2019 Vol. 46, No. 2
Article Contents

LI Xianfang, ZHANG Yujie, TIAN Shihong. 2019. Application of lithium isotopes in genetic study of pegmatite deposits[J]. Geology in China, 46(2): 419-429. doi: 10.12029/gc20190218
Citation: LI Xianfang, ZHANG Yujie, TIAN Shihong. 2019. Application of lithium isotopes in genetic study of pegmatite deposits[J]. Geology in China, 46(2): 419-429. doi: 10.12029/gc20190218

Application of lithium isotopes in genetic study of pegmatite deposits

    Fund Project: Supported by the project of the National Key Research and Development Program"Deep Resources Exploration and Exploitation""Lithium Energy Metal Mineral Base Deep Demonstration Technology Demonstration" Project (No. 2017YFC0602700) "Isotope Geochemistry and Supporting Deep Exploration Technology Research" Project (No. 2017YFC0602705);"Comprehensive intergration of Jiajika lithium basement in Western Sichuan"(No. DD20160055)
More Information
  • Author Bio: LI Xianfang, female, born in 1992, master candidate, majors in geochemistry; E-mail: kyxianfangli@163
  • Rare metal minerals are important for the development of modern industry and science and technology. The origin and mineralization of pegmatite deposits, which serve as the main sources of rare metal minerals, need to be studied thoroughly. The common disputes include the crystallization differentiation of granites, partial melting of the crust, and magma liquid immiscibility. Studies have shown that lithium isotopes underwent negligible fractionation during crustal anatexis and therefore provide strong evidence for the magmatic source of granites and pegmatites. Mainly from the three aspects of the origin of granite pegmatite, lithium isotope fractionation mechanism, and lithium isotope application in pegmatite deposit, this paper systematically summarizes some research progress made in recent years both in China and abroad. Domestic and foreign geologists have elaborated the Li isotopic composition of the granite pegmatite according to the lithium isotope fractionation mechanism. It is believed that the genesis of the pegmatite deposit may be mainly the crystallization of granite or the partial melting of the crust. However, the study of the origin of in pegmatite deposits is not mature enough and hence more work needs to be done.

  • 加载中
  • Barnes E M, Weis D, Groat L A. 2012. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada[J]. Lithos, 132/133:21-36. doi: 10.1016/j.lithos.2011.11.014

    CrossRef Google Scholar

    Brady J B, Cherniak D J. 2010. Diffusion in mine rals: an overview of published experimental diffusion data[C]//Zhang Y, Cherniak D J (eds.). Diffusion in Minerals and Melts. Rev. Mineral. Geochem., 72: 899-920.

    Google Scholar

    Candela P A, Piccoli P M. 1995. Model ore-metal partitioning from melts into vapor and vapor/brine mixtures[C]//Thompson J F H (eds.). Granites, Fluids, and Ore Deposits, 23: 101-128.

    Google Scholar

    Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited[J]. Can. Mineral., 43:2005-2026. doi: 10.2113/gscanmin.43.6.2005

    CrossRef Google Scholar

    Chan L H, Hein J R. 2007. Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean[J]. Deep-Sea Research Ⅱ, 54:1147-1162. doi: 10.1016/j.dsr2.2007.04.003

    CrossRef Google Scholar

    Coogan L A, Kasemann S A, Chakraborty S. 2005. Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry[J]. Earth and Planetary Science Letters 241:415-424.

    Google Scholar

    Deveaud S, Millot R, Villaros A. 2015. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas[J]. Chem. Geol., 411:97-111. doi: 10.1016/j.chemgeo.2015.06.029

    CrossRef Google Scholar

    Dill H G. 2015. Pegmatites and Aplites:Their genetic and applied ore geology[J]. Ore Geol. Rev. 69:417-561. doi: 10.1016/j.oregeorev.2015.02.022

    CrossRef Google Scholar

    Flesch G D, Anderson A J, Svec H J. 1973. A secondary isotopic standard for lithium determ inations[J]. International Journal of Mass Spectrometry and Ion Processes, 12:265-272. doi: 10.1016/0020-7381(73)80043-9

    CrossRef Google Scholar

    Fu Xiaofang, Hou Liwei, Liang Bin, Huang Tao, Hao Xuefeng, Ruan Linsen, Yuan Linping, Tang Yi, Pan Meng, Zou Fuge, Xiao Ruiqing, Yang Rong. 2017. Metallogenic Model and Threedimensional Prospecting Model for JiaJiKa Granite Pegmatite Type Lithium Deposit[M]. Beijing:Science Press (in Chinese).

    Google Scholar

    Gordienko V V, Gordienko Vl Vl, Sergeev A S, Levskii L K, Lokhov K I, Kapitonov I N, Sergeev S A. 2007. First data in favor of the crystallization model of lithium isotope fractionation in the pegmatitic process.[J] Doklady Akad Nauk, 413:676-67.

    Google Scholar

    Jahn S, Wunder B. 2009. Lithium speciation in aqueous fluids at high P and T studied by ab initio molecular dynamics and consequences for Li-isotope fractionation between minerals and fluids[J]. Geochim. Cosmochim. Acta, 73:5428-5434. doi: 10.1016/j.gca.2009.06.017

    CrossRef Google Scholar

    Jahns R H, Burnham C W.1969. Experimental studies of pegmatite genesis:A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology, 64:843-64. doi: 10.2113/gsecongeo.64.8.843

    CrossRef Google Scholar

    Krienitz M S., Garbe-Schönberg C D, Romer R L, Meixner A, Haase K M, Stroncik N A. 2012. Lithium isotope variations in Ocean Island Basalts-implications for the development of mantle heterogeneity[J]. Petrol., 53 (11):2333-2347. doi: 10.1093/petrology/egs052

    CrossRef Google Scholar

    Kowalski P M, Jahn S. 2011. Prediction of equilibrium Li isotope fractionation between minerals and aqueous solutions at high P and T:An efficient ab initio approach[J]. Geochim. Cosmochim. Acta, 75:6112-6123. doi: 10.1016/j.gca.2011.07.039

    CrossRef Google Scholar

    Li Jiankang, Wang Denghong, Zhang Dehui, Fu Xiaofang. 2007.Meneralization Mechanism and Continental Deogynamics of Pegmatite Type Deposits in Western Sichuan, China[M]. Beijing:Atomic Energy Press(in Chinese).

    Google Scholar

    Li Jie, Huang Xiaolong, Wei Gangjian, Ying Liu, Ma Jinlong, Han Li, He Pengli.2018. Lithium isotope fractonation during magmatic differentiation and hydrothermal process in rare-metal granites[J].Geochim Cosmochim Acta, 240:64-79. doi: 10.1016/j.gca.2018.08.021

    CrossRef Google Scholar

    Linnen R L, Van Litchervelde M, Černý P, 2012. Granitic pegmatites as sources of strategic metals[J]. Elements, 8:275-280. doi: 10.2113/gselements.8.4.275

    CrossRef Google Scholar

    Liu Lijun, Wang Denghong, Hou Kejun, Tian Shihong, ZhaoYue, Fu Xiaofang, Yuan Linping, Hao Xuefeng. 2017. Application of lithium isotope to Jiajika new No.3 pegmatite lithium polymetallic vein in Sichuan[J]. Earth Science Frontiers, 24(5):167-171(in Chinese with English abstract).

    Google Scholar

    Liu Lijun, Wang Denghong, Liu Xifang, Li Jiankang, Dai Hongzhang, Yan Weidong. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 44(2):263-278(in Chinese with English abstract).

    Google Scholar

    Liu X M, Rudnick R L, Hier-Majumder S, Sirbescu M L C. 2010.Processes controlling lithium isotopic distribution in contact aureoles:A case study of the Florence County pegmatites, Wisconsin. Geochem. Geophys[J].Geosyst., 11(8):1525-2027.

    Google Scholar

    London D. 1990 Internal differentiation of rare-element pegmatites:A synthesis of recent research[J].Geological Society of America, Special Paper, 246:35-50. doi: 10.1130/SPE246

    CrossRef Google Scholar

    London D. 1992 The application of experimental petrology to the genesis and crystallization of granitic pegmatites[J]. Canadian Mineralogist, 30:499-540.

    Google Scholar

    London D. 1996 Granitic pegmatites[C]//Transactions of the Royal Society Edinburgh: Earth Sciences, 87, 305-19.

    Google Scholar

    London D. 2008. Pegmatites[M]. Mineralogical Association of Canada, Québec, Canada:1-347.

    Google Scholar

    London D. 2009. The origin of primary textures in granitic pegmatites[J]. Can. Mineral., 47:697-724. doi: 10.3749/canmin.47.4.697

    CrossRef Google Scholar

    Lu Yongxiang.2014.Review and prospect of clean, renewable energy utilization[J]. Science & Technology Review, 32(28/29):15-26(in Chinese with English abstract).

    Google Scholar

    Magna T, Janousek V, Kohút M, Oberli F, Wiechert U. 2010.Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites[J]. Chem Geol. 274:94-107. doi: 10.1016/j.chemgeo.2010.03.020

    CrossRef Google Scholar

    Magna T, Novák M, Janoušek V. 2013. Lithium isotopesin giant pegmatite bodies-implications for their sources and evolution[C]//Geological Association of Canada and Mineralogical Association of Canadaannual meeting, Winnipeg, Canada[J]. Abstract volume: 135.

    Google Scholar

    Maloney J S, Nabelek P I, Sirbescu M L C, Halama R. 2008. Lithium and its isotopes in tourmaline as indicators of the crystallization process in the San Diego County pegmatites, California, USA[J]. Eur. J. Mineral, 20:905-916. doi: 10.1127/0935-1221/2008/0020-1823

    CrossRef Google Scholar

    Martins T, Roda-Robles E, Lima A, De Parseval P. 2012.Geochemistry and evolution of micas in the Barroso-Alvão pegmatite field, northern Portugal[J]. Can. Mineral., 50:1117-1119. doi: 10.3749/canmin.50.4.1117

    CrossRef Google Scholar

    Meredith K, Moriguti T, Tomascak P, Hollins S, Nakamura E. 2013.The lithium, boron and strontium isotopic systematics of groundwaters from an arid aquifer system:implications for recharge and weathering processes[J]. Geochimica et Cosmochimica Acta, 112:20-31. doi: 10.1016/j.gca.2013.02.022

    CrossRef Google Scholar

    Michils E, Bivre P D. 1983. Absolute isotopic composition and the atomic weight of a natural sample of lithium[J]. International Journal of Mass Spectrometry and Ion Processes, 49:264-274.

    Google Scholar

    Mungall J E. 2002. Empirical models relating viscosity and tracer diffusion in magmatic silicate melts[J]. Geochim. Cosmochim. Acta, 66(1):125-143. doi: 10.1016/S0016-7037(01)00736-0

    CrossRef Google Scholar

    Penniston-Dorland S C, Liu X M, Rudnick R L. 2017. Lithium Isotope Geochemistry. In Non-traditional stable isotopes (eds. F.Z. Teng, J. M. Watkins and N. Dauphas)[J]. Rev. Miner. Geochem., 82: 165-217.

    Google Scholar

    Richter F M, Liang Y, Davis A M. 1999. Isotope fractionation by diffusion in molten oxides[J]. Geochim Cosmochim Acta 63:2853-2861. doi: 10.1016/S0016-7037(99)00164-7

    CrossRef Google Scholar

    Richter F M, Davis A M, Depaolo D J, Watson E B. 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite[J]. Geochim. Cosmochim. Acta., 67:3905-3923. doi: 10.1016/S0016-7037(03)00174-1

    CrossRef Google Scholar

    Robb L J. 2005. Introduction to Ore-forming Processes[M]. Blackwell Publishing company, 1-368.

    Google Scholar

    Romer R L, Meixner A, Förster H J.2014. Lithium and boron in lateorogenic granites. Isotopic fingerprints for the source of crustal melts Geochim[J]. Cosmochim Acta, 131:98-114. doi: 10.1016/j.gca.2014.01.018

    CrossRef Google Scholar

    Rudnick R L, Tomasack P B, Njo H B. 2004. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina[J]. Chemical G eology, 212:45-57.

    Google Scholar

    Ryan J G, Langmuir C H. 1987. The systematics of lithium abundances in young volcanic rocks[J]. Geochimica et Cosmochimica Acta, 51:1727-1741. doi: 10.1016/0016-7037(87)90351-6

    CrossRef Google Scholar

    Scholz F, Hensen C, Reitz A, Romer R L, Liebetrau V, Meixner A, Weise S M, Haeckel M. 2009. Isotopic evidence(87Sr/86Sr, 7Li) for alteration of the oceanic crust at deep-rooted mud volcanoes in the Gulf of Cadiz, NE Atlantic Ocean[J].Geochimica et Cosmochimica Acta, 73:5444-5459. doi: 10.1016/j.gca.2009.06.004

    CrossRef Google Scholar

    Seitz H M, Brey G P, Lahaye Y, Durali S, Weyer S. 2004. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes[J]. Chemical Geology, 212(1/2):163-177.

    Google Scholar

    Simmons W B, Foorf E E, Falster A U, King V T. 1995. Evidence for an anatectic origin of granitic pegmatites, western Maine, USA[J]. Geol. Soc. Am. 411.

    Google Scholar

    Simmons W B, Webber K L. 2008. Pegmatite genesis:State of the art[J]. Eur. J. Mineral., 20:421-438. doi: 10.1127/0935-1221/2008/0020-1833

    CrossRef Google Scholar

    Sirbescu M L C, Nabelek P I. 2003. Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota-Evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 67(13):2443-2465. doi: 10.1016/S0016-7037(02)01408-4

    CrossRef Google Scholar

    Soltay L G, Henderson G S. 2005. Structural differences between lithiumsilicate and lithium germanate glasses by Raman spectroscopy[J]. Physics and Chemistry of Glasses, 46(4):381-384.

    Google Scholar

    Su Aina, Tian Shihong, Hou Zengqian, Li Jiankang, Li Zhenzhen, Hou Kejun, Li Yanhe, Hu Wenjie, Yang Zhusen. 2011. Lithium isotope and its application to Jiajika pegmatite type lithium pokymetallic deposit in Sichuan[J]. Geoscience, 25(2):236-242 (in Chinese with English abstract).

    Google Scholar

    Tang Yanjie, Zhang Hongfu, Ying Jifeng. 2009.Discussion on fractionation mechanism of lithium isotopes[J]. Earth Science——Journal of China University of Geoscienees, 34(1):43-55(in Chinese with English abstract). doi: 10.3799/dqkx.2009.006

    CrossRef Google Scholar

    Tang Yanjie, Zhang Hongfu, Ying Jifeng. 2011.Sr-Nd-Li Isotopic Constraints on the Origin of EM1 End-member[J]. Bulletin of Mineralogy, Petrology and Geochemistry. 30:11-17(in Chinese with English abstract).

    Google Scholar

    Teng F Z, McDonough W F, Rudnick R L, Walker R J, Sirbescu M C. 2006a. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota[J]. Am. Mineral., 91:1488-1498. doi: 10.2138/am.2006.2083

    CrossRef Google Scholar

    Teng F Z, McDonough W F, Rudnick R L, Walker R J.2006b. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth Planet. Sci. Lett., 243:701-710. doi: 10.1016/j.epsl.2006.01.036

    CrossRef Google Scholar

    Teng F Z, Li W Y, Rudnick R L, Gardner L R. 2010. Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth Planet. Sci. Lett., 300:63-71. doi: 10.1016/j.epsl.2010.09.036

    CrossRef Google Scholar

    Teng F Z, James M. Watkins, Nicolas Dauphas. 2017. Non-traditional Stable Isotopes[M]. Rev. Mineral Geochem., 82:1-885.

    Google Scholar

    Tian S H, Hu W J, Hou Z Q, Mo X X, Yang Z S, Zhao Y, Hou K J, Zhu D C, Su A N, Zhang Z Q.2012. Enriched mantle source and petrogenesis of Miocene Sailipu ultrapotassic rocks in western Lhasa block, Tibetan Plateau:Lithium isotopic constraints[J]. Mineral Deposits, 31(4):791-812 (in Chinese with English abstract).

    Google Scholar

    Tian S H, Hou Z Q, Su A N, Qiu L, Mo X X, Hou K J, Zhao Y, Hu W J, Yang Z S. 2015. The anomalous lithium isotopic signature of Himalayan collisional zone carbonatites in western Sichuan, SW China:enriched mantle source and petrogenesis[J]. Geochim. Cosmochim. Acta, 159:42-60. doi: 10.1016/j.gca.2015.03.016

    CrossRef Google Scholar

    Tipper E T, Calmels D, Gaillardet J, Louvat P, Capmas F, Dubacq B. 2012. Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation during weathering[J]. Earth and Planetary Science Letters, 333-334:35-45. doi: 10.1016/j.epsl.2012.04.023

    CrossRef Google Scholar

    Tomascak P B, Lynton S J, Walker R J, Krogstad E J.1995. Li isotope geochemistry of the Tin Mountain pegmatite, Black Hills, South Dakota[C]//Brown M, Piccoli P M, (eds.)., The origin of granites and related rocks[J]. U.S. Geological Survey Circular, 1129: 151-152.

    Google Scholar

    Tomascak P B, Tera F, Helz R T, Walker R J. 1999. The absence of lithium isotope fractionation during basalt differentiation:new measurements by multicollector sector ICP-MS. Geochim[J]. Cosmochim. Acta, 63:907-910. doi: 10.1016/S0016-7037(98)00318-4

    CrossRef Google Scholar

    Tomascak P B, Magna T S, Dohmen R. 2016. Advances in Lithium Isotope Geochemistry[M]. Springer International Publishing. 1-195.

    Google Scholar

    Veksler I V. 2004. Liquid immiscibility and its role at the magmatichydrothermal transition:A summary of experimental studies[J]. Chemical Geology, 210(14):7-31.

    Google Scholar

    Vils F, Tonarini S, Kalt A, Seitz H M. 2009. Boron, lithium and strontium isotopes as tracers of seawater-serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209[J]. Earth and Planetary Science Letters, 286:414-425. doi: 10.1016/j.epsl.2009.07.005

    CrossRef Google Scholar

    Vocke R D, Beary E S, Walker R J. 1990. High precision lithium isotope ratio measurement of samples from a variety of natural sources[C]//Abstract in VM Goldschmidt conference program, p89

    Google Scholar

    Walker R J, Hanson G N, Papike J J, O' Neil J R, Laul J C. 1986.Internal evolution of the Tin Mountain pegmatite, Black Hills, South Dakota American Mineralogist, 71(3/4): 440-459.

    Google Scholar

    Wang Denghong, Liu Lijun, Liu Xinxing, Zhao Zhi, He Hanhan. 2016.Main types and research trends of energy metallic resources in China[J]. Journal of Guilin University of Technology, 36 (1):21-28(in Chinese with English abstract).

    Google Scholar

    Wang Ganchang. 1998. The prospect of main energy source in 21 century[J]. Chinese Journal of Nuclear Science and Engineering, 18(2):97-108 (in Chinese with English abstract).

    Google Scholar

    Wang Qilain, Liu Congqiang, Zhao Zzhiqi, Chetelat B, Ding Hu. 2008.Lithium isotopic composition of the dissolved and suspended loads of the Yangtze River, China[J]. Advances in Earth Sciences, 23(9):952-959(in Chinese with English abstract).

    Google Scholar

    Wang Ruijiang, Wang Denghong, Li Jiankang, Sun Yan, Li Dexian, Guo Chunli, Zhao Zhi, Yu Yang, Huang Fan, Wang Chenghui, Liu Jiajun, He Hanhan, Zhang Guodong, Hua Wenbin, Zhou Yuanyuan, Li Xiaomei, Liu Lijun, Cai Xiao, Zhao Ting, Song Yang. 2015. The Exploitation and Utilization of Rare-metals, Rare-earth and RareScattered Metals Mineral Resources[M]. Beijing:Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    Wang Xiulain, Li Jinli, Zhang Mingjie. 2001. Energetic metal of the 21th century:the use of metal lithium in nuclear fusion[J]. Gold Journal, 3(4):249-252 (in Chinese with English abstract).

    Google Scholar

    Wenger M, Armbruster T. 1991.Crystal-chemistry of lithium-oxygen coordination and bonding[J]. Eur. J. Mineral., 3:387-399. doi: 10.1127/ejm/3/2/0387

    CrossRef Google Scholar

    Xiao Yingkai, Qi Haiping, Wang Yunhui, Liu Weiguo. 1993.The investigation for isotopic compositions of lithium in first exploitation area in Chaerhan[J].Journal of Salt Lake Science, 1(3); 52-56 (in Chinese with English abstract).

    Google Scholar

    Xiao Yingkai, Qi Haiping, Wang Yunhui, Jin Lin. 1994. Isotopic composition of lithium in brine, sediments and source water from DaQaidam lake of Qinhai Province[J]. Geochemistry, 23(4):329-338(in Chinese with English abstract).

    Google Scholar

    You Qingzhi. 2013. The development and outlook of lithium industry[J]. Xinjiang Nonferrous Metals, 36 (A02):147-149 (in Chinese with English abstract).

    Google Scholar

    Zhao J, Gaskell P H, Cluckie M M, Soper A K. 1998.A neutron diffraction, isotopic substitution study of the structure of Li2O·2SiO2 glass[J]. Journal of Non-Crystalline Solids, 234:721-727.

    Google Scholar

    Zurevinski Shannon, Hollings Pete, Zhou Taofa, and Wang Shiwei. 2017. Exploring the links between granitic magmas and mineralization:Key concepts and critical features[J]. Acta Petrologica Sinica, 33(5):1541-1553 (in Chinese with English abstract).

    Google Scholar

    Zhang Hongfu, Tang Yanjie, Zhao Xinmiao, Yang Yueheng. 2007. Significance and prospective of non-traditional isotopic systems in mantle geochemistry[J]. Earth Science Frontiers, 14(2):37-57 (in Chinese with English abstract).

    Google Scholar

    付小方, 候立玮, 梁斌, 黄韬, 郝雪峰, 阮林森, 袁蔺平, 唐屹, 潘蒙, 邹付戈, 肖瑞卿, 杨荣等.2017.甲基卡式花岗伟晶岩型锂矿床成矿模式与三维勘查找矿模型[M].北京:科学出版社.

    Google Scholar

    李建康, 王登红, 张德会, 付小方. 2007.川西伟晶岩型矿床的形成机制及大陆动力学背景[M].北京:原子能出版社.

    Google Scholar

    路甬祥. 2014.清洁、可再生能源利用的回顾与展望[J].科技导报, 32(28/29):15-26

    Google Scholar

    王登红, 刘丽君, 刘新星, 赵芝, 何晗晗. 2016.我国能源金属矿产的主要类型及发展趋势探讨[J].桂林理工大学学报, 36 (1):21-28. doi: 10.3969/j.issn.1674-9057.2016.01.004

    CrossRef Google Scholar

    王淦昌. 1998.21世纪主要能源展望[J].核科学与工程, 18(2):97-108.

    Google Scholar

    王瑞江, 王登红, 李建康, 孙艳, 李德先, 郭春丽, 赵芝, 于扬, 黄凡, 王成辉, 刘家军, 何晗晗, 郑国栋, 黄文斌, 周园园, 李晓妹, 刘丽君, 蔡肖, 赵汀, 宋扬. 2015.稀有稀土稀散矿产资源及其开发利用[M].北京:地质出版社.

    Google Scholar

    王秀莲, 李金丽, 张明杰. 2001.21世纪的能源金属——金属锂在核聚变反应中的应用[J].黄金学报, 3(4):249-253.

    Google Scholar

    游清治. 2013.锂工业的发展与展望[J].新疆有色金属, 42(2):147-149.

    Google Scholar

    刘丽君, 王登红, 侯可军.田世洪, 赵悦, 付小方, 袁蔺平, 郝雪峰.2017.锂同位素在四川甲基卡新三号矿脉研究中的应用[J].地学前缘, 24(5):167-171.

    Google Scholar

    刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东.2017.国内锂矿主要类型、分布特点及勘查开发现状[J].中国地质, 44(2):263-278.

    Google Scholar

    汤艳杰, 张宏福, 英基丰.2009.锂同位素分馏机制讨论[J].中国地质大学学报, 34(1):43-55. doi: 10.3321/j.issn:1000-2383.2009.01.006

    CrossRef Google Scholar

    汤艳杰, 张宏福, 英基丰. 2011.地幔中EM1端员成因的锂同位素制约[J].矿物岩石地球化学通报, 30:11-17. doi: 10.3969/j.issn.1007-2802.2011.01.002

    CrossRef Google Scholar

    张宏福, 汤艳杰, 赵新苗, 杨岳衡. 2007.非传统同位素体系在地幔地球化学研究中的重要性及其前景[J].地学前缘, 14(2):37-57. doi: 10.3321/j.issn:1005-2321.2007.02.004

    CrossRef Google Scholar

    田世洪, 胡文洁, 侯增谦, 莫宣学, 杨竹森, 赵悦, 侯可军, 朱弟成, 苏嫒娜, 张兆卿. 2012.拉萨地块西段中新世赛利普超钾质火山岩富集地幔源区和岩石成因:Li同位素制约[J].矿床地质, 31(4):791-812. doi: 10.3969/j.issn.0258-7106.2012.04.010

    CrossRef Google Scholar

    汪齐连, 刘丛强, 赵志琦, Chetelat B, 丁虎. 2008.长江流域河水和悬浮物的锂同位素地球化学研究[J].地球科学进展, 23(9):952-959. doi: 10.3321/j.issn:1001-8166.2008.09.006

    CrossRef Google Scholar

    肖应凯, 祁海平, 王蕴慧, 金琳. 1994.青海柴达木湖卤水、沉积物和水源中锂同位素组成[J].地球化学, 23(4):329-338. doi: 10.3321/j.issn:0379-1726.1994.04.003

    CrossRef Google Scholar

    肖应凯, 祁海平, 王蕴慧, 刘卫国. 1993.察尔汗首采区卤水中锂同位素组成盐湖研究[J].盐湖研究, 1(3):52-56.

    Google Scholar

    苏嫒娜, 田世洪, 侯增谦, 李建康, 李真真, 侯可军, 李延河, 胡文杰, 杨竹森. 2011锂同位素及其在四川甲基卡伟晶岩型锂多金属矿床研究中的应用[J].现代地质, 25(2):236-242. doi: 10.3969/j.issn.1000-8527.2011.02.006

    CrossRef Google Scholar

    Zurevinski Shannon, Hollings Pete, 周涛发, 王世伟.2017.花岗质岩浆和矿化之间的关系:重要概念和关键特征[J].岩石学报, 33(5):1541-1553.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(4383) PDF downloads(1372) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint