2020 Vol. 47, No. 5
Article Contents

XU Ziying, WANG Jun, GAO Hongfang, YAO Yongjian, ZHU Rongwei, TANG Jianglang, NIE Xin, SUN Meijing. 2020. The characteristics and formation mechanism of the faults in the southern part of the Zhongsha Bank[J]. Geology in China, 47(5): 1438-1446. doi: 10.12029/gc20200510
Citation: XU Ziying, WANG Jun, GAO Hongfang, YAO Yongjian, ZHU Rongwei, TANG Jianglang, NIE Xin, SUN Meijing. 2020. The characteristics and formation mechanism of the faults in the southern part of the Zhongsha Bank[J]. Geology in China, 47(5): 1438-1446. doi: 10.12029/gc20200510

The characteristics and formation mechanism of the faults in the southern part of the Zhongsha Bank

    Fund Project: National Natural Science Foundation of China (No.41606080,No.41576068); Natural Science Foundation of Guangdong Province, China (No.2017A030312002); China Geological Survey Program (No. GZH201400202, No.DD20160138,No.DD20190378, No.1212011220117, No.1212011220116, No.DD20190366, No.DD20190577, No.DD20190209, No.DD20190216, No.GZH201400203); Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(No. GML2019ZD0208)
More Information
  • Author Bio: XU Ziying, female, born in 1981, doctor, senior engineer, mainly engages in tectonic analysis and analogue modeling. E-mail:ziyingx06@scsio.ac.cn
  • On the basis of the latest multi-channel seismic profiles and geophysical data such as gravity, magnetism and topography, the spatial distribution characteristics of faults, the development period of faults, the internal structural deformation feature of faults and deep crustal structure in the southern Zhongsha Bank (ZB) were revealed, and the formation mechanism of the faults was also discussed. The results show that the tectonic property of the southern continental margin of ZB is non-volcanic passive continental margin. From northwest to southeast, the crustal properties change from thinned continental crust to oceanic-continental transitional crust and then to normal oceanic crust. The depth of Moho discontinuity rises rapidly from 26 km beneath the ZB to 10-12 km beneath the ocean basin. The obvious negative gravity anomaly area from the steep slope of the ZB to the coast front is the oceaniccontinental transitional zone, and the boundary of gravity anomaly change from high value negative anomaly to low value positive and negative anomaly in the ocean basin is the oceanic-continental boundary. There are four sets of deep and large normal faults with stepped sea-dipping in the southern part of the ZB, which were mainly developed in the Late Oligocene to the Middle Miocene. The early extension of the fault development mechanism was related to the NS-trending extension of the sub-basin in the eastern South China Sea (SCS), and the later compressive stress was related to the NW-trending subduction of the Philippine plate towards the SCS. This study is helpful to the better understanding of the expansion history of the South China Sea basin and the types of passive continental margins in the SCS.

  • 加载中
  • Chen Changmin, Shi Hesheng, Xu Shice. 2003. The Conditionof Oil and Gas Reservoir Formation in the East of Zhujiangkou Basin[M]. Beijing:Science Press, 1-30(in Chinese).

    Google Scholar

    Hao Tianyao, Xu Ya, Sun Fuli, You Qingyu, Lü Chuanchuan, Huang Song, Qiu Xuelin, Hu Weijian, Zhao Minghui. 2011. Integrated geophysical research on the tectonic attribute of conjugate continental margin of South China Sea[J]. Chinese Journal of Geophysics, 54(12): 3098-3116(in Chinese with English abstract).

    Google Scholar

    Huang Haibo, He Enyuan, Guo Xingwei, Fan Jianke, Zhang Xunhua. 2019. Insights about the structure and development of Zhongsha Bank in the South China Sea from integrated geophysical modelling[J]. International Geology Review, 68(14): 1938-2839.

    Google Scholar

    Jin Xianglong. 1989. Geosciences research report of South China Sea[J].Donghai Marine Science, 7(4):30- 42 (in Chinese with English abstract).

    Google Scholar

    Li Chunfeng, Xu Xing, Lin Jian, Sun Zhen, Zhu Jian, Yao Yongjian, Zhao Xixi, Liu Qingsong. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 15(12):4958-4983. doi: 10.1002/2014GC005567

    CrossRef Google Scholar

    Liu Jianhua, Xu Deqiong. 1986. Thecharaeteristies and origin of the trough south of Zhongsha Islands[J]. Donghai Marine Science, 4 (3): 25-32(in Chinese with English abstract).

    Google Scholar

    Ruan Aiguo, Wei Xiaodong, Niu Xiongwei, Zhang Jie, Dong Chongzhi, Wu Zhenli, Wang Xinyang. 2016. Crustal structure and fracture zone in the Central Basin of the South China Sea from wide angle seismic experiments using OBS[J]. Tectonophysics, 688:1-10. doi: 10.1016/j.tecto.2016.09.022

    CrossRef Google Scholar

    Sun Jiashi. 1987. A discussion of the formation ages of the bedrock in the xisha Islands[J]. Marine Geology & Quaternary Geology, 7(4): 5-6(in Chinese with English abstract).

    Google Scholar

    Wan Ling, Yao Bochu, Zeng Weijun, Wu Nengyou, Xia Bin, Zhu Benduo. 2006.Lithospheric structure and petroleum distribution in the South China Sea[J]. Geology in China, 33(4):874- 884(in Chinese with English abstract).

    Google Scholar

    Xu Ziying, Wang Jun, Gao Hongfang, Sun Meijing. 2014. Fault developmental characteristics and structure style of the southern part of the Zhongsha block[C]//Third Congress Earth System Science, Shanghai (in Chinese).

    Google Scholar

    Xu Ziying, Wang Jun, Gao Hongfang, Sun Guihua, Sun Meijing, Nie Xin, Zhou Rongwei.2019.Research progress on the ZhongnanLiyue Fault Zone in the South China Sea Oceanic Basin[J].Journal of Tropical Oceanography, 38(2): 86- 94(in Chinese with English abstract).

    Google Scholar

    Yang Shengxiong, Qiu Yan, Zhu Benduo, Chen Jie, Guan Yongxian, Peng Xuechao, Gao Hongfang, Guo Lihua. 2015. Atlas of Geology and Geophysics of the South China Sea[M].Tianjin: China Navfangigation Publications(in Chinese with English abstract).

    Google Scholar

    Zhang Wei, Liang Jinqiang, Su Pibo, Wei Jiangong, Sha Zhibin, Lin Lin, Liang Jin, Huang Wei. 2018. Migrating pathways of hydrocarbons and their controlling effects associated with high saturation gas hydrate in Shenhu area, northern South China Sea[J].Geology in China, 45(1): 1- 14(inChinese with English abstract).

    Google Scholar

    Zhao Bin, Gao Hongfang, Zhang Hen, Li Liqing. 2019. Structure study of the northeastern Zhongsha Trough Basin in the South China Sea based on prestack depth migration seismic imaging[J]. Journal of Tropical Oceanography, 38(2): 95- 102(in Chinese with English abstract).

    Google Scholar

    陈长民, 施和生, 许仕策.2003.珠江口盆地(东部)第三系油气藏形成条件[M].北京:科学出版社.

    Google Scholar

    郝天珧, 徐亚, 孙福利, 游庆瑜, 吕川川, 丘学林, 胡卫剑, 赵明辉.2011.南海共轭大陆边缘构造属性的综合地球物理研究[J].地球物理学报, 54(12): 3098-3116.

    Google Scholar

    金翔龙.1989.南海地球科学研究报告[J].东海海洋, 7(4):30-42. doi: 10.3321/j.issn:1001-8166.1998.04.007

    CrossRef Google Scholar

    刘建华, 徐德琼.1986.中沙南海槽的特征及其形成[J].东海海洋, 4(3):25-32.

    Google Scholar

    孙嘉诗.1987.西沙基底形成时代的商榷[J].海洋地质与第四纪地质, 7(4):5-6.

    Google Scholar

    万玲, 姚伯初, 曾维军, 吴能友, 夏斌, 朱本铎. 2006.南海岩石圈结构与油气资源分布[J].中国地质, 33(4):874-884.

    Google Scholar

    徐子英, 高红芳, 汪俊, 孙美静.2014.中沙海台南部断裂发育特征及其构造样式[C].上海: 第三届地球系统科学大会, 405.

    Google Scholar

    徐子英, 汪俊, 高红芳, 孙桂华, 孙美静, 聂鑫, 朱荣伟.2019.南海海盆中南-礼乐断裂带研究进展[J].热带海洋学报, 38(2): 86-94.

    Google Scholar

    杨胜雄, 邱燕, 朱本铎, 陈洁, 关永贤, 彭学超, 高红芳, 郭丽华. 2015.南海地质地球物理图系[M].天津:中国航海图书出版社.

    Google Scholar

    张伟, 梁金强, 苏丕波, 尉建功, 沙志彬, 林霖, 梁劲, 黄伟.2018.南海北部陆坡高饱和度天然气水合物气源运聚通道控藏作用[J].中国地质, 45(1): 1-14.

    Google Scholar

    赵斌, 高红芳, 张衡, 李丽清.2019.基于深度域地震成像的中沙海槽盆地东北部结构构造研究[J].热带海洋学报, 2019, 38(2):95-102.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(2714) PDF downloads(247) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint