2019 Vol. 46, No. 5
Article Contents

XU Jie, ZHU Yongyi, WU Xiaoming, WANG Wenshi, ZHANG Hengchun, YAN Jia, CAO Longlong, XU Lin, ZHANG Linsheng, ZHENG Wenlong. 2019. High-temperature core drilling fluid technology of Well Songke-2[J]. Geology in China, 46(5): 1184-1192. doi: 10.12029/gc20190518
Citation: XU Jie, ZHU Yongyi, WU Xiaoming, WANG Wenshi, ZHANG Hengchun, YAN Jia, CAO Longlong, XU Lin, ZHANG Linsheng, ZHENG Wenlong. 2019. High-temperature core drilling fluid technology of Well Songke-2[J]. Geology in China, 46(5): 1184-1192. doi: 10.12029/gc20190518

High-temperature core drilling fluid technology of Well Songke-2

    Fund Project: Supported by China Geological Survey Program (No. 12120113017600)
More Information
  • Author Bio: XU Jie, female, born in 1983, doctor, engages in study and application of drilling fluid; E-mail: xujie561@126.com
  • The completion depth of Well Songke 2 is 7108.88 m. At the time 38h after the well completion, the bottom hole temperature was 241℃. Three kinds of drilling fluids were investigated in laboratory according to the formation and temperature conditions, and they respectively are the potassium chloride-polysulfonate system which is resistant to temperature of 180℃, the polymer drilling fluid which is resistant to 230℃ and formate-polymer drilling fluid which is resistant to 250℃. The experimental data show that these drilling fluids have good high temperature stability and low HTHP filtration loss. Through detecting the quality of drilling fluid real time, the predicted problems could happen through over-temperature detection, which make indoor experiments to guide in-site maintenance in the project construction, ensure the stability performance at high temperature interval, and guarantee the coring operation smoothly. In addition, the drilling fluid of each system achieves a safe and smooth transition during the conversion, without any waste slurry, which greatly saves the cost. The logging and casing running before cementing could be successfully completed at one time, which further proves that the drilling fluid used has good high temperature stability.

  • 加载中
  • Duan Yisheng. 1999. Well Ya 21-1-3 drilling techniques[J]. Natural Gas Industry, 19(1):79-82 (in Chinese with English abstract).

    Google Scholar

    Fei Li, Zhu Zongpei. 1995. Clay for deep, high temperature well mud[J]. Exploration Engineering, 5:44-45 (in Chinese with English abstract).

    Google Scholar

    Fitzgerald B L, McCourt A J, Brangetto M. 2000. Drilling fluid plays key role in developing the extreme HTHP Elgin/Franklin field[C]//IADC/SPE Drilling Conference. New Orleans: Society of Petroleum Engineers, 1-12.

    Google Scholar

    Hu Jiliang, Tao Shixian, Shan Wenjun, Liu Sanyi. 2012. Overview of ultra-deep well high-temperature drilling fluid technology and discussion of its research direction[J]. Geology and Exploration, 48(1):155-159 (in Chinese with English abstract).

    Google Scholar

    Huang Wei'an, Qiu Zhengsong, Zhong Hanyi, Liu Zhenhuan. 2010.Research on weighting materials of high density drilling fluid[J]. Foreign Oilfield Engineering, 26(8):37-40 (in Chinese with English abstract).

    Google Scholar

    Huang Yuming, Zhang Jinchang, Zheng Wenlong. 2017. Experimental study on the ultra-high temperature polysulfonated drilling fluid system suitable for deep coring drilling[J]. Geology and Exploration, 53(4):773-778 (in Chinese with English abstract).

    Google Scholar

    Li Gongrang, Xue Yuzhi, Liu Baofeng, Lan Qiang. 2009. High temperature high density drilling fluid technology for the fourth interval of Shengke-1[J]. Drilling Fluid & Completion Fluid, 26(2):12-15 (in Chinese with English abstract).

    Google Scholar

    Messler D, Kippie D, Broach M, Benson D. 2004. A potassium formate milling fluid breaks the 400° fahrenheit barrier in a deep Tuscaloosa coiled tubing clean-out[C]//SPE International Symposium and Exhibition on Formation Damage ControlLafayette. Louisiana: Society of Petroleum Engineers, 1-9.

    Google Scholar

    Oakley D J, Morton K, Eunson A, Gilmour A, Pritchard D. 2000.Innovative drilling fluid design and rigorous pre-well planning enable success in an extreme HTHP well[C]//IADC/SPE Asia Pacific Drilling Technology. Kuala Lumpur: Society of Petroleum Engineers, 1-9.

    Google Scholar

    Stamatakis E, Young S, Stefano G D. 2012. Meeting the ultra HTHP challenge[C]//SPE Oil and Gas India Conference and Exhibition.Mumbai: Society of Petroleum Engineers India, 1-9.

    Google Scholar

    Sun Zhongwei, He Zhengkui, Liu Xia, Qiu Zhengsong, Qiu Jianjun, Jing Guoan, Chen Xin'an. 2009. The ultra-high temperature water based drilling fluid technology for Well Bishen-1[J]. Drilling Fluid & Completion Fluid, 26(3):9-11 (in Chinese with English abstract).

    Google Scholar

    Wang Guanqing, Chen Yuandun, Zhou Yuhui. 1998. DifficultyAnalysis and solution discussion for deep and ultra-deep exploration well[J]. Oil Drilling & Production Technology, 20(1):1-5 (in Chinese with English abstract).

    Google Scholar

    Wan Xuxin, Liu Shaoyuan, Wang Shuqiang. Temperature tolerant and salt resistant drilling fluid for deep hole drilling[J]. 2002. Drilling Fluid & Completion Fluid, 19(6):59-61 (in Chinese with English abstract).

    Google Scholar

    Wang Zhonghua. 2009. Studies on ultra-temperature drilling fluid system (1):Design ultra-high temperature drilling fluid additives[J]. Petroleum Drilling Techniques, 37(3):1-7 (in Chinese with English abstract).

    Google Scholar

    Wang Zhonghua. 2011. Status and development trend of ultra-high temperature density drilling fluid at home and abroad[J]. Petroleum Drilling Techniques, 39(2):1-5 (in Chinese with English abstract).

    Google Scholar

    Xu Jie, Wu Xiaoming, Zhu Yongyi, Chikhotkin V F, Xu Mingbiao, Wu Chuan, Zheng Wenlong. 2015. Laboratory study on ultra-high temperature water base mud[J]. Drilling Fluid & Completion Fluid, 32(1):10-13 (in Chinese with English abstract).

    Google Scholar

    Xu Jie, Wu Xiaoming, Wang Wenshi, Yan Jia, Zhang Hengchun, Cao Longlong. 2017. Ultra-high temperature drilling fluid technology of well Songke-2[J]. Drilling Fluid & Completion Fluid, 35(2):29-34 (in Chinese with English abstract).

    Google Scholar

    Yan Jienian. 2001. Drilling Fluid Technology[M]. Beijing:Petroleum Industry Press, 118-119 (in Chinese with English abstract).

    Google Scholar

    Yang Xiaohua. 2012. Study and application of ultra-high temperature drilling fluid in China[J]. Sino-Global Energy, 17(3):42-46 (in Chinese with English abstract).

    Google Scholar

    Yi Can, Yan Zhenlai, Zhao Huaizhen. 2009. Rheological properties of water-based drilling fluids in ultra-deep wells at high temperature and high pressure[J]. Petroleum Drilling Techniques, 37(1):10-13(in Chinese with English abstract).

    Google Scholar

    Zhao Jinzhou. 2008. Drilling Practice of Complex Ultra-deep Well in East China:A Major Breakthrough in Shengke 1 Well Drilling[M]. Beijing:China Petrochemical Press, 113-114 (in Chinese with English abstract).

    Google Scholar

    Zhao Xiuquan, Li Weiping, Wang Zhongyi. 2007. High-temperature drilling fluids in Changshen-5 well[J]. Petroleum Drilling Techniques, 35(6):69-72(in Chinese with English abstract).

    Google Scholar

    Zheng Wenlong, Wu Xiaoming, Huang Yuming, Xe Jie, Wang Wenshi. 2017. Research and application of high-temperature drilling fluid for scientific core drilling project[C]//Abu Dhabi International Petroleum Exhibition & Conference. Abu Dhabi: Society of Petroleum Engineers, 1-10.

    Google Scholar

    Zheng Yuxuan, Shan Wenjun, Zhao Changliang, Jiang Rui, Li Yanning. 2018. The drilling technology for the GR1 well in hot-dry rock of Gonghe, Qinghai Province[J]. Geology and Exploration, 54(5):1038-1045 (in Chinese with English abstract).

    Google Scholar

    Zhu Yongyi, Wang Wenshi, Wu Xiaoming, Zhang Hengchun, Xu Jie, Yan Jia, Cao Longlong, Ran Hengqian, Zhang Jinchang. 2018. Main technical innovations of Songke well No.2 drilling project[J]. Geology in China, 1(2):187-201. doi: 10.31035/cg2018031

    CrossRef Google Scholar

    段异生. 1999.崖城21-1-3井钻井技术[J].天然气工业, 19(1):79-82. doi: 10.3321/j.issn:1000-0976.1999.01.021

    CrossRef Google Scholar

    费立, 朱宗培. 1995.用于深井、高温井钻井液的粘土材料[J].探矿工程, 5:44-45.

    Google Scholar

    胡继良, 陶士先, 单文军, 刘三意. 2012.超深井高温钻井液技术概况及研究方向的探讨[J].地质与勘探, 48(1):155-159.

    Google Scholar

    黄维安, 邱正松, 钟汉毅, 刘震寰. 2010.高密度钻井液加重剂的研究[J].国外油田工程, 26(8):37-40. doi: 10.3969/j.issn.1002-641X.2010.8.010

    CrossRef Google Scholar

    黄聿铭, 张金昌, 郑文龙. 2017.适于深部取心钻探井超高温聚磺钻井液体系研究[J].地质与勘探, 53(4):773-778.

    Google Scholar

    李公让, 薛玉志, 刘宝峰, 蓝强. 2009.胜科1井四开超高温高密度钻井液技术[J].钻井液与完井液, 26(2):12-15. doi: 10.3969/j.issn.1001-5620.2009.02.003

    CrossRef Google Scholar

    孙中伟, 何正奎, 刘霞, 邱正松, 邱建君, 景国安, 陈新安. 2009.泌深1井超高温水基钻井液技术[J].钻井液与完井液, 26(3):9-11. doi: 10.3969/j.issn.1001-5620.2009.03.003

    CrossRef Google Scholar

    王关清, 陈元顿, 周煜辉. 1998.深探井和超深探井钻井的难点分析和对策探讨[J].石油钻采工艺, 20(1):1-5.

    Google Scholar

    万绪新, 刘绍元, 王树强. 2002.耐温耐盐深井钻井液技术[J].钻井液与完井液, 19(6):59-61. doi: 10.3969/j.issn.1001-5620.2002.06.017

    CrossRef Google Scholar

    王中华. 2009.超高温钻井液体系研究(Ⅰ)——抗高温钻井液处理剂设计思路[J].石油钻探技术, 37(3):1-7. doi: 10.3969/j.issn.1001-0890.2009.03.001

    CrossRef Google Scholar

    王中华. 2011.国内外超高温高密度钻井液技术现状与发展趋势[J].石油钻探技术, 39(2):1-5. doi: 10.3969/j.issn.1001-0890.2011.02.001

    CrossRef Google Scholar

    许洁, 乌效鸣, 朱永宜, 契霍特金V F, 许明标, 吴川, 郑文龙. 2015.抗240℃超高温水基钻井液室内研究[J].钻井液与完井液, 32(1):10-13. doi: 10.3969/j.issn.1001-5620.2015.01.003

    CrossRef Google Scholar

    许洁, 乌效鸣, 王稳石, 闫家, 张恒春, 曹龙龙. 2017.松科二井超高温钻井液技术[J].钻井液与完井液, 35(2):29-34.

    Google Scholar

    杨小华. 2012.国内超高温钻井液研究与应用进展[J].中外能源, 17(3):42-46.

    Google Scholar

    鄢捷年. 2001.钻井液工艺学[M].北京:石油工业出版社, 118-119.

    Google Scholar

    易灿, 闫振来, 赵怀珍. 2009.超深井水基钻井液高温高压流变性试验研究[J].石油钻探技术, 37(1):10-13. doi: 10.3969/j.issn.1001-0890.2009.01.003

    CrossRef Google Scholar

    赵金洲等. 2008.中国东部复杂超深井钻井实践——胜科1井钻井的重大突破[M].北京:中国石化出版社, 113-114.

    Google Scholar

    赵秀全, 李伟平, 王忠义. 2007.长深5井抗高温钻井液技术[J].石油钻探技术, 35(6):69-72. doi: 10.3969/j.issn.1001-0890.2007.06.020

    CrossRef Google Scholar

    郑宇轩, 单文军, 赵长亮, 蒋睿, 李艳宁. 2018.青海共和干热岩GR1井钻井工艺技术[J].地质与勘探, 54(5):1038-1045. doi: 10.3969/j.issn.0495-5331.2018.05.014

    CrossRef Google Scholar

    朱永宜, 王稳石, 乌效鸣, 张恒春, 许洁, 闫家, 曹龙龙, 冉恒谦, 张金昌. 2018.松科二井钻探工程的主要技术创新[J].中国地质, 1(2):187-201.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(5)

Article Metrics

Article views(3645) PDF downloads(727) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint