2020 Vol. 47, No. 2
Article Contents

LI Suimin, LI Jichao, LI Tong, QUAN Sutao, HU Zhiqiang, LI Yuhong, WANG Jing, CHEN Shuqing. 2020. Characteristics and genetic indication significance of fluid inclusions in the Zhujiawa molybdenum deposit[J]. Geology in China, 47(2): 426-439. doi: 10.12029/gc20200211
Citation: LI Suimin, LI Jichao, LI Tong, QUAN Sutao, HU Zhiqiang, LI Yuhong, WANG Jing, CHEN Shuqing. 2020. Characteristics and genetic indication significance of fluid inclusions in the Zhujiawa molybdenum deposit[J]. Geology in China, 47(2): 426-439. doi: 10.12029/gc20200211

Characteristics and genetic indication significance of fluid inclusions in the Zhujiawa molybdenum deposit

    Fund Project: Supported by Department of Land and Resources of Hebei Province (No. 2013045650) and Bureau of Geology and Mineral Exploration of Hebei Province (No. 454-0601-YBN-QEXZ)
More Information
  • Author Bio: LI Suimin, male, born in 1971, professor, mainly engages in the study of geochemistry of deposits; E−mail:smli71@163.com
  • The Zhujiawa molybdenum deposit is one of the large-size deposits recently discovered in the middle part of northern margin of North China Platform. The research on this deposit is relatively insufficient. The deposit is similar to the Caosiyao molybdenum deposit in metallogenetic mechanism in that they are both controlled by hypabyssal super-hypabyssal acidic rock from deep source. The characteristics of ore-forming fluid constitute the key problem in revealing the genesis of ore deposits. In this paper, eleven core samples of molybdenum mineralization were collected from No.ZK2-1 and No.ZK2-2 drill hole. The results show that the fluid inclusions can be divided into four types. They are liquid-rich phase inclusions, daughter-minerals three phase inclusions, gas-rich phase inclusions and CO2-bearing three phase inclusions. Among them, CO2-bearing three phase inclusions are less distributed, whereas the other three types of inclusions are common. Homogenization temperatures and salinities of daughter mineral-bearing three phase inclusions are the highest, at about 400℃ and 45% Na Cleqv respectively. Homogenization temperatures and salinities of liquid-rich phase inclusions are 277.43℃ and 20% Na Cleqv respectively. Homogenization temperatures and salinities of gas-rich phase inclusions and CO2-bearing three phase inclusions are 380℃ and 30℃, 6%NaCleqv and 2.04% NaCleqv respectively. The initial fluid has the characteristics of high temperature, high salinity and rich CO2, and the fluid inclusion has the characteristics of the porphyry mineralization system within the continent. The fluid inclusion composition of gas and liquid phase shows that ore-forming fluid mostly contains H2O, Cl-, F-, Na+, K+, and minor Ca2+ and SO42-. Diagnostic ion ratios indicate that ore-forming fluid was derived from magmatic fluid. The ore-forming fluid in general belongs to the H2O-NaCl system. Hydrogen and oxygen isotopic composition of the fluid inclusion in quartz indicates that the water in ore-forming fluid was derived from magmatic. Boiling of the ore-forming stage led to the precipitation of molybdenite.

  • 加载中
  • Beane R E, Bodnar R J. 1995. Hydrothermal fluids and hydrothermal alteration in porphyry copper deposits[C]//Pierce F W and Bohm J G(eds.). Porphyry Ccopper Deposits of the American Cordillera.Arizona Geological Society Digest 20, Tucson, AZ: 83-93.

    Google Scholar

    Bernard A, Symonds R. B, Rose W I. 1990. Volatile transport and deposition of Mo, W and Re in high temperature agmatic fluids[J]. Applied Geochemistry, 5:317-326. doi: 10.1016/0883-2927(90)90007-R

    CrossRef Google Scholar

    Bodnar R J. 1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids[J]. Econ. Geol., 78:535-542. doi: 10.2113/gsecongeo.78.3.535

    CrossRef Google Scholar

    Bodnar R J. 1993. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 57:683-684. doi: 10.1016/0016-7037(93)90378-A

    CrossRef Google Scholar

    Chen Yanjing, Li Nuo. 2009. Nature of ore fluids of intracontinental intrusion related hypothermal deposits and its difference from those in island arcs[J]. Acta Petrologica Sinica, 25 (10):2477-2508 (in Chinese with English abstract).

    Google Scholar

    Chen Y J, Ni P, Fan H R, Pirajno F, Lai Y, Su W C, Zhang H. 2007.Diagnostic fluid inclusions of different types hydrothermal gold deposit[J]. Acta Petrologica Sinica, 23(9):2085-2108 (in Chinese with English abstract).

    Google Scholar

    Clayton R N, O'Neil J R, Mayeda T K. 1972. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 77:3057-3067. doi: 10.1029/JB077i017p03057

    CrossRef Google Scholar

    Collins P L F. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity[J]. Econ.Geol., 74:1435-1444. doi: 10.2113/gsecongeo.74.6.1435

    CrossRef Google Scholar

    Cox S F, Knackstedt M A, Braun J. 2001. Principles of structural control on permeability and fluid hydrothermal system[J]. SEG Reviews, 14:1-24.

    Google Scholar

    Fan H R, Xie Y H, Zhai M G, Jin C W. 2003. A three stage fluid flow model for Xiaoqinling lode gold metallogenesis in the He'nan and Shaanxi Provinces, central China[J].Acta Petrologica Sinica, 19(2):260-266(in Chinese with English abstract).

    Google Scholar

    Hagemann S G, Luders V. 2003. P-T-X conditions of hydrothermal fluid and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia:Conventional and infrared microthermometric constraints[J]. Mineralium Deposita, 38:936-952. doi: 10.1007/s00126-003-0351-6

    CrossRef Google Scholar

    Hall D L, Sterner S M, Bodnar R J.988. Freezing point depression of NaCl-KCl-H2O solutions[J]. Econ.Geol., 83:197-202. doi: 10.2113/gsecongeo.83.1.197

    CrossRef Google Scholar

    Heinrich C A. 2007. Fluid-fluid interactions in magmatic-hydrothermal ore formation[J]. Reviews in Mineralogy and Geochemistry, 65 (1):363-387. doi: 10.2138/rmg.2007.65.11

    CrossRef Google Scholar

    Klemm L M, Pettlke T, Heinrich C A, Campos E. 2007. Hydrothermal evolution of the E1 Teniente deposit, Chile:Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids[J]. Economic Geology, 102(6):1021-1045. doi: 10.2113/gsecongeo.102.6.1021

    CrossRef Google Scholar

    Landtwing M R, Pettke T, Halter W E, Heinrich C A, Redmond P B, Einaudi M T, Kunze K. 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids:The Bingham porphyry[J]. Earth and Planetary Science Letters, 235(1/2):229-243.

    Google Scholar

    Lei G W, Yang X S. 2012. Important Non-ferrous Metal Ore Deposit in Inner Mongolia[M]. Beijing:Science Press, 1-378.

    Google Scholar

    Li Hengyou. 2012. Analysis on geological characteristics and prospecting indicators of Dasuji molybdenum ore, Inner Mongolia[J]. Mineral Exploration, 3(3):310-318 (in Chinese with English abstract).

    Google Scholar

    Li N, Chen Y J, Ni Z Y, Hu H Z. 2009. Characteirsites of ore-forming fluids of the Yuchiling Porphyry Mo depoist, Songxian county, Henan Province, and its geological significance[J]. Acta Petrologica Sinica, 25(10):2509-2522 (in Chinese with English abstract).

    Google Scholar

    Li Xiangzi, Ban Yihong, Quan Zhixin, Weng Jichang, Wang Weidong. 2012. Discuss on the molybdenum deposit geochemical characteristics and metallogenic model in Xinghe County, Inner Mongolia[J]. Geological Survey and Research, 35(1):39-46 (in Chinese with English abstract).

    Google Scholar

    Liu Jun, Wu Guang, Wang Feng, Luo Dafeng, Hu Yanqing, Li Tiegang. 2013. Fluid inclusions and stable isotope characteristics of the Chalukou porphyry Mo deposit in Heilongjiang Province[J]. Geology in China. 40(4):1231-1251 (in Chinese with English abstract).

