2023 Vol. 50, No. 4
Article Contents

LUO Niangang, WANG Binna, YIN Zhigang, LIU Guohao, ZHOU Junpeng, WU Zijie, SONG Yunhang. 2023. Geochemistry of the Paleoproterozoic Pandaoling pluton in Xiuyan area of eastern part of Liaoning Province and its implications for tectonic setting[J]. Geology in China, 50(4): 1217-1232. doi: 10.12029/gc20200221001
Citation: LUO Niangang, WANG Binna, YIN Zhigang, LIU Guohao, ZHOU Junpeng, WU Zijie, SONG Yunhang. 2023. Geochemistry of the Paleoproterozoic Pandaoling pluton in Xiuyan area of eastern part of Liaoning Province and its implications for tectonic setting[J]. Geology in China, 50(4): 1217-1232. doi: 10.12029/gc20200221001

Geochemistry of the Paleoproterozoic Pandaoling pluton in Xiuyan area of eastern part of Liaoning Province and its implications for tectonic setting

    Fund Project: Supported by the project of China Geological Survey (No.1212011120733)
More Information
  • Author Bio: LUO Niangang, male, born in 1990, master, engineer, mainly engaged in the study of mineral survey and exploration; E-mail: 956094747@qq.com
  • This paper is the result of geological survey engineering.

    Objective

    The Paleo-Proterozoic Pandaoling pluton is a granitic body in the Liaoji active belt, Eastern Block of the North China Craton, which is mainly composed by biotite monzogranite. It has been seldom researched so far, which restricts the recognition of evolution of tectonic setting in North China.

    Methods

    Based on the field geological characteristics of the Pandaoling pluton, it has been studied in terms of petrography and geochemistry in this paper.

    Results

    The rocks contain high silicon (74.04%-75.84%), high potassium (3.81% in average) and are rich in alkali (Na2O+K2O=7.29%-7.87%), and the average value of K2O/Na2O and A/CNK are 1.09 and 1.187-1.394, respectively. The rocks belong to high-K, calc-alkaline series peraluminous I-type granite. The granites have low ΣREE contents (with average of 89.78×10-6) and obvious negative Eu anomalies (0.19-0.93). They has variable (La/Yb)N ratios of 2.95 to 50.38, and display enriched LREE patterns, with relatively enrichment of LILEs (Rb, K, U) and HFSEs (Hf), and low contents of Ba, Zr, Nb, Ta, P and Ti. Zircon saturation temperatures (745-774℃) of granite melt are significantly lower than the A-type granites (868℃-928℃). These characteristics suggest that the Pandaoling monzogranite is characteristic of high fractionated I-type granite.

    Conclusions

    The petrological and geochemical features of the Pandaoling pluton indicate that they were originated from partial melting of the deep crust due to mantle magma intraplating. Based on tectonic history and the diagram of structure environment, the Pandaoling pluton was possibly formed in the continental borderland collision tectonic setting of Liaoji Paleoproterozoic active blet.

  • 加载中
  • Bai Jin. 1993. Precambrian Geology and Lead-zinc Mineralization on the Northern Margin of North China Platform[M]. Beijing: Geological Publishing House, 47-89 (in Chinese).

    Google Scholar

    Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1/4): 43-55.

    Google Scholar

    Cai Jianhui, Yan Guohan, Mu Baolei, Xu Baoliang, Shao Hongxiang, Xu Ronghua. 2002. U-Pb and Sm-Nd isotopic ages of an alkaline syenite complex body in Liangtun-Kuangdongguo, Gai County, Liaoning Province, China and their geological significance[J]. Acta Petrologica Sinica, 18(3): 349-354 (in Chinese with English abstract).

    Google Scholar

    Champion D C, Chappell B W. 1992. Petrogenesis of felsic I-type granites: An example from northern Queensland[J]. Transactions of the Royal Society of Edinburgh Earth Science, 83: 115-126. doi: 10.1017/S026359330000780X

    CrossRef Google Scholar

    Chappell B W, White A J R. 1992. I- and S-type granites in the Lachlan foold belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83: 1-26. doi: 10.1017/S0263593300007720

    CrossRef Google Scholar

    Chappell B W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 46: 535-551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    Chen B, Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar fold-belt NW (China), with implications for Phanerozoic continental growth[J]. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. doi: 10.1016/j.gca.2004.09.019

    CrossRef Google Scholar

    Chen Junlin, He Yuli, Yang Guolin, Sun Bainian, Liu Kenan. 2014. Geochemical features and significance of the Late Permian granites in northern Sonid Zuoqi, Inner Mongolia[J]. Geological Journal of China Universities, 20(1): 68-80 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2014.01.007

    CrossRef Google Scholar

    Dodge F C W, Kistler R W. 1990. Some additional observations on inclusions in the granitic rocks of the Sierra Nevada[J]. Journal of Geophysical Research Solid Earth, 95(B11): 17841-17848. doi: 10.1029/JB095iB11p17841

    CrossRef Google Scholar

    Faure M W, Lin W, Monie P, Bruguier O. 2004. Palaeoproterozoic arc magmatism and collision in Liaoning Peninsula (Northeast China)[J]. Terra Nova, 16(2): 75-80. doi: 10.1111/j.1365-3121.2004.00533.x

    CrossRef Google Scholar

    Finger F, Roberts M P, Haunschmid B, Schermaier A, Steyrer H P. 1997. Variscan granitoids of central Europe: Their typology, potential sources and tectonothermal relations[J]. Mineralogy and Petrology, 61(1/4): 67-96.

    Google Scholar

    Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X S, Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3): 237-269.

    Google Scholar

    Guo Chunli, Zeng Lingsen, Gao Lie, Su Hongzhong, Ma Xinghua, Yin Bing. 2017. Highly fractionated granitic minerals and whole-rock geochemistry prospecting markers in Hetian, Fujian Prrovince[J]. Acta Geologica Sinica, 91(8): 1796-1817 (in Chinese with English abstract).

    Google Scholar

    Hanson G N. 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic composition[J]. Earth and Planetary Science Letters, 38(1): 26-43. doi: 10.1016/0012-821X(78)90124-3

    CrossRef Google Scholar

    Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision-zone magmatism[J]. Geological Society London Special Publications, 19(1): 67-81. doi: 10.1144/GSL.SP.1986.019.01.04

    CrossRef Google Scholar

    Hine R, Williams I S, Chappell B W, Whhite A J R. 1978. Contrasts between I and S-type granitoids of the Kosciusko Batholith[J]. Journal of the Geological Society of Australia, 25: 219-234. doi: 10.1080/00167617808729029

    CrossRef Google Scholar

    Hou Guiting, Li Jianghai, Liu Yulin, Qian Xianglin. 2005. Extension events at the end of Paleoproterozoic in the North China Craton: Depression valley and dike swarm[J]. Progress in Natural Science, 15(11): 1366-1373 (in Chinese).

    Google Scholar

    Irvine T H, Baragar W R. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8(5): 523-548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 38: 371-391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    Kusky T M, Li J H. 2003. Palaeoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 22: 383-397. doi: 10.1016/S1367-9120(03)00071-3

    CrossRef Google Scholar

    Li Sanzhong, Yang Zhensheng, Liu Yongjiang, Liu Junlai. 1997. Emplacement model of Palaeoproterozoic early granite in Jiao Liao Ji area and its relation to the uplift bedding delamination structural series[J]. Acta Petrologica Sinica, 13(2): 189-202 (in Chinese with English abstract).

    Google Scholar

    Li Sanzhong, Hao Defeng, Han Zongzhu, Zhao Guochun, Sun Min. 2003. Paleoproterozoic deep processes and tectono-thermal evolution in Jiao-Liao Massif[J]. Acta Geologica Sinica, 77(3): 328-340 (in Chinese with English abstract).

    Google Scholar

    Li S Z, Yang Z S, Liu Y J. 1998. Stratification of metamorphic belts and its genesis in the Liaohe Group[J]. Chinese Science Bulletin, 43(5): 430-434. doi: 10.1007/BF02883726

    CrossRef Google Scholar

    Li S Z, Zhao G C. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the Paleoproterozoic Jiao-Liao-Ji belt in the eastern block of the North China craton[J]. Precambrian Research, 158(12): 1-16.

    Google Scholar

    Liu Changshi, Chen Xiaoming, Chen Peirong, Wang Rucheng, Hu Huan. 2003. Subdivision, discrimination criteria and genesis for A type rock suites[J]. Geological Journal of China Universities, 9(4): 573-591 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2003.04.011

    CrossRef Google Scholar

    Liu Fulai, Liu Pinghua, Wang Fang, Liu Chaohui, Cai Jia. 2015. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton[J]. Acta Petrologica Sinica, 31(10): 2816-2846 (in Chinese with English abstract).

    Google Scholar

    Liu Kai, Wu Taotao, Liu Jinlong, Bao Qingzhong, Du Shouying. 2018. Geochronology and geochemistry of volcanic rocks in Manketou'ebo Formation of Tulihe area, northern Da Hinggan Mountains[J]. Geology in China, 45(2): 367-376 (in Chinese with English abstract).

    Google Scholar

    Lu Xiaoping. 2004. Paleoproterozoic Tectonic Magmatic Event in Tonghua Area[D]. Changchun: Jilin University, 29-94 (in Chinese with English abstract).

    Google Scholar

    Lu Xiaoping, Wu Fuyuan, Guo Jinghui, Yan Changjian. 2005. Late Paleoproterozoic granitic magmatism and crustal evolution in the Tonghua region, northeast China[J]. Acta Petrologica Sinica, 21(3): 721-736 (in Chinese with English abstract).

    Google Scholar

    Lu X P, Wu F Y, Gou J H, Wilde S A, Yang J H, Liu X M, Zhang X O. 2006. Zircon U-Pb geochronological constraints on the Paleoproterozoic evolution of the eastern block in the North China Craton[J]. Precambrian Research, 146: 138-164. doi: 10.1016/j.precamres.2006.01.009

    CrossRef Google Scholar

    Luo Y, Sun M, Zhao G C, Li S Z, Ye K, Xia X P. 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt[J]. Precambrian Research, 134(3/4): 349-371.

    Google Scholar

    Maniar P, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    Palmer M R. 1991. Boron isotope systematic of hydrothermal fluids and tourmalines: A Synthesis[J]. Chemical Geology, 94(2): 111-121. doi: 10.1016/S0009-2541(10)80023-3

    CrossRef Google Scholar

    Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S(ed.). Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 525-548.

    Google Scholar

    Pearce J A. 1996. Sources and settings of granitic rocks[J]. Episodes, 19: 120-125. doi: 10.18814/epiiugs/1996/v19i4/005

    CrossRef Google Scholar

    Peng Q M, Palmer M R. 1995. The Paleoproterozoic boron deposits in eastern Liaoning, China: A metamorphosed evaporate[J]. Precambrian Research, 72: 185-197. doi: 10.1016/0301-9268(94)00087-8

    CrossRef Google Scholar

    Pichavant M, Montel J M, Richard L R. 1992. Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison-Watson model[J]. Geochimica et Cosmochimica Acta, 56(10): 3855-3861. doi: 10.1016/0016-7037(92)90178-L

    CrossRef Google Scholar

    Pitcher W S. 1982. Granite type and tectonic environment[C]//Hus K J(ed.). Mountain Building Processes[M]. London: Academic Press, 19-40.

    Google Scholar

    Qin Ya. 2013. Geochronological Constraints on the Tectonic Evolution of the Liao-Ji Paleoproterozoic Rift Zone[D]. Changchun: Jilin University, 23-132 (in Chinese with English abstract).

    Google Scholar

    Qiu Jiansheng, Xu Xisheng, Jiang Shaoyong. 2003. Deep subduction of crust materials and its implication to the genesis of potash-rich volcanic rocks[J]. Earth Science Frontiers, 10(3): 191-200 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.03.018

    CrossRef Google Scholar

    Qiu Jiansheng, Xiao E, Hu Jian, Xu Xisheng, Jiang Shaoyong, Li Zhen. 2008. Petrogenesis of highly fractionated I-type granites in the coastal area of northeastern Fujian Province: Constraints from zircon U-Pb geochronology, geochemistry and Nd-Hf isotopes[J]. Acta Petrologica Sinica, 24(11): 2468-2484 (in Chinese with English abstract).

    Google Scholar

    Ren Kangxu, Yan Guohan, Cai Jianhui, Mu Baolei, Li Fengtang, Wang Yanbin, Chu Zhuyi. 2006. Chronology and geological implication of the Paleo-Mesoproterozoic alkaline-rich intrusions belt from the northern part in the North China Craton[J]. Acta Petrologica Sinica, 22(2): 377-386 (in Chinese with English abstract).

    Google Scholar

    Ren Yunwei, Wang Huichu, Kang Jianli, Chu Hang, Tian Hui. 2017. Paleoproterozoic magmatic events in the Hupiyu area in Yingkou, Liaoning Province and their geological significance[J]. Acta Geologica Sinica, 91(11): 2456-2472 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.11.006

    CrossRef Google Scholar

    Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 40(1): 1-26. doi: 10.1016/j.oregeorev.2011.05.006

    CrossRef Google Scholar

    Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    CrossRef Google Scholar

    Song Yunhong, Yang Fengchao, Yan Guolei, Wei Minghui, Shi Shaoshan. 2016. SHRIMP U-Pb ages and Hf isotopic compositions of Paleoproterozoic granites from the eastern part of Liaoning Province and their tectonic significance[J]. Acta Geologica Sinica, 90(10): 2620-2636.

    Google Scholar

    Strong D F, Hanmer S K. 1981. The leucogranites of southern Brittany: Origin by faulting, frictional heating, fluid flux and fractional melting[J]. The Canadian Mineralogist, 19: 163-176.

    Google Scholar

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J (eds). Magmatism in Ocean Basins. Geological Society London Special Publications, 42(1): 313-345.

    Google Scholar

    Sylvester P J. 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1/4): 29-44.

    Google Scholar

    Valley J W, Lackey J S, Cavosie A J. 2005. Billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon[J]. Contributions to Mineralogy and Petrology, 150(6): 561-580. doi: 10.1007/s00410-005-0025-8

    CrossRef Google Scholar

    Wang X S, Bi X W, Leng C B, Zhong H, Tang H F, Chen Y W, Yin G H, Huang D Z, Zhou M F. 2014. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China: Implications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 61: 73-95. doi: 10.1016/j.oregeorev.2014.01.006

    CrossRef Google Scholar

    Wedepohl K H. 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59: 1217-1232. doi: 10.1016/0016-7037(95)00038-2

    CrossRef Google Scholar

    Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    Wickham S M. 1987. Crustal anatexis and granite petrogenesis during low pressure regional metamorphism: The Trois Seigneurs Massif, Pyrenees, France[J]. Journal of Petrology, 28(1): 127-169. doi: 10.1093/petrology/28.1.127

    CrossRef Google Scholar

    Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217-1238(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granitites: Recognition and research[J]. Science China Earth Sciences, 47: 745-765 (in Chinese with English abstract).

    Google Scholar

    Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C, Sun D Y. 2003a. Highly fractionated I-type granites in NE China(I): Geochronology and petrogenesis[J]. Lithos, 66(3/4): 241-273.

    Google Scholar

    Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C, Sun D Y. 2003b. Highly fractionated I-type granites in NE China (Ⅱ): Isotopic geochemistry and implications for crustal growth in the Phanerozoic[J]. Lithos, 67(3/4): 191-204.

    Google Scholar

    Xiao Qinghui, Deng Jinfu, Ma Daquan, Hong Dawei, Mo Xuanxue, Lu Xinxiang, Li Zhichang, Wang Xiongwu, Ma Changqian, Wu Fuyuan, Luo Zhaohua, Wang Tao. 2002. The Ways of Investigation on Granitoids[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    Yan Guohan, Cai Jianhui, Ren Kangxu, He Guoqi, Mu Baolei, Xu Baoliang, Li Fengtang, Yang Bin. 2007. Intraplate extensional magmatism of North China Craton and break-up of three supercontinents and their deep dynamics[J]. Geological Journal of China Universities, 13(2): 161-174 (in Chinese with English abstract).

    Google Scholar

    Yan X L, Chen B. 2014. Chemical and boron isotopic compositions of tourmaline from the Paleoproterozoic Houxianyu borate deposit, NE China: Implications for the origin of borate deposit[J]. Journal of Asian Earth Sciences, 94: 252-266. doi: 10.1016/j.jseaes.2014.05.021

    CrossRef Google Scholar

    Yang JinHui, Wu Fuyuan, Xie Liewen, Liu Xiaoming. 2007. Petrogenesis and tectonic implications of Kuangdonggou syenites in the Liaodong Peninsula, east North China Croton: Constraints from in-situ zircon U-Pb ages and Hf isotopes[J]. Acta Petrologica Sinica, 23(2): 263-276 (in Chinese with English abstract).

    Google Scholar

    Yang Mingchun, Chen Bin, Yan Cong. 2015. Petrogenesis of Paleoproterozoic gneissic granites from Jiao-Liao-Ji belt of North China Craton and their tectonic implications[J]. Journal of Earth Sciences and Environment, 37(5): 31-51 (in Chinese with English abstract).

    Google Scholar

    Yu Jinhai, Zhao Lei, Zhou Xuan. 2004. Mineralogical characteristics and origin of garnet-bearing I-type granitoids in southeastern Fujian Province[J]. Geological Journal of China Universities, 10(3): 364-377 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2004.03.007

    CrossRef Google Scholar

    Zen E A. 1986. Aluminum enrichment in silicate melts by fractional crystallization: Some mineralogic and petrographic constraints[J]. Journal of Petrology, 27(5): 1095-1117. doi: 10.1093/petrology/27.5.1095

    CrossRef Google Scholar

    Zhai M G, Santosh M. 2013. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth[J]. Gondwana Research, 24(1): 275-297. doi: 10.1016/j.gr.2013.02.007

    CrossRef Google Scholar

    Zhang Qi, Wang Yan, Li Chengdong, Wang Yuanlong, Jin Weijun, Jia Xiuqin. 2006. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract).

    Google Scholar

    Zhang Qiusheng, Yang Zhensheng. 1988. The Early Crust and Deposits in Liaodong Peninsula[M]. Beijing: Geological Publishing House, 218-450 (in Chinese).

    Google Scholar

    Zhao G C. 2001. Palaeoproterozoic assembly of the North China Craton[J]. Geological Magazine, 138: 87-91. doi: 10.1017/S0016756801005040

    CrossRef Google Scholar

    Zhao G C, Wilde S A, Cawood P A, Sun M. 2002. SHRIMP U-Pb zircon ages of the Fuping complex: Implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton[J]. American Journal of Science, 302(3): 191-226. doi: 10.2475/ajs.302.3.191

    CrossRef Google Scholar

    Zhao G C, Sun M, Wilde S A, Li S Z. 2005. Late Archean to Palaeoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 136: 177-202. doi: 10.1016/j.precamres.2004.10.002

    CrossRef Google Scholar

    Zhao G C, Cao L, Wilde S A, Sun M, Choe W J, Li S Z. 2006. Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea[J]. Earth and Planetary Science Letters, 251: 365-379.

    Google Scholar

    Zhao G C, Cawood P A, Li S Z, Wilde S A, Sun M, Zhang J, He Y H, Yin C Q. 2012. Amalgamation of the North China Craton: Key issues and discussion[J]. Precambrian Research, 222/223: 55-76.

    Google Scholar

    白瑾. 1993. 华北陆台北缘前寒武纪地质及铅锌成矿作用[M]. 北京: 地质出版社, 47-89.

    Google Scholar

    蔡剑辉, 阎国翰, 牟保磊, 许保良, 邵宏翔, 许荣华. 2002. 辽宁盖县梁屯-矿洞沟碱性正长岩杂岩体的U-Pb和Sm-Nd年龄及其地质意义[J]. 岩石学报, 18(3): 349-354.

    Google Scholar

    陈军林, 何雨栗, 杨国林, 孙柏年, 刘珂男. 2014. 内蒙古苏左旗北部晚二叠世花岗岩地球化学特征及意义[J]. 高校地质学报, 20(1): 68-80.

    Google Scholar

    郭春丽, 曾令森, 高利娥, 苏红中, 马星华, 尹冰. 2017. 福建河田高分异花岗岩的矿物和全岩地球化学找矿标志研究[J]. 地质学报, 91(8): 1796-1817.

    Google Scholar

    侯贵廷, 李江海, 刘玉琳, 钱祥麟. 2005. 华北克拉通古元古代末的伸展事件: 坳拉谷与岩墙群[J]. 自然科学进展, 15(11): 1366-1373.

    Google Scholar

    李三忠, 杨振声, 刘永江, 刘俊来. 1997. 胶辽吉地区古元古代早期花岗岩的侵位模式及其与隆滑构造的关系[J]. 岩石学报, 13(2): 189-202.

    Google Scholar

    李三忠, 郝德峰, 韩宗珠, 赵国春, 孙敏. 2003. 胶辽地块古元古代构造-热演化与深部过程[J]. 地质学报, 77(3): 328-340.

    Google Scholar

    刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 9(4): 573-591.

    Google Scholar

    刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展[J]. 岩石学报, 31(10): 2816-2846.

    Google Scholar

    刘凯, 吴涛涛, 刘金龙, 鲍庆中, 杜守营. 2018. 大兴安岭北段图里河地区满克头鄂博组火山岩年代学及地球化学[J]. 中国地质, 45(2): 367-376.

    Google Scholar

    路孝平. 2004. 通化地区古元古代构造岩浆事件[D]. 长春: 吉林大学, 29-94.

    Google Scholar

    路孝平, 吴福元, 郭敬辉, 殷长建. 2005. 通化地区古元古代晚期花岗质岩浆作用与地壳演化[J]. 岩石学报, 21(3): 721-736.

    Google Scholar

    秦亚. 2013. 辽吉古元古裂谷带构造演化的年代学制约[D]. 长春: 吉林大学, 23-132.

    Google Scholar

    邱检生, 徐夕生, 蒋少涌. 2003. 地壳深俯冲与富钾火山岩成因[J]. 地学前缘, 10(3): 191-200.

    Google Scholar

    邱检生, 肖娥, 胡建, 徐夕生, 蒋少涌, 李真. 2008. 福建北东沿海高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石学报, 24(11): 2468-2484.

    Google Scholar

    任康绪, 阎国翰, 蔡剑辉, 牟保磊, 李凤棠, 王彦斌, 储著银. 2006. 华北克拉通北部地区古-中元古代富碱侵入岩年代学及意义[J]. 岩石学报, 22(2): 377-386.

    Google Scholar

    任云伟, 王惠初, 康健丽, 初航, 田辉. 2017. 辽宁营口虎皮峪地区古元古代岩浆事件及地质意义[J]. 地质学报, 91(11): 2456-2472.

    Google Scholar

    宋运红, 杨凤超, 闫国磊, 魏明辉, 石绍山. 2016. 辽东地区古元古代花岗岩SHRIMP U-Pb年龄、Hf同位素组成及构造意义[J]. 地质学报, 90(10): 2620-2636.

    Google Scholar

    吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217-1238.

    Google Scholar

    吴福元, 刘小池, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745-765.

    Google Scholar

    肖庆辉, 邓晋福, 马大铨, 洪大卫, 莫宣学, 卢欣祥, 李志昌, 汪雄武, 马昌前, 吴福元, 罗照华, 王涛. 2002. 花岗岩研究思维与方法[M]. 北京: 地质出版社.

    Google Scholar

    阎国翰, 蔡剑辉, 任康绪, 何国琦, 牟保磊, 许保良, 李凤棠, 杨斌. 2007. 华北克拉通板内拉张性岩浆作用与三个超大陆裂解及深部地球动力学[J]. 高校地质学报, 13(2): 161-174.

    Google Scholar

    杨进辉, 吴福元, 谢烈文, 柳小明. 2007. 辽东矿洞沟正长岩成因及其构造意义: 锆石原位微区U-Pb年龄和Hf同位素制约[J]. 岩石学报, 23(2): 263-276.

    Google Scholar

    杨明春, 陈斌, 闫聪. 2015. 华北克拉通胶-辽-吉带古元古代条痕状花岗岩成因及其构造意义[J]. 地球科学与环境学报, 37(5): 32-53.

    Google Scholar

    于津海, 赵蕾, 周旋. 2004. 闽东南含石榴子石I型花岗岩的矿物学特征及成因[J]. 高校地质学报, 10(3): 364-377.

    Google Scholar

    张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 22(9): 2249-2269.

    Google Scholar

    张秋生, 杨振升. 1988. 辽东半岛早期地壳与矿床[M]. 北京: 地质出版社.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(1765) PDF downloads(64) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint