (a) and the ore units amount in training subset unit (b) in the western Gangdise metallogenic belt
ROC curves of the data set under different models in the western Gangdise metallogenic belt
The isogram map of posterior probability in the western Gangdise metallogenic belt
The comparison of posterior probabilities for unit gridsto known ore spots in the western Gangdise metallogenic belt
The prospecting prediction map for the copper polymetallic deposits related to porphyry system in the western Gangdise metallogenic belt