    Google Scholar

    Liu Yonghui, Ma Run, Chen Zhiyong, Gan Yunyan, He Fei, Li Xiangzi, Quan Zhixin, Zhao Qingxu, A Muguleng. 2014.Geological characteristics and prospecting indicator of Caosiyao Mo deposit, Inner Mongolia[J]. Global Geology, 33(2):426-432 (in Chinese with English abstract).

    Google Scholar

    Lu H Z, Fan H R, Ni P, Ou G X, Shen K, Zhang W H. 2004. Fluid Inclusion[M]. Beijing:Science Press, 1-450(in Chinese).

    Google Scholar

    Lu H Z. 2000. High temperature, salinity and high concentrated ore metal magmatic fluids:An example from Grasberg Cu-Au porphyry deposit[J]. Acta Petrologica Sinica, 26 (4):465-472 (in Chinese with English abstract).

    Google Scholar

    Men Lanjing, Zhang Xinwen, Sun Jinggui, Zhao Junkang, Wang Haojun, Liu Chengxian. 2018. Metallogenic mechanism of the Xiaoxinancha Au-rich Cu deposit in Yanbian area, Jilin Province:Constrains from fluid inclusions and isotope geochemistry[J]. Geology in China, 45(3):544-563(in Chinese with English abstract).

    Google Scholar

    Miao Guang, Dong Guochen, Chen Zhou, Zhao Hongrui, Ren Long, Quan Rui, Xuyiming, Liu Xinyao. 2016. Origin of the granite porphyry and their geological significances in the Chaijiagou molybdenum deposit, northern Hebei[J].China Mining Magazine, 25(Suppl.):306-313 (in Chinese with English abstract).

    Google Scholar

    Nie Fengjun, Li Xiangzi, Li Chao, Zhao Yunan, Liu Yifei. 2013. Re-Os isotopic age dating of the molybdenite separated from the Caosiyao giant molybdenum deposit, Xinghe County, Inner Mongolia, and its geological significances[J]. Geological Review, 59(1):175-181(in Chinese with English abstract).

    Google Scholar

    Nie Fengjun, Liu Yifei, Zhao Yu'an, Cao Yi. 2012. Discovery of Dasuji and Caosiyao large-size Mo deposits in central Inner Mongolia and its geological significances[J]. Mineral Deposits, 31(4):930-940(in Chinese with English abstract).

    Google Scholar

    Roedder E, Bodnar R J. 1980.Geologic pressure determinations from fluid inclusion studies[J]. Annual Review of Earth and Planetary Sciences, 8:263-301. doi: 10.1146/annurev.ea.08.050180.001403

    CrossRef Google Scholar

    Rui Z Y, Huang C K, Qi G M, Xu J, Zhang H T. 1984. Porphyry Copper (Molybdenum) Deposits of China[M]. Beijing:Geological Publishing House, 1-350(in Chinese).

    Google Scholar

    Selby D, Nesbitt B E, Muehlenbachs K, Prochaska W. 2000.Hydrothermal alteration and fluid chemistry of the Endako porphyry molybdenum deposit, British Columbia[J]. Econ. Geol., 95:183-202. doi: 10.2113/gsecongeo.95.1.183

    CrossRef Google Scholar

    Shao Jielian. 1990. Prospecting Mineralogy of Gold Deposit[M]. Beijing:China University of Geosciences Press.

    Google Scholar

    Shepherd T J, Rakin A, Alderton D H M.1985. A practical Guide to Fluid Inclusion Studies[M]. New York:Blackie Pub. House, 1-239.

    Google Scholar

    Shepherd T J, Rankin A H, Alderton D H. 1985. A Practical Guide to Fluid Inclusion Studies[M]. Blackie:Chapman & Hall, 1-239.

    Google Scholar

    Shmulovich K, Bruce Y, Galina G. 1995. Fluids in the Crust:Equilibrium and Transport Properties[M]. Netherlands:Springer.

    Google Scholar

    Song Ruixian, Wei Minghui, He Yuqing, Chen Shuqing. 2013.Geology and Mineral Resources of Zhangjiakou Area[M]. Beijing:Geological Publishing House(in Chinese).

    Google Scholar

    Sun Jinlong, Ren Yunsheng, Yang Yushan, Wang Qiang, Li Jianbo, Zhang Jinjiang, Nie Weidong, Wang Aichen, Qu Wenjun. 2016.Re-Os isotopic dating of molybdenite from Taipingcun Mo deposit in eastern Hebei and its geological significance[J].Global Geology, 35(3):738-751 (in Chinese with English abstract).

    Google Scholar

    Ulrich T, Mavrogenes J. 2008. An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions from 500° C to 800° C, and 150 to 300 MPa[J]. Geochimica et Cosmochimica Acta, 72:2316-2330. doi: 10.1016/j.gca.2008.02.014

    CrossRef Google Scholar

    Wang Guorui, Wu Guang, Wu Hao, Liu Jun, Li Xiangzi, Xu Liquan, Zhang Tong, Quan Zhixin. 2014. Fluid inclusion and hydrogen-oxygen isotope study of Caosiyao superlarge porphyry molybdenum deposit in Xinghe County, Central Inner Mongolia.[J]. Mineral Deposits, 336(6):1213-1232 (in Chinese with English abstract).

    Google Scholar

    Wood S A, Crerar D A, Borcsik M P. 1987. Solubility of the assemblage pyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argen-tite-molybdenite in H2O-NaCl-CO2 solutions from 200 degrees to 350 degrees C degrees[J]. Econ.Geol., 82:1864-1887. doi: 10.2113/gsecongeo.82.7.1864

    CrossRef Google Scholar

    Wu G, Chen Y C, Li Z Y, Liu J, Yang X S, Qiao C J. 2014.Geochronology and fluid inclusion study of the Yinjiagou porphyry-skarn Mo-Cu-pyrite deposit in the East Qinling orogenic belt, China[J]. Journal of Asian Earth Sciences, 79:585-607. doi: 10.1016/j.jseaes.2013.08.032

    CrossRef Google Scholar

    Wu Guang, Chen Yuchuan, Li Zongyan, Liu Jun, Yang Xinshen, Qiao Cuijie. 2013. Fluid inclusion and isotopic characteristics of the Yinjiagou pyrite-polymetallic deposit, Western Henan Province, China[J]. Acta Geologica Sinica, 87(3):353-374 (in Chinese with English abstract).

    Google Scholar

    Xiao Rongge, Zhang Zongheng, Chen Huiquan, Zhang Hancheng. 2001. Types of Geological Fluids and Ore-Forming Fluid[J]. Earth Science Frontiers, 8(4):245-251 (in Chinese with English abstract).

    Google Scholar

    Xiao Rongge, Yuan Zhenlei, Liu Jingdang, Fei Hongcai, Ge Zhenhua, Zhang Mingyan. 2004. The formation and evolution of regional ore-forming fluid[J]. Geoscience Frontiers, 1(2):461-469(in Chinese with English abstract).

    Google Scholar

    Xin Cunlin, Xu Mingru, An Guobao, Hu Juying, Yang Tao, Dong Kai. 2019. Deposit geology, fluid inclusion characteristics and ore genesis of the Matoushan Cu-Au deposit in Southwest Sichuan Province[J]. Geology in China, 46(6):1556-1572(in Chinese with English abstract).

    Google Scholar

    Xu J H, Xie Y L, Zhang J H, Jin Y, Liu Y T. 2006. Sub-volcanic epithermal mineralization of Jiulongwan silver-polymetal deposit, eastern Daqingshan, Inner Mongolia, China:Evidence from fluid inclusions[J]. Acta Petrologica Sinica, 22 (6):1745-1743 (in Chinese with English abstract).

    Google Scholar

    Zhang D H. 1997. Some new advances in ore-forming fluid geochemistry on boiling and mixing of fluids during the process of hydrothermal deposits[J]. Advances in Earth Sciences, 12(6):546-552 (in Chinese with English abstract).

    Google Scholar

    Zhang Jiyuan. 2019. Genesis analysis of Chaijiagou molybdenum deposit in Pingquan city, Hebei Province[J]. Southern Metals, 230:10-12 (in Chinese with English abstract).

    Google Scholar

    Zhang Wenbin, Cai Minghai, Li Qiang, Xue Yanping, Liu Xiang, Zheng Hao. 2017. Fluid inclusion sudy and genesis of the Youmapo W-Mo deposit in Guangxi Province[J]. Northwestern Geology, 50(2):178-190(in Chinese with English abstract).

    Google Scholar

    Zhang Y G, Frantz J D.1987. Determination of homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions[J]. Chemical Geology, 64:335-350. doi: 10.1016/0009-2541(87)90012-X

    CrossRef Google Scholar

    Zhang Tong, Chen Zhiyong, Xu Liquan, Chen Zhenghui. 2009. The Re-Os isotopic dating of molybdenite from the Dasuji Molybdenum Deposit in Zhuozi County of Inner Mongolia and its geological significance[J]. Rock and Mineral Analysis, 28(3):279-282(in Chinese with English abstract).

    Google Scholar

    Zhang Wenbin, Cai Minghai, Li Qiang, Xue Yanping, Liu Xiang, Zheng Hao. 2017. Fluid Inclusion Study and genesis of the Youmapo W-Mo deposit in Guangxi Province[J]. Northwestern Geology, 50(2):178-190.

    Google Scholar

    Zhu Y F, Zeng Y S, Jiang N. 2001. Geochemistry of the ore-forming fluids in gold deposits from the Taihang Mountains, northern China[J]. International Geology Review, 43:457-473. doi: 10.1080/00206810109465026

    CrossRef Google Scholar

    陈衍景, 李诺. 2009.大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异[J].岩石学报, 25(10):2477-2508.

    Google Scholar

    陈衍景, 倪培, 范宏瑞, Pirajno F, 赖勇, 苏文超, 张辉. 2007.不同类型热液金矿系统的流体包裹体特征[J].岩石学报, 23(9):2085-2108.

    Google Scholar

    范宏瑞, 谢奕汉, 翟明国, 金成伟. 2003.豫陕小秦岭脉状金矿床三期流体运移成矿作用[J].岩石学报, 19(2):260-266.

    Google Scholar

    雷国伟, 杨旭生. 2012.内蒙古有色金属重要矿床[M].北京:科学出版社, 1-378.

    Google Scholar

    李恒友. 2012.内蒙古大苏计钼矿地质特征及找矿标志[J].矿产勘查.3(3):310-318.

    Google Scholar

    李诺, 陈衍景, 倪智勇, 胡海珠. 2009.河南省嵩县鱼池岭斑岩钼矿床成矿流体特征及其地质意义[J].岩石学报, 25 (10):2509-2522.

    Google Scholar

    李香资, 班宜红, 权知心, 翁纪昌, 王卫东. 2012.内蒙古兴和县曹四夭钼矿床地球化学特征及成矿模型探讨[J].地质调查与研究, 35(1):39-46.

    Google Scholar

    刘斌, 段光贤. 1987. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报, 7(4):345-352.

    Google Scholar

    刘斌. 2001.中高盐度NaCl-H2O包裹体的密度式和等容式及其应用[J].地质论评, 47(6):617-622.

    Google Scholar

    刘军, 武广, 王峰, 罗大峰, 胡妍青, 李铁刚. 2013.黑龙江省岔路口斑岩钼矿床流体包裹体和稳定同位素特征[J].中国地质, 40(4):1231-1251.

    Google Scholar

    刘永慧, 马润, 陈志勇, 甘云燕, 贺斐, 李香资, 权知心, 赵清旭, 阿木古冷. 2014.内蒙古曹四夭钼矿床地质特征及找矿标志[J].世界地质, 33(2):426-432.

    Google Scholar

    卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004.流体包裹体[M].北京:科学出版社, 1-450.

    Google Scholar

    卢焕章. 2000.高盐度、高温和高成矿金属的岩浆成矿流体——以格拉斯伯格Cu-Au矿为例[J].岩石学报, 16(4):465-472.

    Google Scholar

    门兰静, 张馨文, 孙景贵, 赵俊康, 王好均, 刘城先. 2018.延边地区小西南岔富金铜矿床的成矿机理:矿物流体包裹体和同位素的制约[J].中国地质, 45(3):544-563.

    Google Scholar

    缪广, 董国臣, 陈卓, 赵红瑞, 任龙, 权瑞, 徐一鸣, 刘昕曜. 2016.冀北柴家沟钼矿花岗斑岩岩石成因研究及意义[J].中国矿业, 25(增刊1):306-313.

    Google Scholar

    聂凤军, 李香资, 李超, 赵宇安, 刘翼飞. 2013.内蒙古兴和县曹四夭特大型钼矿床辉钼矿Re-Os同位素年龄及地质意义[J].地质论评, 59(1):175-181.

    Google Scholar

    聂凤军, 刘翼飞, 赵宇安, 曹毅. 2012.内蒙古大苏计和曹四夭大型钼矿床的发现及意义[J].矿床地质, 31(4):930-941.

    Google Scholar

    芮宗瑶, 黄崇轲, 齐国明, 徐钰, 张洪涛. 1984.中国斑岩铜(钼)矿床[M].北京:地质出版社, 1-350.

    Google Scholar

    邵洁莲. 1990.金矿找矿矿物学[M].北京:中国地质大学出版社.

    Google Scholar

    宋瑞先, 魏明辉, 何宇青, 陈树清. 2013.张家口地质矿产[M].北京:地质出版社, 1-554.

    Google Scholar

    孙金龙, 任云生, 杨玉山, 王强, 刘剑波, 张金江, 聂卫东, 王爱臣, 屈文俊. 2016.冀东太平村钼矿床辉钼矿Re-Os同位素测年及其地质意义[J].世界地质, 35(3):738-751.

    Google Scholar

    王国瑞, 武广, 吴昊, 刘军, 李香资, 许立权, 张彤, 权知心. 2014.内蒙古兴和县曹四夭超大型斑岩钼矿床流体包裹体和氢-氧同位素研究[J].矿床地质, 33(6):1213-1232.

    Google Scholar

    武广, 陈毓川, 李宗彦, 刘军, 杨鑫生, 乔翠杰. 2013.豫西银家沟硫铁多金属矿床流体包裹体和同位素特征[J].地质学报, 87(3):353-374.

    Google Scholar

    肖荣阁, 原振雷, 刘敬党, 费红彩, 葛振华, 张明燕. 2004.区域成矿流体的形成与演化[J].地学前缘, 11(2):461-469.

    Google Scholar

    肖荣阁, 张宗恒, 陈卉泉, 张汉城. 2001.地质流体自然类型与成矿流体类型[J].地学前缘, 8(4):245-251.

    Google Scholar

    辛存林, 徐明儒, 安国堡, 胡菊英, 杨涛, 董凯. 2019.川西南马头山铜金矿床地质和流体包裹体特征及成因[J].中国地质, 46(6):1556-1572.

    Google Scholar

    徐九华, 谢玉玲, 张巨华, 金岩, 刘玉堂. 2006.大青山东段九龙湾银-多金属矿床的次生火山热液成因——流体包裹体证据[J].岩石学报, 22(6):1745-1743.

    Google Scholar

    张德会. 1997.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展, 12(6):546-552.

    Google Scholar

    张骥远. 2019.河北省平泉市柴家沟钼矿矿床成因分析[J].南方金属, 230:10-12.

    Google Scholar

    张彤, 陈志勇, 许立权, 陈郑辉. 2009.内蒙古卓资县大苏计钼矿辉钼矿铼-锇同位素定年及其地质意义[J].岩矿测试, 28(3):279-282.

    Google Scholar

    张文兵, 蔡明海, 李强, 薛彦萍, 刘翔, 郑浩. 2017.广西油麻坡钨钼矿床流体包裹体与成因探讨[J].西北地质, 50(2):178-190.

    Google Scholar

    张文兵, 蔡明海, 李强, 薛彦萍, 刘翔, 郑浩. 2017.广西油麻坡钨钼矿床流体包裹体与成因探讨[J].西北地质, 50(2):178-190.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(2645) PDF downloads(791) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint