2020 Vol. 47, No. 1
Article Contents

MA Gongzheng, LU Hailong, LU Jing'an, HOU Guiting, GONG Yuehua. 2020. Polygonal fault in marine sediments and its impact on gas hydrate occurrence[J]. Geology in China, 47(1): 1-13. doi: 10.12029/gc20200101
Citation: MA Gongzheng, LU Hailong, LU Jing'an, HOU Guiting, GONG Yuehua. 2020. Polygonal fault in marine sediments and its impact on gas hydrate occurrence[J]. Geology in China, 47(1): 1-13. doi: 10.12029/gc20200101

Polygonal fault in marine sediments and its impact on gas hydrate occurrence

    Fund Project: Supported by China Geological Survey Project (No. DD20190234) and National Key R & D Plan (No. 2017YFC0307603)
More Information
  • Author Bio: MA Gongzheng, male, born in 1990, doctor candidate, majors in structures in shallow marine sediments; Email: 1601110593@pku.edu.cn
  • Corresponding author: LU Hailong, male, born in 1964, professor, supervisor of doctor candidates, majors in gas hydrate related research; E-mail:hlu@pku.edu.cn 
  • Polygonal faults are non-tectonic small stratabound extensional faults generally developed in the fine-grained sediments with numerous fault planes and small offset. The fault planes are arranged in irregular polygonal shape in plan view, and occur as extensional faults with similar or opposite inclinations in profile view. The geometry of the polygonal faults is considered to be affected by formation mechanisms, such as density inversion, syneresis and shear failure. The prominent indicator of density inversion is the wave-like surface between horizons. The prominent indicators of syneresis are listric fault planes and growth sequences, and the furrows on the seafloor and the micro-fractures in the sediment samples make up the evidence. The occurrence of polygonal faults improves the permeability of fine-grained sediments, which can provide vertical pathways for gas and fluid migration. The conductivity of listric faults induced by syneresis is inferred to be better than that of straight faults. As a product of shallow gas and fluid migration, the occurrence area of gas hydrate is possibly dominated by polygonal faults. Deep polygonal faults provide pathways of gas and fluid migration for gas hydrate, and shallow polygonal faults provide reservoir spaces for gas hydrate.

  • 加载中
  • Andresen K J, Huuse M. 2011.'Bulls-eye' pockmarks and polygonal faulting in the Lower Congo Basin:Relative timing and implications for fluid expulsion during shallow burial[J]. Marine Geology, 279(1/4):111-127.

    Google Scholar

    Berndt C. 2005. Focused fluid flow in passive continental margins[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 363(1837):2855-2871. doi: 10.1098/rsta.2005.1666

    CrossRef Google Scholar

    Berndt C, Bünz S, Mienert J. 2003. Polygonal fault systems on the mid-Norwegian margin:A long-term source for fluid flow[J]. Geological Society, London, Special Publications, 216(1):283-290. doi: 10.1144/GSL.SP.2003.216.01.18

    CrossRef Google Scholar

    Berndt C, Jacobs C, Evans A, Gay A, Elliott G, Long D, Hitchen K. 2012. Kilometre-scale polygonal seabed depressions in the Hatton Basin, NE Atlantic Ocean:Constraints on the origin of polygonal faulting[J]. Marine Geology, 332-334(12):126-133.

    Google Scholar

    Buckley D E, Grant A C. 1985. Faultlike features in abyssal plain sediments:Possible dewatering structures[J]. Journal of Geophysical Research Oceans, 90(C5):9173-9180. doi: 10.1029/JC090iC05p09173

    CrossRef Google Scholar

    Cartwright J. 2011. Diagenetically induced shear failure of finegrained sediments and the development of polygonal fault systems[J]. Marine and Petroleum Geology, 28(9):1593-1610. doi: 10.1016/j.marpetgeo.2011.06.004

    CrossRef Google Scholar

    Cartwright J, James D, Bolton A. 2003. The genesis of polygonal fault systems:A review[J]. Geological Society, London, Special Publications, 216(1):223-243. doi: 10.1144/GSL.SP.2003.216.01.15

    CrossRef Google Scholar

    Cartwright J, Lonergan L. 1997. Seismic expression of layer-bound fault systems of the Eromanga and North Sea Basins[J]. Exploration Geophysics, 28(3):323-331. doi: 10.1071/EG997323

    CrossRef Google Scholar

    Cartwright J, Wattrus N, Rausch D, Bolton A. 2004. Recognition of an early Holocene polygonal fault system in Lake Superior:Implications for the compaction of fine-grained sediments[J]. Geology, 32(3):253-256. doi: 10.1130/G20121.1

    CrossRef Google Scholar

    Cartwright J A. 1994a. Episodic basin-wide fluid expulsion from geopressured shale sequences in the North Sea basin[J]. Geology, 22(5):447-450. doi: 10.1130/0091-7613(1994)022<0447:EBWFEF>2.3.CO;2

    CrossRef Google Scholar

    Cartwright J A. 1994b. Episodic basin-wide hydrofracturing of overpressured Early Cenozoic mudrock sequences in the North Sea Basin[J]. Marine and Petroleum Geology, 11(5):587-607. doi: 10.1016/0264-8172(94)90070-1

    CrossRef Google Scholar

    Cartwright J A, Dewhurst D N. 1998. Layer-bound compaction faults in fine-grained sediments[J]. Geological Society of America Bulletin, 110(10):1242-1257. doi: 10.1130/0016-7606(1998)110<1242:LBCFIF>2.3.CO;2

    CrossRef Google Scholar

    Cartwright J A, Lonergan L. 1996. Volumetric contraction during the compaction of mudrocks:A mechanism for the development of regional-scale polygonal fault systems[J]. Basin Research, 8(2):183-193. doi: 10.1046/j.1365-2117.1996.01536.x

    CrossRef Google Scholar

    Clausen J A, Gabrielsen R H, Reksnes P A, Nysæther E. 1999.Development of intraformational (Oligocene-Miocene) faults in the northern North Sea:influence of remote stresses and doming of Fennoscandia[J]. Journal of Structural Geology, 21(10):1457-1475. doi: 10.1016/S0191-8141(99)00083-8

    CrossRef Google Scholar

    Dan C. 2012. Interaction of Polygonal Fault Systems with Salt Diapirs[D]. Cardiff University.

    Google Scholar

    Davies R J. 2005. Differential compaction and subsidence in sedimentary basins due to silica diagenesis:A case study[J]. Geological Society of America Bulletin, 117(9/10):1146-1155.

    Google Scholar

    Dewhurst D N, Cartwright J A, Lidia L. 1999a. Three-dimensional consolidation of fine-grained sediments[J]. Canadian Geotechnical Journal, 36(2):355-362. doi: 10.1139/t98-101

    CrossRef Google Scholar

    Dewhurst D N, Cartwright J A, Lonergan L. 1999b. The development of polygonal fault systems by syneresis of colloidal sediments[J].Marine & Petroleum Geology, 16(8):793-810.

    Google Scholar

    Gay A. 2017. Are polygonal faults the keystone for better understanding the timing of fluid migration in sedimentary basins?[C]. EPJ Web of Conferences, 140: 12009.

    Google Scholar

    Gay A, Lopez M, Cochonat P, Séranne M, Levaché D, Sermondadaz G. 2006. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin[J]. Marine Geology, 226(1/2):25-40.

    Google Scholar

    Gay A, Lopez M, Cochonat P, Sermondadaz G. 2004. Polygonal faults-furrows system related to early stages of compaction -upper Miocene to recent sediments of the Lower Congo Basin[J]. Basin Research, 16(1):101-116. doi: 10.1111/j.1365-2117.2003.00224.x

    CrossRef Google Scholar

    Goulty N R. 2001. Polygonal fault networks in fine-grained sediments-an alternative to the syneresis mechanism[J]. First Break, 19(2):69-73. doi: 10.1046/j.1365-2397.2001.00137.x

    CrossRef Google Scholar

    Goulty N R. 2002. Mechanics of layer-bound polygonal faulting in fine-grained sediments[J]. Journal of the Geological Society, 159(3):239-246. doi: 10.1144/0016-764901-111

    CrossRef Google Scholar

    Goulty N R. 2009. Geomechanics of polygonal fault systems:A review[J]. Petroleum Geoscience, 14(4):389-397.

    Google Scholar

    Hale D, Groshong R H. 2014. Conical faults apparent in a 3D seismic image[J]. Interpretation, 2(1):T1-T11.

    Google Scholar

    Han J, Leng J, Wang Y. 2016. Characteristics and genesis of the polygonal fault system in southern slope of the Qiongdongnan Basin, South China Sea[J]. Marine and Petroleum Geology, 70:163-174. doi: 10.1016/j.marpetgeo.2015.11.022

    CrossRef Google Scholar

    Han W, Chen L, Liu C, Berndt C, Chi W. 2019. Seismic analysis of the gas hydrate system at Pointer Ridge offshore SW Taiwan[J]. Marine and Petroleum Geology, 105:158-167. doi: 10.1016/j.marpetgeo.2019.04.028

    CrossRef Google Scholar

    Hansen D M, Shimeld J W, Williamson M A, Lykke-Andersen H. 2004. Development of a major polygonal fault system in Upper Cretaceous chalk and Cenozoic mudrocks of the Sable Subbasin, Canadian Atlantic margin[J]. Marine and Petroleum Geology, 21(9):1205-1219. doi: 10.1016/j.marpetgeo.2004.07.004

    CrossRef Google Scholar

    Henriet J P, Batist M D, Verschuren M. 1991. Early fracturing of Palaeogene clays, southernmost North Sea relevance to mechanisms of primary hydrocarbon migration[J]. Generation Accumulation & Production of Europe's Hydrocarbons European Association of Petroleum Geoscientists Special Publications, 1:217-227.

    Google Scholar

    Higgs W G, Mcclay K R. 1993. Analogue sandbox modelling of Miocene extensional faulting in the Outer Moray Firth[J]. Geological Society of London Special Publications, 71:141-162. doi: 10.1144/GSL.SP.1993.071.01.07

    CrossRef Google Scholar

    Ho S, Cartwright J A, Imbert P. 2012. Vertical evolution of fluid venting structures in relation to gas flux, in the NeogeneQuaternary of the Lower Congo Basin, Offshore Angola[J]. Marine Geology, 332-334(12):40-55.

    Google Scholar

    Ho S, Dan C, Imbert P. 2016. Insights into the permeability of polygonal faults from their intersection geometries with Linear Chimneys:a case study from the Lower Congo Basin[J]. Carnets De Geologie, 16(2):17-26.

    Google Scholar

    Hustoft S, Mienert J, Bünz S, Nouzé H. 2007. High-resolution 3Dseismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin[J]. Marine Geology, 245(1/4):89-106.

    Google Scholar

    Jackson C A L, Carruthers D T, Mahlo S N, Briggs O. 2014. Can polygonal faults help locate deep-water reservoirs?[J]. AAPG Bulletin, 98(9):1717-1738. doi: 10.1306/03131413104

    CrossRef Google Scholar

    Jiang Ning, He Min, Liu Jun, Xue Huaiyan, Zheng Jinyun, Zhang Qinglin. 2017. Genetic mechanism and hydrocarbon accumulation of polygonal fault system in Jinghai Sag of the Pearl River Mouth Basin[J]. Oil & Gas Geology, 38(2):363-370 (in Chinese with English abstract).

    Google Scholar

    Kulikowski D, Amrouch K, Cooke D, Gray M E. 2018. Basement structural architecture and hydrocarbon conduit potential of polygonal faults in the Cooper-Eromanga Basin, Australia[J]. Geophysical Prospecting 66(2):366-396. doi: 10.1111/1365-2478.12531

    CrossRef Google Scholar

    Kumar P C, Naim F, Mohanty S. 2016. Seismic expression of polygonal fault systems: An example from North Sea, Dutch Offshore[C]. SPG/SEG 2016 International Geophysical Conference, Beijing, China, 20-22 April, 556-556.

    Google Scholar

    Laurent D, Gay A, Baudon C, Berndt C, Soliva R, Planke S, Mourgues R, Lacaze S, Pauget F, Mangue M, Lopez M. 2012. Highresolution architecture of a polygonal fault interval inferred from geomodel applied to 3D seismic data from the Gjallar Ridge, Vøring Basin, Offshore Norway[J]. Marine Geology, 332:134-151.

    Google Scholar

    Li Yufeng, Pu Renhai, Fan Xiaowei, Li Bin. 2017. Characteristics and Genesis of the Polygonal Fault System in Beijiao Sag of the Qiongdongnan Basin, the Northern South China Sea[J]. Geotectonica Et Metallogenia, 41(5):817-828 (in Chinese with English abstract).

    Google Scholar

    Li J F, Ye J L, Qin X W, Qiu H J, Wu N Y, Lu H L, Xie W W, Lu J A, Peng F, Xu Z Q, Lu C, Kuang Z G, Wei J G, Liang Q Y, Lu H F, Kou B B, 2018. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 1:5-16. doi:10.31035/cg2018003.

    CrossRef Google Scholar

    Lonergan L, Cartwright J, Jolly R. 1998a. The geometry of polygonal fault systems in Tertiary mudrocks of the North Sea[J]. Journal of Structural Geology, 20(5):529-548. doi: 10.1016/S0191-8141(97)00113-2

    CrossRef Google Scholar

    Lonergan L, Cartwright J, Laver R, Staffurth J. 1998b. Polygonal faulting in the Tertiary of the central North Sea:Implications for reservoir geology[J]. Geological Society London Special Publications, 127(1):191-207. doi: 10.1144/GSL.SP.1998.127.01.14

    CrossRef Google Scholar

    Möller N K, Gjelberg J G, Martinsen O, Charnock M A, Færseth R B, Sperrevik S, Cartwright J A. 2004. A geological model for the Ormen Lange hydrocarbon reservoir[J]. Norwegian Journal of Geology/Norsk Geologisk Forening, 84(3):169-190.

    Google Scholar

    Morgan D A, Cartwright J A, Imbert P. 2015. Perturbation of polygonal fault propagation by buried pockmarks and the implications for the development of polygonal fault systems[J]. Marine and Petroleum Geology, 65:157-171. doi: 10.1016/j.marpetgeo.2015.03.024

    CrossRef Google Scholar

    Nicol A, Walsh J J, Watterson J, Nell P A R, Bretan P. 2003. The geometry, growth and linkage of faults within a polygonal fault system from South Australia[J]. Geological Society London Special Publications, 216(1):245-261. doi: 10.1144/GSL.SP.2003.216.01.16

    CrossRef Google Scholar

    Ostanin I, Anka Z, di Primio R, Bernal A. 2012. Identification of a large Upper Cretaceous polygonal fault network in the Hammerfest basin:Implications on the reactivation of regional faulting and gas leakage dynamics, SW Barents Sea[J]. Marine Geology, 332:109-125.

    Google Scholar

    Roberts D T. 2014. A Geomechanical Analysis of the Formation and Evolution of Polygonal Fault Systems[D]. Cardiff University.

    Google Scholar

    Roberts S J, Nunn J A. 1995. Episodic fluid expulsion from geopressured sediments[J]. Marine and Petroleum Geology, 12(2):195-204. doi: 10.1016/0264-8172(95)92839-O

    CrossRef Google Scholar

    Seebeck H, Tenthorey E, Consoli C, Nicol A. 2015. Polygonal faulting and seal integrity in the Bonaparte Basin, Australia[J]. Marine and Petroleum Geology, 60:120-135. doi: 10.1016/j.marpetgeo.2014.10.012

    CrossRef Google Scholar

    Shin H, Santamarina J C, Cartwright J A. 2008. Contraction-driven shear failure in compacting uncemented sediments[J]. Geology, 36(12):931-934. doi: 10.1130/G24951A.1

    CrossRef Google Scholar

    Shin H, Santamarina J C, Cartwright J A. 2010. Displacement field in contraction-driven faults[J]. Journal of Geophysical Research:Solid Earth, 115(B7).

    Google Scholar

    Stewart S A. 2006. Implications of passive salt diapir kinematics for reservoir segmentation by radial and concentric faults[J]. Marine and Petroleum Geology, 23(8):843-853. doi: 10.1016/j.marpetgeo.2006.04.001

    CrossRef Google Scholar

    Stuevold L M, Faerseth R B, Arnesen L, Cartwright J, Moller N. 2003.Polygonal faults in the Ormen Lange Field, More Basin, offshore Mid Norway[J]. Geological Society London Special Publications, 216(1):263-281. doi: 10.1144/GSL.SP.2003.216.01.17

    CrossRef Google Scholar

    Sun Q, Wu S, Lü F, Yuan S. 2010. Polygonal faults and their implications for hydrocarbon reservoirs in the southern Qiongdongnan Basin, South China Sea[J]. Journal of Asian Earth Sciences, 39(5):470-479. doi: 10.1016/j.jseaes.2010.04.002

    CrossRef Google Scholar

    Sun Q, Wu S, Yao G, Lü F. 2009. Characteristics and formation mechanism of polygonal faults in Qiongdongnan Basin, northern South China Sea[J]. Journal of Earth Science, 20(1):180-192. doi: 10.1007/s12583-009-0018-z

    CrossRef Google Scholar

    Tanner. 1998. Interstratal dewatering origin for polygonal patterns of sand-filled cracks:A case study from late Proterozoic metasediments of Islay, Scotland[J]. Sedimentology, 45(1):71-89. doi: 10.1046/j.1365-3091.1998.00135.x

    CrossRef Google Scholar

    Tewksbury B J, Hogan J P, Kattenhorn S A, Mehrtens C J, Tarabees E A. 2014. Polygonal faults in chalk:Insights from extensive exposures of the Khoman Formation, Western Desert, Egypt[J]. Geology, 42(6):479-482. doi: 10.1130/G35362.1

    CrossRef Google Scholar

    Turrini L, Jackson C A L, Thompson P. 2017. Seal rock deformation by polygonal faulting, offshore Uruguay[J]. Marine and Petroleum Geology, 86:892-907. doi: 10.1016/j.marpetgeo.2017.06.038

    CrossRef Google Scholar

    Victor P, Moretti I. 2006. Polygonal fault systems and channel boudinage:3D analysis of multidirectional extension in analogue sandbox experiments[J]. Marine and Petroleum Geology, 23(7):777-789. doi: 10.1016/j.marpetgeo.2006.06.004

    CrossRef Google Scholar

    Wang X, Wu S, Yuan S, Wang D, Ma Y, Yao G, Gong Y, Zhang G. 2010a. Geophysical signatures associated with fluid flow and gas hydrate occurrence in a tectonically quiescent sequence, Qiongdongnan Basin, South China Sea[J]. Geofluids, 10(3):351-368. doi: 10.1111/j.1468-8123.2010.00292.x

    CrossRef Google Scholar

    Wang Xiujuan, Wu Shiguo, Wang Dawei, Ma Yubo, Yao Genshun, Gong Yuehua. 2010b. The role of polygonal faults in fluid migration and gas hydrate reservoir forming in Southeast Hainan Basin[J]. Oil Geophysical Prospecting, 45(1):122-128 (in Chinese with English abstract).

    Google Scholar

    Watterson J, Walsh J, Nicol A, Nell P A R, Bretan P G. 2000.Geometry and origin of a polygonal fault system[J]. Journal of the Geological Society, 157(1):151-162. doi: 10.1144/jgs.157.1.151

    CrossRef Google Scholar

    Wattrus N J, Rausch D E, Cartwright J. 2003. Soft-sediment deformation in Lake Superior:evidence for an immature Polygonal Fault System?[J]. Geological Society of London, 216(1):323-334. doi: 10.1144/GSL.SP.2003.216.01.21

    CrossRef Google Scholar

    White W A. 1961. Colloid phenomena in sedimentation of argillaceous rocks[J]. Journal of Sedimentary Research, 31(4):560-570.

    Google Scholar

    Wrona T, Magee C, Jackson C A L, Huuse M, Taylor K G. 2017.Kinematics of Polygonal Fault Systems:Observations from the Northern North Sea[J]. Frontiers in Earth Science, 5:101. doi: 10.3389/feart.2017.00101

    CrossRef Google Scholar

    Yang Taotao, Lü Fuliang, Wang Bin, Yang Zhili, Li Li, Zhang Qiang. 2017. Characteristics of Polygonal Faults Distribution and Analysis of Its Controlling Factors in Southern Xisha Offshore, South China Sea[J]. Marine Origin Petroleum Geology, 22(1):84-88 (in Chinese with English abstract)

    Google Scholar

    Yu Z, Lerche I. 1996. Modelling abnormal pressure development in sandstone/shale basins[J]. Marine and Petroleum Geology, 13(2):179-193. doi: 10.1016/0264-8172(95)00036-4

    CrossRef Google Scholar

    江宁, 何敏, 刘军, 薛怀艳, 郑金云, 张青林. 2017.珠江口盆地靖海凹陷多边形断层系统成因及油气成藏意义[J].石油与天然气地质, 38(2):363-370.

    Google Scholar

    李俞锋, 蒲仁海, 樊笑微, 李斌. 2017.琼东南盆地北礁凹陷多边形断层发育特征及成因[J].大地构造与成矿学, 41(5):817-828.

    Google Scholar

    王秀娟, 吴时国, 王大伟, 马玉波, 姚根顺, 龚跃华. 2010.琼东南盆地多边形断层在流体运移和天然气水合物成藏中的作用[J].石油地球物理勘探, 45(1):122-128.

    Google Scholar

    杨涛涛, 吕福亮, 王彬, 杨志力, 李丽, 张强. 2017.西沙海域南部多边形断层的发现及其分布特征与控制因素[J].海相油气地质, 22(1):84-88. doi: 10.3969/j.issn.1672-9854.2017.01.011

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views(3208) PDF downloads(678) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint