2019 Vol. 46, No. 2
Article Contents

SU Chen, CHENG Zhongshuang, ZHENG Zhaoxian, CHEN Zongyu. 2019. Groundwater age and renewability in the north of Muling-Xingkai plain[J]. Geology in China, 46(2): 328-336. doi: 10.12029/gc20190209
Citation: SU Chen, CHENG Zhongshuang, ZHENG Zhaoxian, CHEN Zongyu. 2019. Groundwater age and renewability in the north of Muling-Xingkai plain[J]. Geology in China, 46(2): 328-336. doi: 10.12029/gc20190209

Groundwater age and renewability in the north of Muling-Xingkai plain

    Fund Project: Supported by China Geological Survey Project (No. DD20160311), National Natural Science Foundation of China (No.41702283)
More Information
  • Author Bio: SU Chen, male, born in 1985, associate researcher, engages in groundwater resource assessment; E-mail: sc.1219@163.com
  • Corresponding author: CHENG Zhongshuang, male, born in 1989, assistant researcher, engages in the study of isotope hydrology; E-mail: zshuangcheng@hotmail.com 
  • The age structure of aquifer is an important basis for understanding the sustainability of groundwater exploitation. Increasing groundwater pumping with deteriorate groundwater environment in the Muling-Xingkai Plain (MXP) has restricted to some extent the sustainable development of the region.31 groups of CFCs and 60 groups of 3H samples were collected to delineate groundwater flow systems. Estimated groundwater age ranges from 21 years to more than 70 years in the northern part of the MXP.Younger water occurs in northwest piedmont and hilly areas as well as Muling River, while older water occurs in the central part of the plain and the Wusuli River. This reflects long flow paths associated with regional flow. Although groundwater is mainly recharged by rain and surface water, ground water younger than 10 years was not found for the unsaturated zone consisting of silty clay. The variations of 3H and CFCs combined NO3- with wells depth indicate that the aquifer sensitivity of groundwater system above 60m is low and it is high below 100m. Wells for drinking water should exceed 100m.

  • 加载中
  • Chen Zhongyu, Qi Jixiang, Zhang Zhaoji.2010.Application of Isotope Hydrogeology Method in Typical Basins of North China[M].Beijing:Science Press (in Chinese).

    Google Scholar

    Clark I D, Fritz P.1997.Environmental Isotopes in Hydrogeology[M].Boca Raton:Springer-Verlag, .

    Google Scholar

    Cui Xiaoshun, Zheng Zhaoxian, Cheng Zhongshuang, Su Chen, Li Zhuang, Wu Yulong, Chen Zongyu.2018.Hydrochemical distribution characteristic and formation mechanism of shallow groundwater in the north of Muling-Xingkai Plain[J].South-toNorth Water Transfers and Water Science & Technology, 16(4):146-153 (in Chinese with English abstract).

    Google Scholar

    Doney S C, Glover D M, Jenkins W J.1992.A model function of the global bomb tritium distribution in precipitation, 1960-1986[J].Journal of Geophysical Research Oceans, 97(C4):5481-5492. doi: 10.1029/92JC00015

    CrossRef Google Scholar

    Fouli Y, Cade-Menun B J, Cutforth H W.2013.Freeze-thaw cycles and soil water content effects on infiltration rate of three Saskatchewan soils[J].Canadian Journal of Soil Science, 93(4):485-496. doi: 10.4141/cjss2012-060

    CrossRef Google Scholar

    International Atomic Energy Agency (IAEA).2006.Use of Chlorofluorocarbons in Hydrology:A Guidebook[M].Vienna:International Atomic Energy Agency.

    Google Scholar

    Klaus H.2006.Environmental Tracers, Groundwater Age and Vulnerability. Groundwater Resources in Buried Valleys[M]//Reinhard Kirsch et al(ed.).Hannover: Leibniz Institute for Applied Geosciences, 141-148.

    Google Scholar

    Kendy, Eloise, Yongqiang Zhang, Changming Liu, Jinxia Wang, and Tammo Steenhuis.2004.Groundwater Recharge from Irrigated Cropland in the North China Plain:Case Study of Luancheng County, Hebei Province, 1949-2000[J].Hydrological Processes, 18, (12):2289-302. doi: 10.1002/(ISSN)1099-1085

    CrossRef Google Scholar

    Li Jing, Li Fadong, Song Shuai, Zhang, Yan, Cai Wenjing, Zhang Fang.2012.Worldwide application and prospective of CFCs groundwater age-dating method[J].Ecology & Environmental Sciences, 21(8):1503-1508(in Chinese with Englishi abstract).

    Google Scholar

    Liu Fangfang. Ecological Quality Evaluation of Xingkai Lake Wetland Nature Reserve[D].Haerbin: Northeast Forestry University (in Chinese with English abstract).

    Google Scholar

    Liu Futian, Su Xiaosi, Hou Guangcai, Lin Xueyu, Yi Shuping, Dong Weihong.2007.Application of CFCs methods in dating shallow groundwater in the ordos cretaceous groundwater basin[J].Journal of Jilin University, 37(2):298-302 (in Chinese with English abstract).

    Google Scholar

    Liu Jun, Chen Zongyu, Wei Wen, Zhang yilong, Li Zhenghong, Liu Fuliang, Guo Hualiang.2014.Using chlorofluorocarbons (CFCs) and tritium (3H) to estimate groundwater age and flow velocity in Hohhot Basin, China[J].Hydrological Processes, 28(3):1372-1382. doi: 10.1002/hyp.v28.3

    CrossRef Google Scholar

    Liu Jun.2016.Study of Age Structure and Patterns of Groundwater Recharge and Groundwater Flow in Hohhot Basin[D].Bejing: Chinese Academy of Geological Sciences (in Chinese with English abstract).

    Google Scholar

    Jeong S, Kim J, Lee K.2008.Effect of clay content on well-graded sands due to infiltration[J].Engineering Geology, 102(1-2):74-81. doi: 10.1016/j.enggeo.2008.08.002

    CrossRef Google Scholar

    Oster H, Sonntag C, Münnich K O.1996.Groundwater age dating with chlorofluorocarbons[J].Water Resources Research, 32(32):2989-3002.

    Google Scholar

    Qin Dajun.2005.CFC dating method and its application in groundwater[J].Groundwater, 27(6):435-437(in Chinese).

    Google Scholar

    Santoni S, Huneau F, Garel E, Vergnaud-Ayraud V, Labasque T, Aquilina L.2016.Residence time, mineralization processes and groundwater origin within a carbonate coastal aquifer with a thick unsaturated zone[J].Journal of Hydrology, 540:50-63. doi: 10.1016/j.jhydrol.2016.06.001

    CrossRef Google Scholar

    Su Chen, Cheng Zhongshuang, Wei Wen, Chen Zongyu.2018.Assessing groundwater availability and the response of the groundwater system to intensive exploitation in the North China Plain by analysis of long-term isotopic tracer data[J].Hydrogeology Journal, 26(5):1401-1415. doi: 10.1007/s10040-018-1761-y

    CrossRef Google Scholar

    Sun Fangqiang, Yin Lihe, Wang Xiaoyong, Ma Hongyun, Zhang Jun, Dong Jiaqiu, He Shuaijun.2017.Determination of vertical infiltration recharge of groundwater in the thick unsaturated zone of Sangong River Basin, Xinjiang[J].Geology in China, 44 (5):913-923(in Chinese with English abstract).

    Google Scholar

    Tu Leyi.2015.Analysis of Krypton Gas Dissolved in Groundwater for Radiokrypton Dating[D].Hefei: University of Science and Technology of China (in Chinese with English abstract).

    Google Scholar

    von Rohden, Christoph, Andreas Kreuzer, Chen Zongyu, Rolf Kipfer, Werner Aeschbach-Hertig.2010.Characterizing the Recharge Regime of the Strongly Exploited Aquifers of the North China Plain by Environmental Tracers[J].Water Resources Research, 46(5):1-14.

    Google Scholar

    Wang, Fengsheng.1998.The regional recovery model of tritium concentration for meteoric water in jilin Province[J].Jilin Geology, 3:75-81 (in Chinese with English abstract).

    Google Scholar

    Wang Jiyang, Chen Jiansheng, Chen Baohong, Tong Haibin, Tan Zhongcheng, Sun Yingying.2015.Review and prospect of isotope hydrology[J].Journal of Hohai University, 43(5):406-413(in Chinese with English abstract).

    Google Scholar

    Wen Dongguang.2002.Groundwater resources attribute based on environmental isotopes[J].Earth Science, 27(2):141-147(in Chinese with English abstract).

    Google Scholar

    Yurtsever Y, Mook W G.2001.Environmental Isotopes in the Hydrological Cycle. Principles and Applications[M].Vienna, 27-32.

    Google Scholar

    Zhang Bing., Song Xianfang, Zhang, Yinghua, Han Dongmei, Yang, Lihu, Tang, Changyuan.2014.Estimation of groundwater renewal rate by tritium and chlorofluorocarbons in Sanjiang plain[J].Journal of Natural Resources, 29(11):1859-1868(in Chinese with English abstract).

    Google Scholar

    Zuber A.1986.Mathematical models for the interpretation of environmental radioisotopes in groundwater systems[C]//Handbook of Environmental Isotope Geochemistry, 2: 1-59.

    Google Scholar

    陈宗宇, 齐继祥, 张兆吉.2010.北方典型盆地同位素水文地质学方法应用[M].北京:科学出版社.

    Google Scholar

    崔小顺, 郑昭贤, 程中双, 苏晨, 李壮, 吴宇龙, 陈宗宇.2018.穆兴平原北区浅层地下水水化学分布特征及其形成机理[J].南水北调与水利科技, 16(4):146-153.

    Google Scholar

    李静, 李发东, 宋帅, 张妍, 蔡文静, 张芳.2012.CFCs地下水年龄示踪技术的原理、应用及展望[J].生态环境学报, 21(8):1503-1508.

    Google Scholar

    刘芳芳.2009.兴凯湖湿地自然保护区生态质量评价[D].哈尔滨: 东北林业大学.

    Google Scholar

    刘君.2016.呼和浩特盆地地下水年龄结构与补给流动模式研究[D].北京: 中国地质科学院.

    Google Scholar

    柳富田, 苏小四, 侯光才, 林学钰, 易树平, 董维红.2007.CFCs法在鄂尔多斯白垩系地下水盆地浅层地下水年龄研究中的应用[J].吉林大学学报(地球科学版), 37(2):298-302.

    Google Scholar

    秦大军.2005.地下水CFC定年方法及应用[J].地下水, 27(6):435-437. doi: 10.3969/j.issn.1004-1184.2005.06.009

    CrossRef Google Scholar

    孙芳强, 尹立河, 王晓勇, 马洪云, 张俊, 董佳秋, 贺帅军.2017.新疆三工河流域厚层包气带区地下水垂向补给量的厘定[J].中国地质, 44(5):913-923.

    Google Scholar

    涂乐义.2015.地下水溶解氪气分析用于放射性氪同位素测年[D].合肥: 中国科学技术大学.

    Google Scholar

    汪集旸, 陈建生, 陆宝宏, 童海滨, 谭忠成, 孙营营.2015.同位素水文学的若干回顾与展望[J].河海大学学报(自然科学版), 43(5):406-413.

    Google Scholar

    王凤生.1998.吉林省大气降水氚浓度恢复的区域模型探讨[J].吉林地质, 3:75-81.

    Google Scholar

    文冬光.2002.用环境同位素论区域地下水资源属性[J].地球科学, 27(2):141-147. doi: 10.3321/j.issn:1000-2383.2002.02.003

    CrossRef Google Scholar

    张兵, 宋献方, 张应华, 韩冬梅, 杨丽虎, 唐常源.2014.基于氚和CFCs的三江平原浅层地下水更新能力估算[J].自然资源学报, 29(11):1859-1868. doi: 10.11849/zrzyxb.2014.11.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(2730) PDF downloads(744) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint