2019 Vol. 46, No. 6
Article Contents

ZHAO Heng, ZHANG Jin, LI Yanfeng, Qü Junfeng, ZHANG Beihang, ZHANG Yiping, YUN Long, WANG Yannan. 2019. Characteristics of Cenozoic faults in Langshan area, Inner Mongolia: Constraint on the development of normal faults[J]. Geology in China, 46(6): 1433-1453. doi: 10.12029/gc20190613
Citation: ZHAO Heng, ZHANG Jin, LI Yanfeng, Qü Junfeng, ZHANG Beihang, ZHANG Yiping, YUN Long, WANG Yannan. 2019. Characteristics of Cenozoic faults in Langshan area, Inner Mongolia: Constraint on the development of normal faults[J]. Geology in China, 46(6): 1433-1453. doi: 10.12029/gc20190613

Characteristics of Cenozoic faults in Langshan area, Inner Mongolia: Constraint on the development of normal faults

    Fund Project: Supported by National Natural Science Foundation of China (No. 41572190), National Key Research and Development Program of China from Ministry of Science and Technology (No. 2017YFC0601301) and China Geological Survey(No. DD20190004)
More Information
  • Author Bio: ZHAO Heng, male, born in 1990, doctor candidate, majors in structural geology; E-mail: skzhaoheng@126.com
  • Corresponding author: ZHANG Jin, male, born in 1973, supervisor of doctor candidates, mainly engages in the study of structural geology in and around the Alxa region; E-mail: zhangjinem@sina.com 
  • The Langshan area, located on the northeastern margin of the Alxa block, was subjected to 3 deformation stages during the Cenozoic, which produced thrust faults formed by NW-SE compression in the late Miocene, left-lateral strike-slip faults caused by NNE compression and active normal faults in the late Cenozoic. Based on peripheral Cenozoic structures around the eastern Alxa margin, the authors infer that these Cenozoic faults were related to the gradual propagation of northeast Tibetan Plateau and the readjustment of the stress field. The Langshan piedmont fault zone is now at a stage of linkup, which is compatible with the constant-length fault model with the highest slip rate in the central part. The slip rate from Holocene seems to tend to become lower relative to the slip rate since late Pleistocene. Combined with the focal mechanisms as well as geometries and kinematics of faults in and around the Alxa block, the authors tentatively propose that the Hetao-Jilantai basin and the Yinchuan basin are two different extensional basins linked by a transfer zone, in which nearly NNE-trending dextral faults are developed. The Mw >5 earthquakes within the transfer zone probably occurred on the steep dextral faults as the result of regional SW-NE compression.

  • 加载中
  • Burchfiel B C, Zhang P, Wang Y, Song F, Deng Q, Molnar P, Royden L. 1991. Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau[J]. Tectonics, 10(6):1091-1110. doi: 10.1029/90TC02685

    CrossRef Google Scholar

    Chen Fahu, Fan Yuxin, Chun Xi, Madsen D B, Oviatt C G, Zhao Hui, Yang Liping, Sun Yang. 2008:Preliminary research on Megalake Jilantai-Hetao in the arid areas of China during the Late Quaternary[J]. Chinese Science Bulletin, 53(11):1725-1739.

    Google Scholar

    Chen Lichun, Ran Yongkang, Yang Xiaoping. 2003. Late Quaternary activity and segmentation model of the Seertengshan Piedmont fault[J]. Earthquake Research in China, 19(3):255-265(in Chinese with English abstract).

    Google Scholar

    Choi J H, Klinger Y, Ferry M, Ritz J F, Kurtz R, Magali R, Laurent B, Battogtokh B, Nyambayar, Sodnomsambuu R. 2018. Geologic inheritance and earthquake rupture processes:The 1905 M ≥ 8 Tsetserleg-Bulnay strike-slip earthquake sequence, Mongolia[J]. Journal of Geophysical Research:Solid Earth, 123(2):1925-1953. doi: 10.1002/2017JB013962

    CrossRef Google Scholar

    Clark M K, Farley K A, Zheng D, Wang Z, Duvall A R. 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth & Planetary Science Letters, 296(1/2):78-88.

    Google Scholar

    Cowie P A, Roberts G P. 2001. Constraining slip rates and spacings for active normal faults[J]. Journal of Structural Geology, 23(12):1901-1915. doi: 10.1016/S0191-8141(01)00036-0

    CrossRef Google Scholar

    Crone A J, Haller K M. 1991. Segmentation and the coseismic behavior of Basin and Range normal faults:Examples from eastcentral Idaho and southwestern Montana, USA[J]. Journal of Structural Geology, 13(2):151-164. doi: 10.1016/0191-8141(91)90063-O

    CrossRef Google Scholar

    Cui X, Zhao Q, Zhang J, Wang Y, Zhang B, Nie F, Qu J, Zhao H. 2018.Late Cretaceous-Cenozoic multi-stage denudation at the western Ordos block:Constraints by the apatite fission track dating on the Langshan[J]. Acta Geologica Sinica, 92(2):536-555. doi: 10.1111/1755-6724.13541

    CrossRef Google Scholar

    Cunningham W D, 1998. Lithospheric controls on late Cenozoic construction of the Mongolian Altai[J]. Tectonics, 17(6):891-902. doi: 10.1029/1998TC900001

    CrossRef Google Scholar

    Cunningham D. 2013. Mountain building processes in intracontinental oblique deformation belts:Lessons from the Gobi Corridor, Central Asia[J]. Journal of Structural Geology, 46:255-282. doi: 10.1016/j.jsg.2012.08.010

    CrossRef Google Scholar

    Dan W, Li X H, Wang Q, Wang X C, Wyman D A, Liu Y. 2016.Phanerozoic amalgamation of the Alxa Block and North China Craton:evidence from Paleozoic granitoids, U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry[J]. Gondwana Research, 32:105-121. doi: 10.1016/j.gr.2015.02.011

    CrossRef Google Scholar

    Darby B J, Ritts B D. 2007. Mesozoic structural architecture of the Lang Shan, North-Central China:Intraplate contraction, extension, and synorogenic sedimentation[J]. Journal of Structural Geology, 29(12):2006-2016. doi: 10.1016/j.jsg.2007.06.011

    CrossRef Google Scholar

    Dawers N H, Anders, M H. 1995. Displacement-length scaling and fault linkage[J]. Journal of Structural Geology, 17(5):607611-609614.

    Google Scholar

    Deng Qidong, Cheng Shaoping, Min Wei, Yang Guizhi, Ren dianwei. 1999. Discussion on Cenozoic tectonics and dynamics of Ordos block[J]. Journal of Geomechanics, 5:13-21(in Chinese with English abstract).

    Google Scholar

    Ding Guoyu. 1995. The segmentation model of active fault[J]. Earth Science Frontiers, (2):195-202(in Chinese with English abstract).

    Google Scholar

    Dong Shaopeng. 2016. Late Quaternary Tectonic Activity and Paleoseismology along the Langshan Range-front Fault[D]. Institute of Geology, China Earthquake Administrator.

    Google Scholar

    Dong S, Zhang P, Zhang H, Zheng W, Chen, H. 2018a. Drainage Responses to the Activity of the Langshan Range-Front Fault and Tectonic Implications[J]. Journal of Earth Science, 29(1):193-209. doi: 10.1007/s12583-017-0902-8

    CrossRef Google Scholar

    Dong S, Zhang P, Zheng W, Yu Z, Lei Q, Yang H, Liu J, Gong H, 2018b. Paleoseismic observations along the Langshan range-front fault, Hetao Basin, China:Tectonic and seismic implications[J]. Tectonophysics, 730:63-80. doi: 10.1016/j.tecto.2018.02.012

    CrossRef Google Scholar

    DuRoss C B, Personius S F, Crone A J, Olig S S, Hylland M D, Lund W R, Schwartz D P. 2016. Fault segmentation:New concepts from the Wasatch Fault Zone, Utah, USA[J]. Journal of Geophysical Research-Solid Earth, 121(2):1131-1157. doi: 10.1002/2015JB012519

    CrossRef Google Scholar

    Duvall A R, Clark M K, Kriby E, Farley K A, Craddock W H, Li C, Yuan D. 2013. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau:Evidence for kinematic change during late-stage orogenesis[J]. Tectonics, 32(5):1190-1211. doi: 10.1002/tect.20072

    CrossRef Google Scholar

    Fan Junxi, Ma Jin, Diao Guiling. 2003. Contemporary tectonic stress filed around the Ordos fault block inferred from earthquake focal mechanism[J]. Seismology Geology, 25:88-99(in Chinese with English abstract).

    Google Scholar

    Fang X, Garzione C, Van der Voo R, Li J, Fan M. 2003. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J]. Earth and Planetary Science Letters, 210(3):545-560.

    Google Scholar

    Feng J Y, Xiao W J, Windley B, Han C M, Wan B, Zhang J, Ao S J, Zhang, Z Y, Lin L N. 2013. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China:Implications for Late Permian accretionary tectonics in the southern Altaids[J]. Journal of Asian Earth Sciences, 78:114-142. doi: 10.1016/j.jseaes.2013.01.020

    CrossRef Google Scholar

    Feng L X, Brown R W, Han B F, Wang Z Z, Luszczak K, Liu B, Zhang Z C, Ji J Q. 2017. Thrusting and exhumation of the southern Mongolian Plateau:Joint thermochronological constraints from the Langshan Mountains, western Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 144:287-302. doi: 10.1016/j.jseaes.2017.01.001

    CrossRef Google Scholar

    Faulds James E, Varga Robert J. 1998. The role of accommodation zones and transfer zones in the regional segmentation of extended terranes[J]. Geological Society of America Special Papers, 323:1-45.

    Google Scholar

    Fossen H, Rotevatn A. 2016. Fault linkage and relay structures in extensional settings-A review[J]. Earth-Science Reviews, 154:14-28. doi: 10.1016/j.earscirev.2015.11.014

    CrossRef Google Scholar

    Gawthorpe R L, Hurst J Mo. 1993. Transfer zones in extensional basins:their structural style and influence on drainage development and stratigraphy[J]. Journal of the Geological Society, 150(6):1137-1152. doi: 10.1144/gsjgs.150.6.1137

    CrossRef Google Scholar

    Gao Xiwei, Wan Yongge, Huang Jichao, Li Xiang, Cui Huawei. 2015.Tectonic stress field analysis and static coulomb stress changes of the Ms5.8 Inner Mongolias Alxa Left Banner Earthquake[J]. North China Earthquake Sciences, 33(2), 48-54(in Chinese with English abstract).

    Google Scholar

    Gong Wangbin, Hu Jianmin, Li Zhenhong, Wu Sujuan, Liu Yang, Yan Jiyuan, 2013. The sediment features of lower piedmont platforms along Western Hetao Basin and implication for subsiding process and controlling factors of "Jilantai-Hetao" Megalake[J]. Earth Sci.Front, 20 (4):190-198(in Chinese with English abstract).

    Google Scholar

    Han Xiaoming, Liu Fang, Hu Bo, Zhang Fan.2015. Space-Time Distribution Characteristics of the focal mechanism type in Hetao seismic belt[J]. Journal of Jilin University:Earth Science Edition, 45(2):592-601(in Chinese with English abstract).

    Google Scholar

    He C Q, Cheng Y L, Rao G, Chen P, Hu J M, Yu Y L, Yao Q. 2018.Geomorphological signatures of the evolution of active normal faults along the Langshan Mountains, North China[J]. Geodinamica Acta, 30(1):163-182. doi: 10.1080/09853111.2018.1458935

    CrossRef Google Scholar

    He X L, Zhang X J, He Z X, Jia L Y, Ye P S, Zhao J X. 2017. Late Quaternary alluvial fan terraces:Langshan, Inner Mongolia, China[J]. Geomorphology, 286:34-44. doi: 10.1016/j.geomorph.2017.03.003

    CrossRef Google Scholar

    Heidbach O, Rajabi M, Reiter K, Ziegler M, WSM team. 2016. World stress map database release 2016[BD]. GFZ Data Services.

    Google Scholar

    He Zexin, Zhang Xujiao, Jia Liyun, Wu Fadong, Zhou Yiqun, Bao Shuyan, Bao Zhiqiang, Yin Zhigang, Guo Bin. 2014. Genesis of piedmont terraces and its Neotectonic movement significance in Langshan Mountain area, Inner Mongolia[J]. Geoscience 28 (1):98-108 (in Chinese with English abstract).

    Google Scholar

    Hu J M, Gong W B, Wu S J, Liu Y, Liu S C. 2014. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 255:756-770. doi: 10.1016/j.precamres.2014.08.013

    CrossRef Google Scholar

    Jia L, Zhang X, He Z, He X, Wu F, Zhou Y, Fu L, Zhao J. 2015. Late Quaternary climatic and tectonic mechanisms driving river terrace development in an area of mountain uplift:A case study in the Langshan area, Inner Mongolia, northern China[J]. Geomorphology, 234:109-121. doi: 10.1016/j.geomorph.2014.12.043

    CrossRef Google Scholar

    Jia L, Zhang X, Ye P, Zhao X, He Z, He X, Zhou Q, Li J, Ye M., Wang Z, Meng J. 2016. Development of the alluvial and lacustrine terraces on the northern margin of the Hetao Basin, Inner Mongolia, China:Implications for the evolution of the Yellow River in the Hetao area since the Late Pleistocene[J]. Geomorphology, 263:87-98. doi: 10.1016/j.geomorph.2016.03.034

    CrossRef Google Scholar

    Jiang Wali. 2002. Paleo-earthquake event and co-seismic vertical deformation recognition along the Langshan-Sertenshan Pediment Fault, Inner Mongolia[C]//Collections of Crustal Tectonics and Crustal Stress 15, 45-52(in Chinese with English abstract).

    Google Scholar

    Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Roger F, Tapponnier P, Malavieille J, Arnaud N, Wu C. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau:fission-track constraints[J]. Tectonophysics, 343(1/2):111-134.

    Google Scholar

    Lei Q Y, Zhang P Z, Zheng W J, Chai C Z, Wang W T, Peng D, Yu J X. 2016. Dextral strike-slip of Sanguankou-Niushoushan fault zone and extension of arc tectonic belt in the northeastern margin of the Tibet Plateau[J]. Science China Earth Sciences, 59(5):1-16.

    Google Scholar

    Lei Qiyun, Zhang Peizhen, Zheng Wenjun, Chai Chizhang, Wang Weitao, Du Peng, Yu Jingxing. 2017.Geological and geomorphic evidence for dextral strike slip of the Helanshan west-Piedmont Fault and its tectonic implications[J]. Seimology and Geology, 39(6):1297-1315 (in Chinese with English abstract).

    Google Scholar

    Li Yanbao Ran Yongkang, Chen Lichun, Wu Fuyao, Lei Shengxue. 2015. The latest surface rupture events on the major active faults and great historical earthquakes in Hetao fault-depression zone[J]. Seismology Geology, 37(1):110-125 (in Chinese with English abstract).

    Google Scholar

    Liang K, Ma B, Li D, Tian Q, Sun C, He Z, Zhao J, Liu R, Wang J. 2019. Quaternary activity of the Zhuozishan West Piedmont Fault provides insight into the structural development of the Wuhai Basin and Northwestern Ordos Block, China[J]. Tectonophysics, 754:56-72. doi: 10.1016/j.tecto.2019.02.004

    CrossRef Google Scholar

    Liang Shiming, Gan Weijun, Shen Chuanzheng, Xiao Genru, Liu Jing, Chen Weitao, Ding Xiaoguang, Zhou Deming. 2013. Threedimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements[J]. Journal of Geophysical Research:Solid Earth, 118(10):5722-5732. doi: 10.1002/2013JB010503

    CrossRef Google Scholar

    Liu Baiyun, Zeng Wenhao, Yuan Daoyang, Chen Wenkai, Niu Yanping. 2014. Fault parameters and slip properties of the 1954 northern Tengger desert M7.0 earthquake[J]. China Earthquake Engineering Journal, 36(3):622-627(in Chinese with English abstract).

    Google Scholar

    Liu X B, Hu J M, Shi W, Chen H, Yan J Y. 2019. Palaeogene-Neogene sedimentary and tectonic evolution of the Yinchuan Basin, western North China Craton[J]. International Geology Review, 1-19.

    Google Scholar

    Maniatis G, Hampel A. 2008, Along-strike variations of the slip direction on normal faults:Insights from three-dimensional finiteelement models[J]. Journal of Structural Geology, 30(1):21-28. doi: 10.1016/j.jsg.2007.10.002

    CrossRef Google Scholar

    Manighetti I, Caulet C, Barros L, Perrin C, Cappa F, Gaudemer Y. 2015. Generic along-strike segmentation of Afar normal faults, East Africa:Implications on fault growth and stress heterogeneity on seismogenic fault planes[J]. Geochemistry, Geophysics, Geosystems, 16(2):443-467. doi: 10.1002/2014GC005691

    CrossRef Google Scholar

    Meyer B, Tapponnier P, Bourjot L, Métivier F, Gaudemer Y, Peltzer G, Guo S, Chen Z. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 135(1):1-47. doi: 10.1046/j.1365-246X.1998.00567.x

    CrossRef Google Scholar

    Middleton T A, Walker R T, Rood D H, Rhodes E J, Parsons B, Lei Q, Elliott J R, Zhou Y. 2016. The tectonics of the western Ordos Plateau, Ningxia, China:Slip rates on the Luoshan and East Helanshan Faults[J]. Tectonics, 35(11):2754-2777. doi: 10.1002/2016TC004230

    CrossRef Google Scholar

    Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision[J]. Science, 189(4201):419-426. doi: 10.1126/science.189.4201.419

    CrossRef Google Scholar

    Molnar P, Tapponnier P. 1977. Relation of the tectonics of eastern China to the India-Eurasia collision:Application of slip-line field theory to large-scale continental tectonics[J]. Geology, 5(4):212-216. doi: 10.1130/0091-7613(1977)5<212:ROTTOE>2.0.CO;2

    CrossRef Google Scholar

    Morley C K, Nelson R A, Patton T L, Munn S G. 1990. Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts[J]. AAPG Bulletin, 74(8):1234-1253.

    Google Scholar

    Murray A S, Wintle A G. 2003. The single aliquot regenerative dose protocol:potential for improvements in reliability[J]. Radiation Measurements, 37(4/5):377-381.

    Google Scholar

    Peng Runmin, Zhai Yusheng, Wang Jianping, Chen Xifeng, Liu Qiang, Lu Junyang, Shi Yongxing, Wang Gang, Li Shenbin, Wang Ligong, Ma Yutao, Zhang Peng. 2010. Discovery of Neoproterozoic acid volcanic rock in the southwestern section of Langshan, Inner Mongolia[J]. Chinese Science Bulletin, 55(26), 2611-2620 (in Chinese with English abstract). doi: 10.1360/972010-266

    CrossRef Google Scholar

    Ran Yongkang, Chen Lichun, Yang Xiaoping, Han Zhujun. 2003.Recurrence characteristic of late Quaternary strong earthquakes on the major faults along the northern border of Ordos block[J]. Science China(Serious D):Earth Science 46 (2 Suppl.), 189-200(in Chinese with English abstract).

    Google Scholar

    Rao G, Chen P, Hu J, Yu Y, Qiu J. 2016. Timing of Holocene paleoearthquakes along the Langshan Piedmont Fault in the western Hetao Graben, North China:Implications for seismic risk[J]. Tectonophysics, 677:115-124.

    Google Scholar

    Rao Gang, He Chuanqi, Cheng Yali, Yu Yangli, Hu Jianmin, Chen Peng, Yao Qi. 2018. Active normal faulting along the Langshan Piedmont Fault, North China:Implications for slip partitioning in the western Hetao Graben[J]. The Journal of Geology, 126(1):99-118.

    Google Scholar

    Research Group of Active Fault System around the Ordos Massif.1988. Active Fault System Around Ordos Massif[M]. Beijing:Seismological Press, 39-65(in Chinese with English abstract).

    Google Scholar

    Rotevatn A, Jackson C A L, Tvedt A B M, Bell R E, Blækkan I. 2019.How do normal faults grow?[J]. Journal of Structural Geology, 125:174-184. doi: 10.1016/j.jsg.2018.08.005

    CrossRef Google Scholar

    Schultz R A. 1997. Displacement-length scaling for terrestrial and Martian faults:Implications for Valles Marineris and shallow planetary grabens[J]. Journal of Geophysical Research:Solid Earth, 102(B6):12009-12015. doi: 10.1029/97JB00751

    CrossRef Google Scholar

    Shen X, Li D, Tian Y T, Lv Y W, Li D W, Li Y F. 2016. Late Pleistocene-Holocene slip history of the Langshan-Seertengshan piedmont fault (Inner Mongolia, northern China) from cosmogenic 10Be dating on a bedrock fault scarp[J]. Journal of Mountain Science, 13(5):882-890. doi: 10.1007/s11629-015-3717-1

    CrossRef Google Scholar

    Schwartz D P, Coppersmith K J. 1984. Fault behavior and characteristic earthquakes:Examples from the Wasatch and San Andreas fault zones[J]. Journal of Geophysical Research:Solid Earth, 89(B7):5681-5698. doi: 10.1029/JB089iB07p05681

    CrossRef Google Scholar

    Shi W, Dong S, Liu Y, Hu J, Chen X, Chen P. 2015. Cenozoic tectonic evolution of the South Ningxia region, northeastern Tibetan Plateau inferred from new structural investigations and fault kinematic analyses[J]. Tectonophysics, 649:139-164. doi: 10.1016/j.tecto.2015.02.024

    CrossRef Google Scholar

    Song Chao, Gai Zengxi. 2018. An iterative travel time inversion and waveform modeling method to determine the crust structure and the focal mechanism of 2015 Alxa Left Banner Ms5.8 Earthquake[J]. Chinese Journal of Geophysics, 61(4):1225-1237(in Chinese with English abstract).

    Google Scholar

    Tapponnier P, Molnar P. 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature, 264(5584):319-324. doi: 10.1038/264319a0

    CrossRef Google Scholar

    Tapponnier P, Peltzer G, Dain A Y L, Armijo R, Cobbold. 1982.Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology, 10(10):611.

    Google Scholar

    Tapponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, Wittlinger G, Jingsui Y. 2001 Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547):1671-1677. doi: 10.1126/science.105978

    CrossRef Google Scholar

    Wang W, Kirby E, Peizhen Z, Dewen Z, Guangliang Z, Huiping Z, Wenjun Z, Chizhang C. 2013. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau:Evidence for basin formation during Oligocene transtension[J]. Geological Society of America Bulletin, 125(3/4):377-400.

    Google Scholar

    Wang Xulong, Lu yanchou, Li Xiaoni. 2005. Luminescence dating of fine-grained quartz in Chinese Loess simplified Multiple Aliquot Regenrative-Dose(MAR) Protocol[J]. Seismology Geology, 27(4):615-623 (in Chinese with English abstract).

    Google Scholar

    Wei Jianmin, Han Xiaoming, Zhang Fan, Chen Lifeng, Li Juan, Yang Hongying. 2017. Discussion of the earthquake sequence and earthquake rupture surface of Alxa Zuoqi Ms5.8 in 2015[J]. China Earthquake Engineering Journal, 39(5):919-924 (in Chinese with English abstract).

    Google Scholar

    Wu Weimin, Nie Zongsheng, Xu Guilin.1996. Active faulting research on west segment of Serteng rangefront fault[C]//Institute of Geology, SSB(ed.). Research on Active Faults(5). Beijing: Seismological Press, 113-124(in Chinese with English abstract).

    Google Scholar

    Xu Zhonghuai, Wang Suyun, Gao Ajia. 2000. Present-day tectonic movement in the northeastern margin of the Qinghai-Xizang(Tibetan) Plateau as revealed by earthquake activity[J]. Acta Seismologica Sinica, 22(5):472-481(in Chinese with English abstract).

    Google Scholar

    Yang Xiangyang, Dong Yunpeng. 2018. Mesozoic and Cenozoic multiple deformations in the Helanshan Tectonic Belt, Northern China[J]. Gondwana Research, 60:34-53. doi: 10.1016/j.gr.2018.03.020

    CrossRef Google Scholar

    Yin A, Nie S Y. 1996. A Phanerozoic Palinspastic Reconstruction of China and its Neighboring Regions[C]//An Yin and Harrison T M (eds.). The Tectonic Evolution of Asia. Cambridge University Press, 442-485.

    Google Scholar

    Yin A. 2010. Cenozoic tectonic evolution of Asia:A preliminary synthesis[J]. Tectonophysics, 488(1/4):293-325.

    Google Scholar

    Yu J X, Zheng W J, Kirby E, Zhang P Z, Lei Q Y, Ge W P, Wang W T, Li X N, Zhang, N. 2016. Kinematics of late Quaternary slip along the Yabrai fault:Implications for Cenozoic tectonics across the Gobi Alashan block, China[J]. Lithosphere, 8(3):199-218. doi: 10.1130/L509.1

    CrossRef Google Scholar

    Yu J X, Zheng W J, Zhang P Z, Lei Q Y, Wang X L, Wang W T, Li X N, Zhang N. 2017. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China[J]. Tectonophysics, 721:28-44. doi: 10.1016/j.tecto.2017.09.014

    CrossRef Google Scholar

    Yuan Daoyang, Zhang Peizhen, Liu Baichi, Gan Weijun, Mao Feng Yiing, Wang Zhicai, Zheng Wenjun, Guo Hua. 2004. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Scinca, 78(2):270-278 (in Chinese with English abstract).

    Google Scholar

    Yuan D Y, Ge W P, Chen Z W, Li C Y, Wang Z C, Zhang, H P, Zhang P Z, Zheng D W, Zheng W J, Craddock W H, Dayem K E, Duvall A R, Hough B G, Lease R O, Champagnac J D, Burbank D W, Clark M K, Farley K A, Garzione C N, Kirby E, Molnar P, Roe G H. 2013. The growth of northeastern Tibet and its relevance to largescale continental geodynamics:A review of recent studies[J]. Tectonics, 32(5):1358-1370. doi: 10.1002/tect.20081

    CrossRef Google Scholar

    Zhang H, He Z, Ma B, Long J, Liang K, Wang J. 2017. The vertical slip rate of the Sertengshan piedmont fault, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 143:95-108. doi: 10.1016/j.jseaes.2017.04.014

    CrossRef Google Scholar

    Zhang J, Cunningham D, Hongyi C. 2010. Sedimentary characteristics of Cenozoic strata in central-southern Ningxia, NW China:Implications for the evolution of the NE Qinghai-Tibetan Plateau[J]. Journal of Asian Earth Sciences, 39(6):740-759. doi: 10.1016/j.jseaes.2010.05.008

    CrossRef Google Scholar

    Zhang J, Li J, Xiao W, Wang Y, Qi W. 2013. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China:New constraints on the relationship between the North China Plate and the Alxa block[J]. Journal of Structural Geology, 57(57):38-57.

    Google Scholar

    Zhang J, Li J, Li Y, Qi, W., Zhang, Y. 2014. Mesozoic-Cenozoic multi-stage intraplate deformation events in the Langshan Region and their Tectonic Implications[J]. Acta Geologica Sinica, 88(1):78-102. doi: 10.1111/1755-6724.12184

    CrossRef Google Scholar

    Zhang P, Burchfiel B C, Molnar P, Zhang W, Jiao D, Deng Q, Wang Y, Royden L, Song F. 1991. Amount and style of Late Cenozoic deformation in the Liupan Shan area, Ningxia Autonomous Region, China[J]. Tectonics, 10(6):1111-1129. doi: 10.1029/90TC02686

    CrossRef Google Scholar

    Zhang Yueqiao, Liao Changzhen, Shi Wwi, Hu Bo. 2006. Neotectonic evolution of the peripheral zones of the Ordos basin and geodynamic setting[J]. Geological Journal of China Universities, 12:285-297(in Chinese with English abstract).

    Google Scholar

    Zhang Y Q, Mercier J L, Vergély P. 1998. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of south China with respect to GobiMongolia[J]. Tectonophysics, 285(1):41-75.

    Google Scholar

    Zhao B, Zhang C, Wang D, Huang Y, Tan K, Du R, Liu J. 2017.Contemporary kinematics of the Ordos block, North China and its adjacent rift systems constrained by dense GPS observations[J]. Journal of Asian Earth Sciences, 135:257-267. doi: 10.1016/j.jseaes.2016.12.045

    CrossRef Google Scholar

    Zhao Heng, Zhang Jin, Qu Junfeng, Zhang Beihang, Niu Pengfei, Hui Jie, Yun Long, Li Yanfeng, Wang Yannan, Zhang Yiping. 2019a.Characteristics and Dynamic Background of the Cenozoic Compressive Structures in the Eastern Margin of the Alxa Block[J]. Earth Science. doi:10.3799/dgkx.2019.126.

    CrossRef Google Scholar

    Zhao Heng, Zhang Jin, Li Yanfeng, Qu Junfeng, Zhang Beihang, Niu Pengfei, Yun Long, Zhang Yiping, Wang Yannan. 2019b. Relay structures and linkage characteristics of normal fault:An example from the Langshan piedmont normal fault zone[J]. Acta Geologica Sinica, 93(7):1601-1617(in Chinese with English abstract).

    Google Scholar

    Zhao Lingqiang, Zhan Yan, Wang Qinglaing, Sun Xiangyu, Yang Hao, Chen Xiaobin. 2018. Deep electrical structure beneath the 1954 Ms 7.0 Minqin, Gansu earthquake and its seismotectonic environment[J]. Seismology Geology, 40(3):552-565(in Chinese with English abstract).

    Google Scholar

    Zheng D, Zhang P Z, Wan J, Yuan D, Li C, Yin G, Chen J. 2006. Rapid exhumation at~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 248(1):198-208.

    Google Scholar

    Zheng D W, Clark M K, Zhang P Z, Zheng W, Farley K A. 2010.Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau)[J].Geosphere, 6(6):937-941. doi: 10.1130/GES00523.1

    CrossRef Google Scholar

    Zheng Wenjun, Yuan Daoyang, Zhang Peizhen, Yu Jingxing, Lei Qiyun, Wang Weitao, Zheng Dewen, Zhang Huiping, Li Xinnan, Li Chuanyou, Liu Xingwang. 2016. Tectonic geometry and kinematic dissipation of the active faults in the northeastern Tibetan Plateau and their implications for understanding northeastward growth of the plateau[J]. Quaternary Sciences, 36(4):775-788.

    Google Scholar

    陈立春, 冉勇康, 杨晓平. 2003.色尔腾山山前断裂晚第四纪活动与破裂分段模型[J].中国地震, 19(3):255-265. doi: 10.3969/j.issn.1001-4683.2003.03.007

    CrossRef Google Scholar

    丁国瑜. 1995.活断层的分段模型[J].地学前缘, (2):195-202. doi: 10.3321/j.issn:1005-2321.1995.02.024

    CrossRef Google Scholar

    邓起东, 程绍平, 闵伟, 杨桂枝, 任殿卫. 1999.鄂尔多斯块体新生代构造活动和动力学的讨论[J].地质力学学报, 5(3):13-21. doi: 10.3969/j.issn.1006-6616.1999.03.003

    CrossRef Google Scholar

    董绍鹏. 2016.狼山山前断裂的晚第四纪活动习性与古地震研究[D].中国地震局地质研究所.

    Google Scholar

    国家地震局鄂尔多斯周缘断裂系课题组.1988.鄂尔多斯周缘断裂系[M].北京:地震出版社, 39-65.

    Google Scholar

    范俊喜, 马瑾, 刁桂苓. 2003.由小震震源机制解得到的鄂尔多斯周边构造应力场[J].地震地质, 25(1):88-99. doi: 10.3969/j.issn.0253-4967.2003.01.009

    CrossRef Google Scholar

    高熹微, 万永革, 黄骥超, 李祥, 崔华伟. 2015.内蒙古阿拉善左旗M_S5.8地震的构造应力场和静态库伦应力变化分析[J].华北地震科学, 33(2), 48-54. doi: 10.3969/j.issn.1003-1375.2015.02.009

    CrossRef Google Scholar

    公王斌, 胡健民, 李振宏, 吴素娟, 刘洋, 阎纪元. 2013.河套盆地西缘山前低台地沉积特征对"吉兰泰-河套"古湖消退过程及其控制因素的指示意义[J].地学前缘, 20(4):190-198.

    Google Scholar

    韩晓明, 刘芳, 胡博, 张帆. 2015.河套地震带的震源机制类型时空分布特征[J].吉林大学学报:地球科学版, (2):592-601.

    Google Scholar

    何泽新, 张绪教, 贾丽云, 武法东, 周轶群, 鲍淑燕, 包智强, 殷志刚, 郭斌. 2014.内蒙古狼山山前台地成因及其新构造运动意义[J].现代地质, (1):98-108. doi: 10.3969/j.issn.1000-8527.2014.01.009

    CrossRef Google Scholar

    江娃利. 2002.内蒙狼山-色尔腾山山前活动断裂古地震事件识别及同震垂直位移[C]//地壳构造与地壳应力文集(15): 45-52.

    Google Scholar

    雷启云, 张培震, 郑文俊, 杜鹏, 王伟涛, 俞晶星, 谢晓峰. 2017.贺兰山西麓断裂右旋走滑的地质地貌证据及其构造意义[J].地震地质, 39(6):1297-1315. doi: 10.3969/j.issn.0253-4967.2017.06.014

    CrossRef Google Scholar

    李彦宝, 冉勇康, 陈立春, 吴富峣, 雷生学. 2015.河套断陷带主要活动断裂最新地表破裂事件与历史大地震[J].地震地质, 37(1):110-125. doi: 10.3969/j.issn.0253-4967.2015.01.009

    CrossRef Google Scholar

    刘白云, 曾文浩, 袁道阳, 陈文凯, 牛延平. 2014.1954年腾格里沙漠北7级地震断层面参数和滑动性质研究[J].地震工程学报, 36(3):622-627. doi: 10.3969/j.issn.1000-0844.2014.03.0622

    CrossRef Google Scholar

    彭润民, 翟裕生, 王建平, 陈喜峰, 刘强, 吕军阳, 石永兴, 王刚, 李慎斌, 王立功, 马玉涛, 张鹏. 2010.内蒙狼山新元古代酸性火山岩的发现及其地质意义[J].科学通报, (26):2611-2620.

    Google Scholar

    冉勇康, 陈立春, 杨晓平, 韩竹军. 2003.鄂尔多斯地块北缘主要活动断裂晚第四纪强震复发特征[J].中国科学:D辑, 33(B04):135-143.

    Google Scholar

    宋超, 盖增喜. 2018.利用走时和波形拟合迭代反演阿拉善地壳速度结构及2015年阿拉善左旗5.8级地震震源机制[J].地球物理学报, 61(4):1225-1237.

    Google Scholar

    王旭龙, 卢演俦, 李晓妮, 2005.细颗粒石英光释光测年:简单多片再生法[J].地震地质, 27(4):615-623. doi: 10.3969/j.issn.0253-4967.2005.04.010

    CrossRef Google Scholar

    魏建民, 韩晓明, 张帆, 陈立峰, 李娟, 杨红樱. 2017.2015年阿拉善左旗MS5.8地震序列特征及发震破裂面讨论[J].地震工程学报, 39(5):919-924.

    Google Scholar

    吴卫民, 聂宗笙, 许桂林.1996.色尔腾山山前断裂西段活断层研究[C]//中国地震局地质研究所编.活动断裂研究(5).北京: 地震出版社: 13-124.

    Google Scholar

    许忠淮, 汪素云, 高阿甲. 2000.地震活动反映的青藏高原东北地区现代构造运动特征[J].地震学报, 22(5):472-481. doi: 10.3321/j.issn:0253-3782.2000.05.004

    CrossRef Google Scholar

    袁道阳, 张培震, 刘百篪, 甘卫军, 毛凤英, 王志才, 郑文俊, 郭华. 2004.青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J].地质学报, 78(2):270-278. doi: 10.3321/j.issn:0001-5717.2004.02.017

    CrossRef Google Scholar

    张岳桥, 廖昌珍, 施炜, 胡博. 2006.鄂尔多斯盆地周边地带新构造演化及其区域动力学背景[J].高校地质学报, 12(3):285-297. doi: 10.3969/j.issn.1006-7493.2006.03.001

    CrossRef Google Scholar

    赵衡, 张进, 曲军峰, 张北航, 牛鹏飞, 惠洁, 云龙, 李岩峰, 王艳楠, 张义平. 2019a.阿拉善地块东缘新生代中新世挤压变形及动力学背景[J/OL].地球科学.doi: 10.3799/dqkx.2019.126.

    Google Scholar

    赵衡, 张进, 李岩峰, 曲军峰, 张北航, 牛鹏飞, 云龙, 张义平, 王艳楠. 2019b.正断层的阶区构造及生长机制:以狼山山前断层带为例[J].地质学报, 93(7):1601-1617.

    Google Scholar

    赵凌强, 詹艳, 王庆良, 孙翔宇, 杨皓, 陈小斌. 2018.1954年甘肃民勤7级地震区深部电性结构特征及地震构造环境研究[J].地震地质, 40(3):552-565. doi: 10.3969/j.issn.0253-4967.2018.03.004

    CrossRef Google Scholar

    郑文俊, 袁道阳, 张培震, 俞晶星, 雷启云, 王伟涛, 郑德文, 张会平, 李新男, 李传友, 刘兴旺. 2016.青藏高原东北缘活动构造几何图像、运动转换与高原扩展[J].第四纪研究, 36(4):775-788.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(2)

Article Metrics

Article views(3471) PDF downloads(505) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint