2019 Vol. 46, No. 4
Article Contents

WANG Gang, FANG Hui, QIU Gengen, HUANG Jimin. 2019. The deep electrical structure across Anqing-Guichi ore concentration area[J]. Geology in China, 46(4): 795-806. doi: 10.12029/gc20190410
Citation: WANG Gang, FANG Hui, QIU Gengen, HUANG Jimin. 2019. The deep electrical structure across Anqing-Guichi ore concentration area[J]. Geology in China, 46(4): 795-806. doi: 10.12029/gc20190410

The deep electrical structure across Anqing-Guichi ore concentration area

    Fund Project: National Natural Science Foundation (No. 41574068); National Key Research and Development Program (No. 2016YFC0600201), Geological Survey Project (No. 121201108000160913, DD201682, DD20190012, 12120114005801), Basic Scientific Research Project of Chinese Academy of Geological Sciences (No. AS2017J05)
More Information
  • Author Bio: WANG Gang, male, born in 1990, doctor, engages in research on tectonics and geophysical exploration; Email:wanggang01@igge.cn
  • The middle and lower reaches of the Yangtze River have experienced multiple stages of geological evolution and are rich in mineral resources. In this paper, a two-dimensional electrical structure model covering the Dabie orogenic belt and the Lower Yangtze block was constructed by inverting a long magnetotelluric profile passing through the Anqing-Guichi ore concentration area by sub-band and sub-segment inversion scheme. According to the obtained electrical structure, the lithospheric structure beneath the ore concentration area is significantly different from that of the adjacent areas. Both the crusts under Dabie orogenic belt and between Jiangnan uplift belt and Zhegan depression are characterized by high resistivity, while the lithospheric upper mantle between Lower Yangtze depression and Jiangnan uplift belt is electrically conductive with a deep conductor extending upward to the conductors in the upper crust. The metallogenic mechanism of Anqing-Guichi ore concentration area was mainly the Yanshanian intra-continental subduction and the early Cretaceous extension deformation. The thickening and sinking of the lower crust and the abundant fault system in the upper crust underneath the ore concentration area may have played an important role in mineralization.

  • 加载中
  • Bahr K. 1991. Geological noise in magnetotelluric data:A classification of distortion types[J]. Physics of the Earth and Planetary Interiors, 66(1):24-38.

    Google Scholar

    Cai Juntao, Chen Xiaobin. 2010. Refined techniques for data processing and two-dimensional inversion in magnetotelluric Ⅱ:Which data polarization mode should be used in 2D inversion[J]. Chinese Journal of Geophysics, 53(11):2703-2714 (in Chinese with English abstract).

    Google Scholar

    Chang Yinfo, Dong Shuwen, Huang Dezhi. 1996. On tectonics of "poly-basement with one cover" in Middle-Lower Yangtze Craton, China[J]. Volcanology and Mineral Resources, 17:1-15(in Chinese with English abstract).

    Google Scholar

    Charvet J. 2013. The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block:An overview[J]. Journal of Asian Earth Sciences, 74:198-209. doi: 10.1016/j.jseaes.2013.02.015

    CrossRef Google Scholar

    Chen Xiaobin, Zhao Guoze, Ma Xiao. 2008. Preliminary discussion on selecting rotation angle direction in 2-D MT inversion[J]. Oil Geophysical Prospecting, 43:113-118 (in Chinese with English abstract).

    Google Scholar

    Chen Xiangbin, Lü Qingtian, Yan Jiayong. 2012.3D electrical structure of porphyry copper deposit:A case study of Shaxi copper deposit[J]. Applied Geophysics, 9:270-278. doi: 10.1007/s11770-012-0337-1

    CrossRef Google Scholar

    Chu Y, Lin W. 2014. Phanerozoic polyorogenic deformation in southern Jiuling Massif, northern South China Block:Constraints from structural analysis and geochronology[J]. Journal of Asian Earth Sciences, 86:117-130. doi: 10.1016/j.jseaes.2013.05.019

    CrossRef Google Scholar

    Deng Jinfu, Mo Xuanxue. 1994. Lithosphere root/de-rooting and activation of the East China continent[J]. Geoscience, 8:349-356(in Chinese with English abstract).

    Google Scholar

    Faure M, Shu L S, Wang B, Charvet J, Monie P. 2009. Intracontinental subduction:A possible mechanism for the early palaeozoic Orogen of SE China[J]. Terra Nova, 21:360-368. doi: 10.1111/j.1365-3121.2009.00888.x

    CrossRef Google Scholar

    Groom R W, Bailey R C. 1989. Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion[J]. Journal of Geophysical Research:Solid Earth, 94(B2):1913-1925. doi: 10.1029/JB094iB02p01913

    CrossRef Google Scholar

    Guo Chunling, Chen Xiaobin. 2018. Refined processing and twodimensional inversion of magnetotelluric data(Ⅵ):Twodimensional magnetotelluric inversion based on the staggered model[J]. Chinese Journal of Geophysics, 61:2548-2559 (in Chinese with English abstract).

    Google Scholar

    Guo Lianghui, Gao Rui. 2018. Potential-field evidence for the tectonic boundaries of the central and western Jiangnan belt in South China[J]. Precambrian Research, 309:45-55. doi: 10.1016/j.precamres.2017.01.028

    CrossRef Google Scholar

    Hu Yingcai, Li Tonglin, Fan Cuisong. 2014. Experiment research of electromagnetic exploration method in Shujiadian copper deposit, Tongling, Anhui Province[J]. Acta Geologica Sinica, 4:612-619(in Chinese with English abstract).

    Google Scholar

    Jiang G M, Zhang G B, Zhao D P. 2015. Mantle dynamic and Cretaceous magmatism in East-central China:Insight from teleseismic tomograms[J]. Tectonophysics, 664:256-268. doi: 10.1016/j.tecto.2015.09.019

    CrossRef Google Scholar

    Lü Qingtian, Dong Shuwen, Shi Danian, Tang Jingtian, Jiang Guoming, Zhang Yongqian, Xu Tao. 2014. Lithosphere architecture and geodynamic model of middle and lower reaches of Yangtze Metallogenic Belt:A review from SinoProbe[J]. Acta Petrologica Sinica, 30:889-906 (in Chinese with English abstract).

    Google Scholar

    Lü Qingtian, Dong Shuwen, Tang Jingtian. 2015a. Multi-scale and integrated geophysical data revealing mineral systems and exploring for mineral deposits at depth:A synthesis from SinoProbe-03[J]. Chinese Journal of Geophysics, 58:4319-4343(in Chinese with English abstract).

    Google Scholar

    Lü Qingtian, Liu Zhendong, Dong Shuwen. 2015b. The nature of Yangtze River deep fault zone:Evidence from deep seismic data[J]. Chinese Journal of Geophysics, 58:4344-4359 (in Chinese with English abstract).

    Google Scholar

    Lü Qingtian, Shi Danian, Liu Zhendong. 2015. Crustal structure and geodynamic of the middle and lower reaches of Yangtze metallogenic belt and neighboring areas:Insights from deep seismic reflection profiling[J]. Journal of Applied Geophysics, 114:704-716.

    Google Scholar

    Lü Qingtian, Yan Jiayong, Shi Danian. 2013. Reflection seismic imaging of the Lujiang-Zongyang volcanic area:An insight into the crustal structure and geodynamics of an ore district[J]. Tectonophysics, 606:60-78. doi: 10.1016/j.tecto.2013.04.006

    CrossRef Google Scholar

    Li H, Song X, Lü Q T. 2018. Seismic Imaging of lithosphere structure and upper mantle deformation beneath East-Central China and their tectonic implications[J]. Journal of Geophysical Research:Solid Earth, 123:2856-2870. doi: 10.1002/2017JB014992

    CrossRef Google Scholar

    Li X H, Li W X, Li Z X. 2009. Amalgamation between the Yangtze and Cathaysia blocks in South China:Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174:117-128. doi: 10.1016/j.precamres.2009.07.004

    CrossRef Google Scholar

    Li Z, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model[J]. Geology, 35:179-182. doi: 10.1130/G23193A.1

    CrossRef Google Scholar

    Lin S F, Xing G F, Davis D W, Yin C Q, Wu M L, Jiang Y, Chen Z H. 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 46:319-322. doi: 10.1130/G39806.1

    CrossRef Google Scholar

    Ling M X, Wang F Y, Ding X. 2009. Cretaceous ridge subduction along the lower Yangtze river belt, Eastern China[J]. Econ. Geol., 104:303-321. doi: 10.2113/gsecongeo.104.2.303

    CrossRef Google Scholar

    McNeice G W, Jones A G. 2001. Multisite, multifrequency tensor decomposition of magnetotelluric data[J]. Geophysics, 66 (1):158-173. doi: 10.1190/1.1444891

    CrossRef Google Scholar

    Ouyang L B, Li H Y, Lü Q T. 2014. Crustal and uppermost mantle velocity structure and its relationship with the formation of ore districts in the Middle-Lower Yangtze River region[J]. Earth and Planetary Science Letters, 408:378-389. doi: 10.1016/j.epsl.2014.10.017

    CrossRef Google Scholar

    Qi Guang, Lü Qingtian, Yan Jiayong. 2014.3D Geological modeling of Luzong ore district based on priori information constraint[J]. Acta Geologica Sinica, 4:466-477 (in Chinese with English abstract).

    Google Scholar

    Qi Guang, Lü Qingtian, Yan Jiayong. 2012. Geologic constrained 3D gravity and magnetic modeling of Nihe deposit-A case study[J]. Chinese Journal of Geophysics, 12:4194-4206 (in Chinese with English abstract).

    Google Scholar

    Rodi W, Mackie R L. 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics, 66(1):174-187. doi: 10.1190/1.1444893

    CrossRef Google Scholar

    Shao Lusen, Liu Zhendong, Lü Qingtian. 2015. Deep fine structure of Guichi Ore concentrated area:The understanding of the integrated geophysical detection results[J]. Chinese Journal of Geophysics, 58:4490-4504 (in Chinese with English abstract).

    Google Scholar

    Shi D N, Lu Q T, Xu W Y. 2013. Crustal structure beneath the middlelower Yangtze metallogenic belt in East China:Constraints from passive source seismic experiment on the Mesozoic intracontinental mineralization[J]. Tectonophysics, 606:48-60. doi: 10.1016/j.tecto.2013.01.012

    CrossRef Google Scholar

    Shu L S. 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31:1035-1053.

    Google Scholar

    Shu L S, Charvet J. 1996. Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone:With HP metamorphism and ophiolitic melange (Jiangnan region, South China)[J]. Tectonophysics, 267:291-302. doi: 10.1016/S0040-1951(96)00104-7

    CrossRef Google Scholar

    Shu L S, Jahn B M, Charvet J. 2014. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia block (South China):Evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. Am. J. Sci., 314:154-186. doi: 10.2475/01.2014.05

    CrossRef Google Scholar

    Song M, Shu L, Santosh M. 2015. Late Early Paleozoic and Early Mesozoic intracontinental orogeny in the South China Craton:Geochronological and geochemical evidence[J]. Lithos, 232:360-374. doi: 10.1016/j.lithos.2015.06.019

    CrossRef Google Scholar

    Tang J T, Zhou C, Ren Z Y. 2014. Three dimensional magnetotelluric inversion and structural framework of Tongling ore district, Anhui[J]. Acta Geologica Sinica, 88:598-611. doi: 10.1111/1755-6724.12217

    CrossRef Google Scholar

    Tang J T, Zhou C, Wang X. 2013. Deep electrical structure and geological significance of Tongling ore district[J]. Tectonophysics, 606:78-96. doi: 10.1016/j.tecto.2013.05.039

    CrossRef Google Scholar

    Wang Guocan, Yang Weiran. 1998. Uplift evolution during MesozoicCenozoic of the Dabie Orogenic Belt:Evidence from the tectono chronology[J]. Earth Science, 5:27-33 (in Chinese with English abstract).

    Google Scholar

    Wang X L, Zhou J C, Griffin W L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:Dating the assembly of the Yangtze and Cathaysia blocks[J]. Precambrian Research, 159:117-131. doi: 10.1016/j.precamres.2007.06.005

    CrossRef Google Scholar

    Wang X L, Zhou J C, Qiu J S, Gao J F. 2004. Geochemistry of the Meso-Neoproterozoic basic-acid rocks from Hunan Province, South China:Implications for the evolution of the western Jiangnan orogen[J]. Precambrian Research, 135:79-103. doi: 10.1016/j.precamres.2004.07.006

    CrossRef Google Scholar

    Wu Shanshan, Jiang Mingming, He Yumei. 2018. NW-SE structural contrast of shear wave velocity and radial anisotropy beneath the Hefei-Jinhua seismic profile derived from ambient noise tomography[J]. Chinese Journal of Geophysics, 61:584-592 (in Chinese with English abstract).

    Google Scholar

    Xu Changhai, Zhou Zuyi, Ma Cangqian. 2001. Doming-extension of 140-85 Ma in the Dabie Orogenic Belt:Constraint from geochronology[J]. Science in China (Series D), 31:925-937 (in Chinese with English abstract).

    Google Scholar

    Xu Wenyi, Yang Zhusen, Meng Yifeng. 2004. Genetic model and dynamic migration of ore-forming fluids in Carboniferous exhalation-sedimentary massive sulfide deposits of Tongling district, Anhui Province[J]. Mineral Deposits, 23:353-364 (in Chinese with English abstract).

    Google Scholar

    Yan Jiayong, Lü Qingtian, Chen Xiangbin. 2014a. 3D lithologic mapping test based on 3D inversion of gravity and magnetic data:A case study in Lu-Zong ore concentration district, Anhui Province[J]. Acta Petrologica Sinica, 30:1041-1053 (in Chinese with English abstract).

    Google Scholar

    Yan Jiayong, Lü Qingtian, Wu Mingan. 2014b. Prospecting Indicator of Anhui Shaxi porphyry copper deposit based on regional gravity and magnetic 3D inversion[J]. Acta Geologica Sinica, 88(4):507-518 (in Chinese with English abstract).

    Google Scholar

    Yan Jiayong, Lü Qingtian, Wu Mingan. 2015. Identification and extraction of geological structure information based on multi-scale edge detection of gravity and magnetic fields:An example of the Tongling ore concentration area[J]. Chinese Journal of Geophysics, 58:4450-4464 (in Chinese with English abstract).

    Google Scholar

    Yao J, Shu L, Cawood P A, Cawood P A, Li J Y. 2016. Delineating and characterizing the boundary of the Cathaysia Block and the Jiangnan Orogenic Belt in South China[J]. Precambrian Research, 275:265-277. doi: 10.1016/j.precamres.2016.01.023

    CrossRef Google Scholar

    Zhang Guowei, Guo Anlin, Wang Yuejun. 2013. Tectonics of South China continent and its implications[J]. Science China:Earth Sciences, 56:1804-1828. doi: 10.1007/s11430-013-4679-1

    CrossRef Google Scholar

    Zhang Letian, Jin Sheng, Wen Wenbo, Ye Gaofeng, Duan Shuxin, Dong Hao, Zhang Fan, Xie Chengliang. 2012. Electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan plateau and the Sichuan basin[J]. Chinese Journal of Geophysics(in Chinese with English abstract), 55(12):4126-4137.

    Google Scholar

    Zhang Minghui, Xu Tao, Lü Qingtian. 2015.3D Moho depth beneath the Middle-Lower Yangtze metallogenic belt and its surrounding areas:Insight from the wide angle seismic data[J]. Chinese Journal of Geophysics, 58:4360-4372 (in Chinese with English abstract).

    Google Scholar

    Zhang Yueqiao, Xu Xianbing, Jia Dong. 2009. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related tectonic system in South China during the Early Mesozoic[J]. Earth Science Frontiers, 16:234-247 (in Chinese with English abstract).

    Google Scholar

    Zhao G C. 2016. Jiangnan Orogen in South China:developing from divergent double subduction[J]. Gondwana Research, 27:1173-1180.

    Google Scholar

    Zhao G C, Cawood P A. 2012. Precambrian geology of China[J]. Precambrian Research, 13-54.

    Google Scholar

    Zheng Y F, Zhang S B. 2007. Formation and evolution of Precambrian continental crust in South China[J]. Sci. Bull., 52:1-12.

    Google Scholar

    Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China:Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326:269-287. doi: 10.1016/S0040-1951(00)00120-7

    CrossRef Google Scholar

    蔡军涛, 陈小斌. 2010.大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择[J].地球物理学报53(11):2703-2714.

    Google Scholar

    常印佛, 董树文, 黄德志. 1996.论中-下扬子"一盖多底"格局与演化[J].火山地质与矿产, 17:1-15.

    Google Scholar

    陈小斌, 赵国泽, 马霄. 2008.关于MT二维反演中数据旋转方向的选择问题初探[J].石油地球物理勘探, 43:113-118. doi: 10.3321/j.issn:1000-7210.2008.01.019

    CrossRef Google Scholar

    邓晋福, 莫宣学. 1994.中国东部岩石圈根/去根作用与大陆"活化"——东亚型大陆动力学模式研究计划[J].现代地质, 3:349-356.

    Google Scholar

    郭春玲, 陈小斌. 2018.大地电磁资料精细处理和二维反演解释技术研究(六)——交错模型的大地电磁二维反演[J].地球物理学报, 61:2548-2559. doi: 10.6038/cjg2018K0244

    CrossRef Google Scholar

    胡英才, 李桐林, 范翠松. 2014.安徽铜陵舒家店铜矿的电磁法试验研究[J].地质学报, 88:612-619.

    Google Scholar

    吕庆田, 董树文, 史大年, 汤井田, 江国明, 张永谦, 徐涛. 2014.长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述[J].岩石学报, 30:889-906.

    Google Scholar

    吕庆田, 董树文, 汤井田. 2015a.多尺度综合地球物理探测:揭示成矿系统、助力深部找矿——长江中下游深部探测(SinoProbe-03)进展[J].地球物理学报, 58:4319-4343.

    Google Scholar

    吕庆田, 刘振东, 董树文. 2015b."长江深断裂带"的构造性质:深地震反射证据[J].地球物理学报, 58:4344-4359.

    Google Scholar

    祁光, 吕庆田, 严加永. 2014.基于先验信息约束的三维地质建模:以庐枞矿集区为例[J].地质学报, 88:466-477. doi: 10.3969/j.issn.1006-0995.2014.03.036

    CrossRef Google Scholar

    祁光, 吕庆田, 严加永. 2012.先验地质信息约束下的三维重磁反演建模研究——以安徽泥河铁矿为例[J].地球物理学报, 55:4194-4260. doi: 10.6038/j.issn.0001-5733.2012.12.031

    CrossRef Google Scholar

    邵陆森, 刘振东, 吕庆田. 2015.安徽贵池矿集区深部精细结构——来自综合地球物理探测结果的认识[J].地球物理学报, 58:4490-4504. doi: 10.6038/cjg20151213

    CrossRef Google Scholar

    王国灿, 杨巍然. 1998.大别造山带中新生代隆升作用的时空格局——构造年代学证据[J].地球科学, 23:461-467.

    Google Scholar

    吴珊珊, 姜明明, 何玉梅. 2018.利用背景噪声成像研究合肥-金华剖面地壳速度结构及径向各向异性的东西差异[J].地球物理学报, 61:584-592. doi: 10.6038/cjg2018L0261

    CrossRef Google Scholar

    许长海, 周祖翼, 马昌前. 2001.大别造山带140-85Ma热隆伸展作用-年代学约束[J].中国科学(D辑), 31:925-937.

    Google Scholar

    徐文艺, 杨竹森, 蒙义峰. 2004.安徽铜陵矿集区块状硫化物矿床的成因模型与成矿流体动力学迁移[J].矿床地质, 23:353-364. doi: 10.3969/j.issn.0258-7106.2004.03.009

    CrossRef Google Scholar

    严加永, 吕庆田, 陈向斌. 2014a.基于重磁反演的三维岩性填图试验——以安徽庐枞矿集区为例[J].岩石学报, 30:1041-1053.

    Google Scholar

    严加永, 吕庆田, 吴明安. 2014b.安徽沙溪铜矿区域重磁三维反演与找矿启示[J].地质学报, 88(4):507-518.

    Google Scholar

    严加永, 吕庆田, 陈明春. 2015.基于重磁场多尺度边缘检测的地质构造信息识别与提取——以铜陵矿集区为例[J].地球物理学报, 58:4450-4464. doi: 10.6038/cjg20151210

    CrossRef Google Scholar

    张国伟, 郭安林, 王岳军. 2013.中国华南大陆构造与问题[J].中国科学:地球科学, 43:1553-1582.

    Google Scholar

    张乐天, 金胜, 魏文博, 叶高峰, 段书新, 董浩, 张帆, 谢成良. 2012.青藏高原东缘及四川盆地的壳幔导电性结构研究[J].地球物理学报, 55(12):4126-4137. doi: 10.6038/j.issn.0001-5733.2012.12.025

    CrossRef Google Scholar

    张明辉, 徐涛, 吕庆田. 2015.长江中下游成矿带及邻区三维Moho面结构:来自人工源宽角地震资料的约束[J].地球物理学报, 58:4360-4372. doi: 10.6038/cjg20151203

    CrossRef Google Scholar

    张岳桥, 徐先兵, 贾东. 2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J].地学前缘, 16:234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(2815) PDF downloads(827) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint