2020 Vol. 47, No. 5
Article Contents

WANG Lijie, YAO Yongjian, SUN Zhen, LI Fucheng, YANG Chupeng, XU Ziying. 2020. The discrimination of Mesozoic sequence and its tectonic attribute in the southeastern South China Sea[J]. Geology in China, 47(5): 1337-1354. doi: 10.12029/gc20200504
Citation: WANG Lijie, YAO Yongjian, SUN Zhen, LI Fucheng, YANG Chupeng, XU Ziying. 2020. The discrimination of Mesozoic sequence and its tectonic attribute in the southeastern South China Sea[J]. Geology in China, 47(5): 1337-1354. doi: 10.12029/gc20200504

The discrimination of Mesozoic sequence and its tectonic attribute in the southeastern South China Sea

    Fund Project: Supported jointly by Geological Survey Project (No. DD20160138,No. DD20201118), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (No. GML2019ZD0208), Guangdong Natural Science Foundation Research Team Project (No. 2017A030312002), and National Natural Science Foundation of China (No. 41606080).
More Information
  • Author Bio: WANG Lijie, male, born in 1982, engineer, mainly engages in the study of marine geology and geophysics; E-mail:ljwang@scsio.ac.cn
  • Corresponding author: YAO Yongjian, female, born in 1964, senior engineer, mainly engages in offshore petroleum geology and tectonic geology research; E-mail:yjyaomail@163.com  
  • Discriminating the distribution of the Mesozoic strata on the southeastern South China Sea (SCS) continental margin is of great importance for understanding the SCS evolution as well as the oil and gas potential. Due to limited data constraints and varied stratigraphic system divisions, the distribution and tectonic features of the Mesozoic sequences in the southeastern SCS have remained controversial. Assisted by drilling and dredging data, the authors comprehensively identified the Mesozoic sequence using a combination of well-seismic comparison, seismic reflection characteristics, internal velocity analysis, contact relationship between igneous edifices and strata, and structural deformation characteristics. The results show that the Mesozoic sequence is characterized by parallel, continuous, and low-frequency reflections, with internal velocity of 3400-4200 m/s. As the burial depth or/and the degree of metamorphism increases, the internal velocity increases to 4500-5500 m/s. The seismic reflections of the Mesozoic strata in the depth is fuzzy, and most of them have no obvious bottom reflection. Despite the fact that the characteristics of seismic reflection are clear in a specific area, it is still difficult to make a comparative study and conduct a whole region seismic explanation because the range of the Mesozoic strata is limited. Among them, the Mesozoic strata in the Northwest, Southwest Palawan basin, Liyue and Andubei basin show low-angle tilting or nearly horizontal characteristics. By contrast, the Mesozoic strata in the northern part of Jiuzhang basin located in the southwest of Liyue have a velocity of 3500-4500 m/s, which is higher than the overlying Cenozoic velocity and coincides with the result constrained by drilling layer. In addition, the Mesozoic strata tilt or deflect at a high angle, which may be related to the emplacement of magmatic activity. Compared with the distribution of Mesozoic volcanic arc and identified igneous bodies, the authors infer that the first style Mesozoic strata are scattered in the forearc basin near volcanic arc and thus show a relatively weak tectonic activity, whereas the second style strata are distributed in the inter-arc basin and have a strong magmatic activity.

  • 加载中
  • Becker J J, Sandwell D T, Smith W H F, Becker J J, Sandwell D T, Smith W H F, Braud J, Binder B, & Depner J.2009. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution:SRTM30_PLUS[J].Marine Geodesy, 32(4):355-371. doi: 10.1080/01490410903297766

    CrossRef Google Scholar

    Chang J H, Hsu H H, Liu C S, Lee T Y, Chiu S D, Su C C. 2015. Seismic sequence stratigraphic analysis of the carbonate platform, north offshore Taiping Island, dangerous grounds, South China Sea[J]. Tectonophysics, S0040195115006733.

    Google Scholar

    Dung T T, Minh. N Q. 2016. Eruptive-volcanic-basalt structures in the Truong Sa-Spratly Islands and adjacent areas from interpreting[J]. Vietnam Journal of Earth Sciences, 39(1), 1-13.

    Google Scholar

    Ding Weiwei, Franke Dieter, Li Jiabiao, Steuer, Stephan. 2013. Seismic stratigraphy and tectonic structure from a composite multi-channel seismic profile across the entire Dangerous Grounds, South China Sea[J]. Tectonophysics, 582:162-176. doi: 10.1016/j.tecto.2012.09.026

    CrossRef Google Scholar

    Ding Weiwei, Li Jiabiao, Dong Chongzhi, Fang Yinxia. 2015. Oligocene-Miocene carbonates in the Reed Bank area, South China Sea, and their tectono-sedimentary evolution[J]. Marine Geophysical Research, 36(2/3):149-165.

    Google Scholar

    Faure M, Ishida K. 1990. The mid-late Jurassic olistostrome of the west philippines:A distinctive key-marker for the north Palawan block[J]. Journal of Asian Earth Sciences, 4(1):61-67. doi: 10.1016/0743-9547(90)90026-A

    CrossRef Google Scholar

    Forbes M T, Mapaye C B, Bacud J A. 2011. Structural characterization of offshore southwest Palawan, Philippines using the most recent 2D/3D seismic data[C]//Proceedings of the Southeast Asia Petroleum Exploration (SEAPEX) Meeting, Manila, Philippines, 6 April.

    Google Scholar

    Franke D, Barckhausen U, Heyde I, Tingay M, Ramli N. 2008. Seismic images of a collision zone offshore nw sabah/borneo[J]. Marine and Petroleum Geology, 25(7), 0-624.

    Google Scholar

    Franke D, Savva D, Pubellier M, Steuer S, Mouly B, Auxietre J, Meresse F. 2014, The final rifting evolution in the South China Sea[J]. Marine and Petroleum Geology, 58, 704-720. doi: 10.1016/j.marpetgeo.2013.11.020

    CrossRef Google Scholar

    Hayes D E, Nissen S S. 2005. The South China Sea margins:implications for rifting contrasts[J]. Earth and Planetary Science Letters, 237(3/4):0-616.

    Google Scholar

    Hansen D M, Cartwright J. 2006. The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills[J]. J. Struct. Geol., 8 (8):1520-1535.

    Google Scholar

    Hinz K, Schlüter H U. 1985. Geology of the dangerous grounds, South China Sea, and the continental margin off southwest Palawan:Results of SONNE cruises SO-23 and SO-27[J]. Energy, 1985, 10(3/4):297-315.

    Google Scholar

    Holloway N. 1981. The North Palawan Block, Philippines:Its relation to the Asian Mainland and its role in the evolution of the South China Sea[J]. Geological Society of Malaysia Bulletin, 14:19-58. doi: 10.7186/bgsm14198102

    CrossRef Google Scholar

    Infante Lennon. 2018. Seismic Expression of Igneous Bodies in Sedimentary Basins and Their Impact on Hydrocarbon Exploration: Examples from a Compressive Tectonic Setting, Taranaki Basin, New Zealand[D]. University of Oklahoma.

    Google Scholar

    Jian Zhimin, Jin Haiyan, Kaminski Michael A, Ferreira Fabricio, Li Baohua, Yu Paisen. 2019. Discovery of the marine Eocene in the northern South China Sea[J].National Science Review, 6(5):881-886. doi: 10.1093/nsr/nwz084

    CrossRef Google Scholar

    Kudrass H R. Wiedicke M.1986.Mesozoic and Cenozoic rocks dredged from the South China Sea (Reed Bank area) and Sulu Sea and their significance for plate-tectonic reconstructions[J]. Marine and Petroleum Geology, 3:19-30. doi: 10.1016/0264-8172(86)90053-X

    CrossRef Google Scholar

    Li F C, Sun Z, Yang H F. 2018. Possible spatial distribution of the Mesozoic volcanic arc in the present-day South China Sea continental margin and its tectonic implications[J]. Journal of Geophysical Research:Solid Earth, 123:6215-6235.

    Google Scholar

    Li F C, Sun Z, Hu D, Wang, Z. 2013. Crustal structure and deformation associated with seamount subduction at the north Manila Trench represented by analog and gravity modeling[J]. Marine Geophysical Research, 34(3/4):393-406.

    Google Scholar

    Li Shuling, Meng Xiaohong, Guo Lianghui, Yao Changli, Chen Zhaoxi, Li Hequn. 2010. Gravity and magnetic anomalies field characteristics in the South China Sea and its application for interpretation of igneous rocks[J]. Applied Geophysics, 7(4):295-305. doi: 10.1007/s11770-010-0258-9

    CrossRef Google Scholar

    Liang Yao, Delescluse Matthias, Qiu Yan, Pubellier Manuel, Nicolas Chamot-Rooke, Wang Jun, Nie Xie, Watremez Louise, Chang Sung-Ping, Pichot Thibaud, Savva Dimitri, Meresse Florian. 2019. Décollements, detachments, and rafts in the extended crust of dangerous ground, South China Sea:The role of inherited contacts[J]. Tectonics, 38(6):1863-1883. doi: 10.1029/2018TC005418

    CrossRef Google Scholar

    Lin Jian, Xu Yigang, Sun Zhen, Zhou Zhiyuan. 2019. Mantle upwelling beneath the South China Sea and links to surrounding subduction systems[J].National Science Review, 6(5):877-881. doi: 10.1093/nsr/nwz123

    CrossRef Google Scholar

    Marsh B D, Carmichael I S. 1974. Benioff zone magmatism[J]. Journal of Geophysical Research, 79:1196-1206. doi: 10.1029/JB079i008p01196

    CrossRef Google Scholar

    Pichot T, Delescluse M, Chamot-Rooke N, Pubellier M, Sun G, Méresse F. 2014. Deep crustal structure of the conjugate margins of the SW South China Sea from wide-angle refraction seismic data[J]. Marine and Petroleum Geology, 58:627-643. doi: 10.1016/j.marpetgeo.2013.10.008

    CrossRef Google Scholar

    Pubellier M, Morley C K. 2014. The basins of sundaland (SE Asia):Evolution and boundary conditions[J]. Marine and Petroleum Geology, 58:555-578. doi: 10.1016/j.marpetgeo.2013.11.019

    CrossRef Google Scholar

    Rehm S K. 2003, The Miocene Carbonates in Time and Space On- and Offshore SW Palawan, Philippines[D]. Kiel: Christian Albrechts Universität Kiel (Ph.D. thesis).

    Google Scholar

    Sales A O, Jacobsen E C, Morado A A, Benavidez J J, Navarro F A, Lim A E. 1997. The petroleum potential of deep water northwest Palawan Block-GSEC-66[J]. Journal of Asian Earth Sciences, 15(2/3):217-240.

    Google Scholar

    Shao Lei, Cao Licheng, Qiao Peijun, Zhang Xiangtao, Li Qianyu, Hinsbergen Douwe J J. 2017. Cretaceous-Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin[J]. Earth & Planetary Science Letters, 477:97-107.

    Google Scholar

    Schlüter H U, Hinz K, Block M. 1996. Tectono stratigraphic terranes and detachment faulting of the-South China Sea and Sulu Sea[J]. Marine Geology, 130:39-78. doi: 10.1016/0025-3227(95)00137-9

    CrossRef Google Scholar

    Steuer S, Franke D, Meresse F, Savva D, Pubellier M, Auxietre J L, Aurelio M. 2013. Time constraints on the evolution of Southern Palawan Island, Philippines from onshore and offshore correlation of Miocene limestones[J]. Journal of Asian Earth Sciences, 76, 412-427. doi: 10.1016/j.jseaes.2013.01.007

    CrossRef Google Scholar

    Steuer S, Franke D, Meresse F, Savva D, Pubellier M, Auxietre J L. 2014. Oligocene-Miocene carbonates and their role for constraining the rifting and collision history of the Dangerous Grounds, South China Sea[J]. Marine and Petroleum Geology, 58:644-657. doi: 10.1016/j.marpetgeo.2013.12.010

    CrossRef Google Scholar

    Suzuki S, Shizuo T, Graciano P Y, David S D, Asiedu, D K. 2000. Composition and provenance of the Upper Cretaceous to Eocene sandstones in central Palawan, Philippines:Constraints on the tectonic development of Palawan[J]. The Island Arc 9, 611-626. doi: 10.1046/j.1440-1738.2000.00306.x

    CrossRef Google Scholar

    Svensen H, Planke S, Malthesørenssen A, Jamtveit1 B, Myklebus R, Eidem T R, Sebastian S R. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming[J]. Nature, 429 (6991):542-545. doi: 10.1038/nature02566

    CrossRef Google Scholar

    Taylor B, Hayes D E.1980. The Tectonic Evolution of the South China Basin. The tectonic and geologic evolution of Southeast Asian Seas and Islands[J]. American Geophysical Union, 1980:89-104.

    Google Scholar

    Trude J, Cartwright J, Davies R J, Smallwood J. 2003. New technique for dating igneous sills[J]. Geology, 9(31):813-816.

    Google Scholar

    Wang Pingxian, Huang Chiyue, Lin Jian, Jian Zhimin, Sun Zhen, Zhao Minghui. 2019. The South China Sea is not a mini-Atlantic:plate-edge rifting vs intra-plate rifting[J]. National Science Review, 6(5):902-913. doi: 10.1093/nsr/nwz135

    CrossRef Google Scholar

    Xiao M, Yao, Y J, Cai, Y, Qiu H N, Xu Y G, Xu X, Jiang Y D, Li Y B, Xia X P, Yu Y J. 2019. Evidence of Early Cretaceous lower arc crust delamination and its role in the opening of the South China Sea[J]. Gondwana Research, 76:123-145. doi: 10.1016/j.gr.2019.05.011

    CrossRef Google Scholar

    Xu Y, Wei J X, Qiu H N, Zhang H H, Huang X L.2011. Opening and evolution of the South China Sea constrained by studies on volcanic rocks:Preliminary results and a research design[J]. Chinese Science Bulletin, 24(57):3150-3164.

    Google Scholar

    Yan P, Liu H. 2004. Tectonic-stratigraphic division and blind flod structures in Nansha Waters, South China Sea[J]. Journal of Asian Earth Sciences, 24(3):337-348. doi: 10.1016/j.jseaes.2003.12.005

    CrossRef Google Scholar

    Yan Q, Shi X F, Wang K S. 2008. LA-ICPMS zircon U-Pb dating of granitic rocks from the Nansha micro-block, South China Sea, and its geological significance[J]. Acta Geologica Sinica, 82(8):1057-1067 (in Chinese with English abstract).

    Google Scholar

    Yao Y, Liu H L, Yang C P, Han B, Tian J J, Yin Z X, Gong J L, Xu Q Y. 2012. Characteristics and evolution of Cenozoic sediments in the Liyue Basin, SE South China Sea[J]. Journal of Asian Earth Sciences, 60:114-129. doi: 10.1016/j.jseaes.2012.08.003

    CrossRef Google Scholar

    Zhao F, Alves, T M, Wu S G, Li W, Huuse M, Mi L J, Sun Q L, Ma B J. 2016. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea)[J]. Earth and Planetary Science Letters, 445:79-91. doi: 10.1016/j.epsl.2016.04.001

    CrossRef Google Scholar

    郝沪军, 汪瑞良, 张向涛, 薛怀艳, 陈照光. 2004.珠江口盆地东部海相中生界识别及分布[J].中国海上油气, (2):13-17.

    Google Scholar

    郝沪军, 施和生, 张向涛, 江天才, 汤守立. 2009.潮汕坳陷中生界及其石油地质条件——基于LF35-1-1探索井钻探结果的讨论[J].中国海上油气, 21(3):151-156.

    Google Scholar

    李付成, 孙珍, 张云帆, 2012.海山的倾斜俯冲对上覆板块变形的影响[J].地球物理学进展, (4):1406-1415.

    Google Scholar

    李学杰, 王哲, 姚永坚, 高红芳, 李波. 2017.西太平洋边缘构造特征及其演化[J].中国地质, 44(6):1102-1114.

    Google Scholar

    刘海龄, 阎贫, 孙岩, 郭令智, 张伯友, 张毅祥. 2002.南沙微板块的层块构造[J].中国地质, (4):374-381.

    Google Scholar

    鲁宝亮, 王璞珺, 梁建设, 孙晓猛, 王万银. 2014.古南海构造属性及其与特提斯和古太平洋构造域的关系[J].吉林大学学报(地球科学版), 44(5):1441-1450.

    Google Scholar

    邱燕, 陈国能, 刘方兰, 彭卓伦. 2008.南海西南海盆花岗岩的发现及其构造意义[J].地质通报, 27(12):2104-2107.

    Google Scholar

    邱燕, 王彦林, 阎贫. 2016.折射方法在南沙礼乐盆地西南海域中生界研究中的应用[J].海洋地质与第四纪地质, 36(2):181-187.

    Google Scholar

    阮爱国, 牛雄伟, 吴振利, 吴招才, 薛彬. 2009.潮汕坳陷中生代沉积的折射波2D速度结构和密度[J].高校地质学报, 15(4):522-528.

    Google Scholar

    邵磊, 尤洪庆, 郝沪军, 吴国瑄, 乔培军, 雷永昌. 2007.南海东北部中生界岩石学特征及沉积环境[J].地质论评, 53(2):164-169.

    Google Scholar

    孙龙涛, 孙珍, 周蒂, 刘海龄. 2008.南沙海区礼乐盆地沉积地层与构造特征分析[J].大地构造与成矿学, (2):151-158.

    Google Scholar

    徐东海, 王利杰, 姚永坚, 孙珍, 邱宁. 2018.礼乐盆地碳酸盐岩时空分布特征及构造意义[J].热带海洋学报, 37(6):49-62.

    Google Scholar

    王利杰, 姚永坚, 李学杰, 杨楚鹏, 陆应新, 徐行, 孙珍. 2019.南沙东部海域裂陷结束不整合面时空迁移规律及构造意义[J].地球物理学报, 62(12):4766-4781.

    Google Scholar

    王彦林, 阎贫, 郑红波, 刘海龄, 廖林.2012.南沙群岛海区北部中生界地震特征分析[J].热带海洋学报, 31(4):83-89.

    Google Scholar

    张江阳, 孙珍, 张素芳, 2014.珠江口盆地潮汕坳陷中生代构造变形分析[J].热带海洋学报, 33(5):41-49.

    Google Scholar

    张渝昌, 张尚, 孙肇才. 1997.中国含油气盆地原型分析[M].南京:南京大学出版社.

    Google Scholar

    熊莉娟, 李三忠, 索艳慧, 刘鑫, 余珊, 程世秀, 薛友辰, 安慧婷, 戴黎明, 马云, 王霄飞. 2012.南海南部新生代控盆断裂特征及盆地群成因[J].海洋地质与第四纪地质, 32(6):113-127.

    Google Scholar

    赵美松, 刘海龄, 吴朝华. 2012.南海南北陆缘中生代地层-构造特征及碰撞造山[J].地球物理学进展, 27(4):1454-1464.

    Google Scholar

    朱伟林, 解习农, 王振峰, 张道军, 张成立, 曹立成, 邵磊. 2017.南海西沙隆起基底成因新认识[J].中国科学:地球科学, 47(12):1460-1468.

    Google Scholar

    邹和平, 李平鲁, 饶春涛. 1995.珠江口盆地新生代火山岩地球化学特征及其动力学意义[J].地球化学, (S1):33-45.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(3542) PDF downloads(278) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint