2024 Vol. 51, No. 3
Article Contents

WANG Fenggang, YAO Jian, WU Yu, CHEN Youliang, SUN Zexuan, ZHANG Yushun, LI Qiushi. 2024. Characteristics and genesis of uranium mineralized lenses and its implications for deep−source uranium metallogenesis in Datian area of Panzhihua, Sichuan Province[J]. Geology in China, 51(3): 912-931. doi: 10.12029/gc20200409004
Citation: WANG Fenggang, YAO Jian, WU Yu, CHEN Youliang, SUN Zexuan, ZHANG Yushun, LI Qiushi. 2024. Characteristics and genesis of uranium mineralized lenses and its implications for deep−source uranium metallogenesis in Datian area of Panzhihua, Sichuan Province[J]. Geology in China, 51(3): 912-931. doi: 10.12029/gc20200409004

Characteristics and genesis of uranium mineralized lenses and its implications for deep−source uranium metallogenesis in Datian area of Panzhihua, Sichuan Province

    Fund Project: Supported by the projects of China Nuclear Geology (No.201807–03, No.202346–4) and National Natural Science Foundation of China (No.41472073).
More Information
  • Author Bio: WANG Fenggang, male, born in 1977, professor level senior engineer, mainly engaged in uranium geology and petromineralogy; E-mail: wfg9818@163.com
  • This paper is the result of mineral exploration engineering.

    Objective

    A very special and echelon arrangement uranium mineralized lenses group were found in the Datian area of Panzhihua, Sichuan Province, with important research value.

    Methods

    Through the comprehensive studies, including petrology, mineralogy petrochemistry, isotope geology and chronology, uranium occurrence state the genetic relationship between uranium mineralization and lenses.

    Results

    The lenses mainly consist of plagioclase with strongly sodium zoisitization, and have typical magmatic mosaic texture, with age of 821 Ma (SIMS zircon U–Pb age). They have the chemical composition characterices of high Na2O (3.95%–5.68%, average 5.09%), CaO (4.40%–7.35%, average 5.46%), low SiO2 (51.52%–55.09%, average 53.34%). The analysis of trace element show that lenses have very low ΣREE content (9.96×10−6–33.63×10−6, average 22.03×10−6), positive Eu anomalies (δEu=1.59–5.51, average 2.68) and special REE distribution pattems. The results of ISr (0.7060–0.7088, average 0.7074) indicate that the raw material of lenses coming from the mantle. The mainly uranium occurrence state in lenses is the unique "U–Ti minerals aggregates". The "U–Ti minerals aggregates" are mainly composed of rutile, uranium–titanium mixture, brannerite and uranium, and the minerals in "U–Ti minerals aggregates" have the evolutionary characteristics of "rutile (Ti)→uranium–titanium mixture (Ti>U)→brannerite (Ti<U) → uranium(U)".

    Conclusions

    According to the relationship between uranium minerals and lenses, and the REE tracer method of uranium minerals, it is confirmed that the uranium mineralization genesis is relation to magmatism. It is speculated that the NaU4+(Ti4+)[TiO4]4+(F,Cl) is mainly complex in the deep environment with high temperature (>700 °C) and high pressure (>15 kbar), and it can move and concentrate in the sodium–rich site in the lenses. The U and raw material of lenses originate from same magma, and the "U–Ti minerals aggregates" are separated from magma body in the process of isobaric cooling. The discovery of uranium mineralized lenses in Datian area of Panzhihua provides the direct geological case that uranium can be enriched in the mantle, and this discovery provides a reference for the discussion of deep-source uranium metallogenesis.

  • 加载中
  • [1] Alexandre P, Kyser T K, Layton M K, Joy B, Uvarova Y. 2015. Chemical compositions of natural uraninite[J]. Canadian Mineralogist, 53(4): 595−622.

    Google Scholar

    [2] Arndt N. 2013. The formation of massif anorthosite: Petrology in reverse[J]. Geoscience Frontiers, 4(2): 195−198.

    Google Scholar

    [3] Ashwal L D. 1982. Mineralogy of mafic and Fe−Ti oxide−rich differentiates of the Marcy anorthosites massif, New York[J]. American Mineralogist, 67: 14−27.

    Google Scholar

    [4] Ashwal L D, Seifert K E. 1980. Rare−earth−element geochemistry of anorthosite and related rocks from the Adirondacks, New York, and other massif−type complexes[J]. Geological Society of America Bulletin, 91(2): 659−684.

    Google Scholar

    [5] Ashwal L D, Wooden J L. 1983. Sr and Nd isotope geochronology, geologic history, and origin of the Adirondack Anorthosite[J]. Geochimica et Cosmochimica Acta, 47: 1875−1885.

    Google Scholar

    [6] Ashwal L D, Wooden J L, Phinney W C, Morrison D A. 1985. Sm−Nd and Rb−Sr isotope systematics of an Archean anorthosite and related rocks from the Superior Province of the Canadian Shield[J]. Earth and Planetary Science Letters, 74: 338−346.

    Google Scholar

    [7] Barth M G, Foley S F. 2002. Partial melting in Archean subduction zones: Constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions[J]. Precambrian Research, 113: 323−340.

    Google Scholar

    [8] Barton J. 1996. The Messina layered intrusion, Limpopo Belt, South Africa: An example of in−suit contamination of an Archean anorthosite complex by continental crust[J]. Precambrian Research, 78: 139−150.

    Google Scholar

    [9] Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 2: 63−114.

    Google Scholar

    [10] Charlier B, Duchesne J C, Auwera J V. 2006. Magma chamber processes in the Tellnes Ilmenite deposit (Rogaland Anorthosite SW Norway) and the formation of Fe−Ti ores in massif−type anorthosites[J]. Chemical Geology, 234: 264−290.

    Google Scholar

    [11] Chen Wei, Zhao Taiping. 2007. Research progress in the petrogenesis of the Proterozoic anorthosite massifs[J]. Geological Journal of China Universities, 13(1): 117−126 (in Chinese with English abstract).

    Google Scholar

    [12] Cuney M. 2010. Evolution of uranium fractionation processes through time: Driving the secular variation of uranium deposit types[J]. Economic Geology, 105: 553−569.

    Google Scholar

    [13] Demaiffe D, Weis D, Michot J, Duchesne J C. 1986. Isotopic constraints on the genesis of the Rogaland anothositic (Southwest Norway)[J]. Chemical Geology, 57: 167−179.

    Google Scholar

    [14] Deng Ping, Shen Weizhou, Ling Hongfei, Ye Haimin, Wang Xuecheng, Pu Wei, Tan Zhengzhong. 2003. Uranium mineralization related to mantle fluid: A case study of the Xianshi deposit in the Xiazhuang uranium orefield[J]. Geochimica, 32(6): 520−528 (in Chinese with English abstract).

    Google Scholar

    [15] Du Letian, Wang Wenguang. 2005. Occurrence states of uranium in the mantle and their geochemical implication[J]. Earth Science Frontiers, 12(1): 69−78 (in Chinese with English abstract).

    Google Scholar

    [16] Duchesne J C. 1999. Fe−Ti deposit in Rogaland anorthosites (South Norway): Geochemical characteristic and problems of interpretation[J]. Mineralium Deposita, 34: 182−198.

    Google Scholar

    [17] Emslie R F. 1978. Anorthosite massifs, rapakivi granites, and Late Proterozoic rifting of North America[J]. Precambrian Research, 7: 61−98.

    Google Scholar

    [18] Frimmel H E, Schedel S, Brätz H. 2014. Uraninites chemistry as forensic tool for provenance analysis[J]. Applied Geochemistry, 48: 104−121.

    Google Scholar

    [19] Fryer B J, Taylor R P. 1987. Rare−earth element distributions in uraninites implications for ore genesis[J]. Chemical Geology, 63: 101−108.

    Google Scholar

    [20] Geist D J, Frost C D, Kolker A. 1990. Sr and Nd isotopic constraints on the origin of the Laramie Anorthosite Complex, Wyoming[J]. American Mineralogist, 75: 13−20.

    Google Scholar

    [21] Goldberg S A. 1984. Geochemical relationships between anorthosite and associated iron−rich rocks, Laramie Range, Wyoming[J]. Contributions to Mineralogy and Petrology, 87(4): 376−387.

    Google Scholar

    [22] Green D H, Morgan J W. 1968. Thorium, uranium and potassium abundances in peridotite inclusions and their hot basalts[J]. Earth and Planetary Science Letters, 4: 155−166.

    Google Scholar

    [23] Green H W Ⅱ. 1979. Trace elements in the fluid phase of the Earth's mantle[J]. Nature, 277: 465−467.

    Google Scholar

    [24] Green T H, Pearson N J. 1986. Rare−earth element partitioning between sphene and coexisting silicate liquid at high−pressure and temperature[J]. Chemical Geology, 55: 105−119.

    Google Scholar

    [25] Haskin L A, Salpas P A. 1992. Genesis of compositional characteristics of Stillwater AN−Ⅰ and AN−Ⅱ thick anorthosite units[J]. Geochimica et Cosmochimica Acta, 56: 1187−1212.

    Google Scholar

    [26] Heath S A, Fairbairn H W. 1967. 87Sr/86Sr Ratios in Anorthosites and Some Associated Rocks[D]. Cambridge: Massachusetts Institute of Technology.

    Google Scholar

    [27] Heier K S. 1963. Uranium, thorium and potassium in eclogitic rocks[J]. Geochimica et Cosmochimica Acta, 27: 849−860.

    Google Scholar

    [28] Hellman P L, Green T H. 1979. The role of sphene as an accessory phase in the high−pressure partial melting of hydrous mafic compositions[J]. Earth and Planetary Science Letters, 42(2): 191−201.

    Google Scholar

    [29] Herndon J M. 1993. Feasibility of a nuclear fission reactor at the Center of the Earth as the energy source for the geomagnetic field[J]. Journal of Geomagnetism and Geoelectricity, 45: 423−437.

    Google Scholar

    [30] Herndon J M. 2003. Nuclear georeactor origin of oceanic basalt 3He/4He, evidence, and implications[J]. Proceedings of the National Academy of Sciences of the United States of America, 100: 3047−3050.

    Google Scholar

    [31] Herndon J M. 2006. Solar system processes underlying planetary formation, geodynamics, and the georeactor[J]. Earth, Moon and Planets, 99: 53−89.

    Google Scholar

    [32] Herz H. 1969. Anrothosite belt, continental drift and the anorthosite event[J]. Science, 164: 944−947.

    Google Scholar

    [33] Hu Ruizhong, Bi Xianwu, Su Wenchao, Peng Jiantang, Li Chaoyang. 2004. The relationship between uranium metallogenesis and crustal extension during the Cretaceous−Tertiary in South China[J]. Earth Science Frontiers, 11(1): 153−160 (in Chinese with English abstract).

    Google Scholar

    [34] Hu Ruizhong, Li Chaoyang, Ni Shijun, Liu Li. 1993. Research on ΣCO2 Source in ore−forming hydrothermal solution of granite−type uranium deposits, South China[J]. Science in China (Series B), 23(2): 189−196 (in Chinese).

    Google Scholar

    [35] Hu Ruizhong, Luo Jincheng, Chen Youwei, Pan Lichuan. 2019. Several progresses in the study of uranium deposits in South China[J]. Acta Petrologica Sinica, 35(9): 2625−2636 (in Chinese with English abstract).

    Google Scholar

    [36] Hu Shiling, Wang Songshan, Sang Haiqing, Qiu Ji, Ye Donghu, Chui Renhe, Qi Changmou. 1990. The isotopic ages and REE geochemistry of Daomiao anorthosite and their geological implication[J]. Scientia Geologica Sinica, (4): 332−343 (in Chinese with English abstract).

    Google Scholar

    [37] Hu Shouxi, Ye Ying, Fang Changquan. 2004. Petrology of the Metasomatically Altered Rocks and Its Significance in Prospecting[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [38] Huang Shijie. 2006. Preliminary discussion on deep−sourced uranium metallogenesis and deep prospecting[J]. Uranium Geology, 22(2): 70−75 (in Chinese with English abstract).

    Google Scholar

    [39] Jiang Yaohui, Jiang Shaoyong, Linghongfei. 2004. Mantle−derived fluids and uranium mineralization[J]. Earth Science Frontiters, 11(2): 491−499 (in Chinese with English abstract).

    Google Scholar

    [40] John T, Klemd R, Klemme S, Pfänder J A, Hoffmann J E, Gao J. 2011. Nb−Ta fractionation by partial melting at the titanite−rutile transition[J]. Contributions to Mineralogy and Petrology, 161: 35−45.

    Google Scholar

    [41] Klemme S, Blundy J D, Wood B J. 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite[J]. Geochimica et Cosmochimica Acta, 66: 3109−3312.

    Google Scholar

    [42] Komor S C, Elthon D. 1990. Formation of anorthosite−gabbro rhythmic phase layering: An example at North Arm Mountain, bay of islands ophiolite[J]. Journal of Petrology, 31: 1−50.

    Google Scholar

    [43] Kushiro I, Fujii T. 1977. Floatation of plagioclase in magma at high pressures and its bearing on the origin of anorthosite[J]. Proceedings of the Japan Academy Ser B Physical & Biological Sciences, 53(7): 262−266.

    Google Scholar

    [44] Kutty T R N, Iyer G V A, Ramakrishana M, Verma S P. 1984. Geochemical of meta−anorthosites from Holénarasipur, Karnataka, South India[J]. Lithos, 17: 317−328.

    Google Scholar

    [45] Li Ziying. 2006. Hostspot uranium metallogenesis in South China[J]. Uranium Geology, 22(2): 65−69 (in Chinese with English abstract).

    Google Scholar

    [46] Li Ziying, Li Xiuzhen, Lin Jinrong. 1999. On the Meso−Cenozoic mantle plume tectonics, its relationship to uranium metallogenesis and prospecting directions in South China[J]. Uranium Geology, 15(1): 9−17 (in Chinese with English abstract).

    Google Scholar

    [47] Li Z Y, Huang Z Z, Li X Z, Guo J, Fan C. 2015. The discovery of natural native uranium and its significance[J]. Acta Geologica Sinca (English Edition), 89(5): 1561−1567.

    Google Scholar

    [48] Macaudière J, William L, Ohmenstetter D. 1985. Microcrystalline textures resulting from rapid crystallization in a pseudotachylite melt in a meta−anorthosite[J]. Contributions to Mineralogy and Petrology, 89: 39−51.

    Google Scholar

    [49] Maier W D, Karykowski B T, Yang S H. 2016. Formation of transgressive anorthosite seams in the Bushveld Complex via tectonically induced mobilisation of plagioclase−rich crystal mushes[J]. Geoscience Frontiers, 7: 875−889.

    Google Scholar

    [50] Mao Jingwen, Li Xiaofeng, Zhang Ronghua, Wang Yitian, Hao Ying. 2005. Deep Fluids Metallogenic System[M]. Beijing: China Land Press.

    Google Scholar

    [51] Meinhold G. 2010. Rutile and its applications in earth sciences[J]. Earth Science Reviews, 102: 1−28.

    Google Scholar

    [52] Mercadier J, Cuney M, Lach P, Boiron M C, Bonhoure J, Richard A, Leisen M, Kister P. 2011. Origin of uranium deposits revealed by their rare earth element signature[J]. Terra Nova, 23: 264−269.

    Google Scholar

    [53] Pang Yaqin, Fan Honghai, Gao Fei, Wu Jianyong, Xie Xiaozhan. 2019. Helium and argon isotopic compositions of fluid for the south Zhuguang uranium ore field in northern Guangdong Province[J]. Acta Petrologica Sinica, 35(9): 2665−2773 (in Chinese with English abstract).

    Google Scholar

    [54] Pospelov G L. 1973. Paradoksy, Geologo−fizicheskaya Sushchnost'i Mekhanizmy Metasomatoza (Paradoxes, Geological–Physical Essence and Mechanisms of Metasomatism)[M]. Novosibirsk: Publishing House Nauka.

    Google Scholar

    [55] Romey W D. 1968. An evaluation of some ‘differences’ between anorthosite in massifs and in layered complexes[J]. Lithos, 1: 230−241.

    Google Scholar

    [56] Rosenbaum J M, Zindler A, Rubenstone J L. 1996. Mantle fluids: Evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 60(17): 3229−3252.

    Google Scholar

    [57] Scoates J S, Chamberlain K R. 1997. Orogenic to post−orogenic origin for the 1.76 Ga Horse Creek anorthosite complex, Wyoming, USA[J]. The Journal of Geology, 105: 331−343.

    Google Scholar

    [58] Spano T L, Simonetti A, Wheeler T, Carpenter G, Freet D, Balboni E. 2017. A novel nuclear forensic tool involving deposit type normalized rare earth element signatures[J]. Terra Nova, 29: 294−305.

    Google Scholar

    [59] Tian Jianji, Zhang Guoquan, Shang Pengqiang, Qi Youqiang. 2019. Ore−forming material sources of the Dachayuan uranium deposit, Zhejiang Province: Evidence from C–O and Sr–Nd isotopes[J]. Acta Petrologica Sinica, 35(9): 2817−2829 (in Chinese with English abstract).

    Google Scholar

    [60] Varfalvy V, Hebert R, Bedard J H, Lafleche M R. 1997. Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain Massif, Bay of islands ophiolite, Newfoundland: Implications for the genesis of boninitic and related magmas[J]. The Canadian Mineralogist, 35(2): 543−570.

    Google Scholar

    [61] Wang Zhengqi, Li Ziying. 2007. Discussion on mantle−derived uranium mineralization[J]. Geological Review, 53(5): 608−615 (in Chinese with English abstract).

    Google Scholar

    [62] Wiebe R A, Wild T. 1983. Fractional crystallization and magma mixing in the Tigalak layered intrusion the Nain anorthosite complex, Labrador[J]. Contributions to Mineralogy and Petrology, 84: 327−344.

    Google Scholar

    [63] Wu Dehai, Xia Fei, Pan Jiayong, Liu Guoqi, Huang Guolong, Liu Wenquan, Wu Jianyong. 2019. Characteristics of hydrothermal alteration and material migration of the Mianhuakeng uranium deposit in northern Guangdong Province[J]. Acta Petrologica Sinica, 35(9): 2645−2764 (in Chinese with English abstract).

    Google Scholar

    [64] Xie Guanghong. 1977. Some questions about plagioclase[J]. Geology Geochemistry, 6: 1−11 (in Chinese with English abstract).

    Google Scholar

    [65] Xie Guanghong. 1980. Petrochemical characteristics of the anorthosite suite in Damiao, Hebei Province, China[J]. Geochimica, 3: 263−278 (in Chinese with English abstract).

    Google Scholar

    [66] Xie Guanghong. 2005. Petrology and Geochemistry of the Damiao Anorthosite and the Miyun Rapakivi Granite[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [67] Yang Zhensheng, Xu Zhongyuan, Liu Zhenghong, Huang Daoling. 2008. The Methods of Geological Survey and Comprehensive Research in Metamorphic Areas[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [68] Yuan Q, Cao X, Lü X, Wang X, Yang E, Liu Y, Ruan B, Liu H, Munir M. 2014. LA−ICP−MS U−Pb zircon geochronology and Hf isotope, geochemistry and kinetics of the Daxigou anorthosite from Kuruqtagh block, NW China[J]. Chinese Journal of Geochemistry, 33: 207−220.

    Google Scholar

    [69] Zack T, Moraes R, Kronz A. 2004. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer[J]. Contributions to Mineralogy and Petrology, 148: 471−488.

    Google Scholar

    [70] Zhai Yusheng. 1965. The characteristics and petrogenesis of an anorthosite[J]. Geological Review, 23(3): 186−195 (in Chinese with English abstract).

    Google Scholar

    [71] Zhang Bangtong, Ling Hongfei, Wu Junqi. 2014. New finding of brannerite−uraninite−coffinite−pitchblende micro−assemblage and its genetic significance at the No. 6722 uranium deposit, Southern Jiangxie Province[J]. Geological Review, 60(6): 14187−1424 (in Chinese with English abstract).

    Google Scholar

    [72] Zhang S H, Liu S W, Zhao Y, Yang J H, Song B, Liu X M. 2007. The 1.75−1.68 Ga anorthosite−mangerite−alkali granitoid−rapakivi granite suite from the norther North Chian Craton: Magmatism related to a Paleoproterozoic orogen[J]. Precambrian Research, 155: 287−312.

    Google Scholar

    [73] Zhong Fudao, Xie Guanghong. 1978. The age of anorthosite event and its geological implications[J]. Geochimica, (3): 202−208 (in Chinese with English abstract).

    Google Scholar

    [74] 陈伟, 赵太平. 2007. 元古宙岩体型斜长岩的特征及研究现状[J]. 高校地质学报, 13(1): 117−126. doi: 10.3969/j.issn.1006-7493.2007.01.015

    CrossRef Google Scholar

    [75] 邓平, 沈渭洲, 凌洪飞, 叶海敏, 王学成, 濮巍, 谭正中. 2003. 地幔流体与铀成矿作用: 以下庄矿田仙石铀矿床为例[J]. 地球化学, 32(6): 520−528. doi: 10.3321/j.issn:0379-1726.2003.06.002

    CrossRef Google Scholar

    [76] 杜乐天, 王文广. 2005. 地幔中铀的存在状态及其地球化学含义[J]. 地学前缘, 12(1): 69−78. doi: 10.3321/j.issn:1005-2321.2005.01.011

    CrossRef Google Scholar

    [77] 胡瑞忠, 毕献武, 苏文超, 彭建堂, 李朝阳. 2004. 华南白垩纪—第三纪地壳拉张与铀成矿关系[J]. 地学前缘, 11(1): 153−159.

    Google Scholar

    [78] 胡瑞忠, 李朝阳, 倪师军, 刘莉, 于津生. 1993. 华南花岗岩型铀矿床成矿热液中CO2来源研究[J]. 中国科学(B辑), 23(2): 189−196.

    Google Scholar

    [79] 胡瑞忠, 骆金诚, 陈佑纬, 潘力川. 2019. 华南铀矿床研究若干进展[J]. 岩石学报, 35(9): 2625−2636. doi: 10.18654/1000-0569/2019.09.01

    CrossRef Google Scholar

    [80] 胡世玲, 王松山, 桑海清, 裘冀, 叶东虎, 崔人合, 戚长谋. 1990. 大庙斜长岩同位素地质年龄、稀土地球化学及其地质意义[J]. 地质科学, (4): 332−343.

    Google Scholar

    [81] 胡受奚, 叶瑛, 方长泉. 2004. 交代蚀变岩岩石学及其找矿意义[M]. 北京: 地质出版社.

    Google Scholar

    [82] 黄世杰. 2006. 略谈深源铀成矿与深部找矿问题[J]. 铀矿地质, 22(2): 70−75. doi: 10.3969/j.issn.1000-0658.2006.02.002

    CrossRef Google Scholar

    [83] 姜耀辉, 蒋少涌, 凌洪飞. 2004. 地幔流体与铀成矿作用[J]. 地学前缘, 11(2): 491−499. doi: 10.3321/j.issn:1005-2321.2004.02.019

    CrossRef Google Scholar

    [84] 李子颖. 2006. 华南热点铀成矿作用[J]. 铀矿地质, 22(2): 65−69. doi: 10.3969/j.issn.1000-0658.2006.02.001

    CrossRef Google Scholar

    [85] 李子颖, 李秀珍, 林锦荣. 1999. 试论华南中新生代地幔柱构造、铀矿成矿作用及其找矿方向[J]. 铀矿地质, 15(1): 9−17. doi: 10.3969/j.issn.1000-0658.1999.01.002

    CrossRef Google Scholar

    [86] 毛景文, 李晓峰, 张荣华, 王义天, 赫英. 2005. 深部流体成矿系统[M]. 北京: 中国大地出版社.

    Google Scholar

    [87] 庞雅庆, 范洪海, 高飞, 吴建勇, 谢小占. 2019. 粤北诸广南部铀矿田流体包裹体的氦氩同位素组成及成矿流体来源示踪[J]. 岩石学报, 35(9): 2765−2773. doi: 10.18654/1000-0569/2019.09.09

    CrossRef Google Scholar

    [88] 田建吉, 张国全, 商朋强, 齐有强. 2019. 大茶园铀矿床成矿物质来源: C−O和Sr−Nd同位素证据[J]. 岩石学报, 35(9): 2817−2829. doi: 10.18654/1000-0569/2019.09.13

    CrossRef Google Scholar

    [89] 王正其, 李子颖. 2007. 幔源铀成矿作用探讨[J]. 地质论评, 53(5): 608−615. doi: 10.3321/j.issn:0371-5736.2007.05.005

    CrossRef Google Scholar

    [90] 吴德海, 夏菲, 潘家永, 刘国奇, 黄国龙, 刘文泉, 吴建勇. 2019. 粤北棉花坑铀矿床热液蚀变与物质迁移研究[J]. 岩石学报, 35(9): 2745−2764. doi: 10.18654/1000-0569/2019.09.08

    CrossRef Google Scholar

    [91] 解广轰. 1977. 有关斜长岩的一些问题[J]. 地质地球化学, (6): 1−11.

    Google Scholar

    [92] 解广轰. 1980. 大庙斜长岩杂岩体的岩石学特征[J]. 地球化学, (3): 263−278. doi: 10.3321/j.issn:0379-1726.1980.03.006

    CrossRef Google Scholar

    [93] 解广轰. 2005. 大庙斜长岩和密云环斑花岗岩的岩石学和地球化学[M]. 北京: 科学出版社.

    Google Scholar

    [94] 杨振升, 徐仲元, 刘正宏, 黄道玲. 2008. 高级变质岩区地质调查与综合研究方法[M]. 北京: 地质出版社.

    Google Scholar

    [95] 翟裕生. 1965. 某斜长岩的岩石特征及成因[J]. 地质论评, 23(3): 186−195. doi: 10.3321/j.issn:0371-5736.1965.03.004

    CrossRef Google Scholar

    [96] 章邦桐, 凌洪飞, 吴俊奇. 2014. 赣南6722铀矿床钛铀矿−晶质铀矿−铀石−沥青铀矿显微共生组合的厘定及成因意义[J]. 地质论评, 60(6): 1418−1424.

    Google Scholar

    [97] 钟富道, 解广轰. 1978. 斜长岩事件年龄及其地质意义[J]. 地球化学, (3): 202−208. doi: 10.3321/j.issn:0379-1726.1978.03.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(10)

Article Metrics

Article views(740) PDF downloads(111) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint