Citation: | CAO Jianwen, XIA Riyuan, FANG Shangwu, ZHAO Liangjie, WANG Zhe, WANG Ruofan, YI Rui. 2019. Model and mechanism of "water exploration by cross layer" for high sulfate area in slope region of Yunnan-Guizhou Plateau[J]. Geology in China, 46(2): 235-243. doi: 10.12029/gc20190202 |
Groundwater is an important drinking water source in Southwest China. However, there exists a large area of sulfate exceeding standard in groundwater in the northern part of Zhenning County in Central Guizhou Province, which leads to the problem of water shortage in local area. The following conclusions were obtained by methods of lithofacies palaeogeographic analysis, hydrochemical analysis, D, 18O, 34S isotope test, rock sample test, core observation and other technical methods:The main source of water supply in the study area is meteoric water; the concentration of sulfate (SO42-) in groundwater is in the range of 30-1100 mg/L, with an average value of 221.78 mg/L, showing the characteristics of highly enriched S042-; the concentration of S042- in different types of groundwater exhibits the law of well > rising spring > falling spring > karst pool > underground river > bedrock fissure spring > epikarst spring; the source of sulfate root in epikarst spring is mainly meteoric water, and the source of sulfate root in high sulfate samples such as J469, J585, ZK3-2 and C010 is mainly dissolved in gypsum. On such a basis and in combination with drilling data, the authors detected the distribution of gypsum rock layer and the characteristics of aquifer structure, and adopted the lower sulfate aquifers to obtain qualified drinking water source by establishing the "cross layer water finding" model, which can effectively solve the problem of water shortage in the study area.
Cao Jianhua, Jiang Zhongcheng, YuanDaoxian, Xia Riyuan, Zhang Cheng. 2017. The progress in the study of the karst dynamic system and global changes in the past 30 years[J]. Geology in China, 44(5):874-900(in Chinese with English abstract). |
CLARKI, FRITZP. 1997. Environmental Isotopesin Hydrogeology[M]. NewYork:Lewis Publishers. |
Dong Jianzhong, Liu Xingjuan. 2001. Study on the correlation between drinking water quality and causes of death in Shaxian County[J]. Journal of Environment and Health, 18(6):375-376 (in Chinese). |
Regional Geological Survey Brigade of Guizhou Geological and Mineral Bureau. 1992. Guizhou Atlas of the palaeogeography of Guiyang: Guizhou Science and Technology Publishing House[M](in Chinese). |
Guo Zhaobing, Dong Qiongyuan, Chen Tian, Chen Tianlei, Bao Chunxiao, Zhou Fei. 2010. Identification of environmental pollutants using sulfur stable isotope[J]. Journal of Nanjing University of Information Science and Technology:Natural Science Edition, 2(5):426-430 (in Chinese with English abstract). |
Han G L, Liu C Q.2004. Water geochemistry controlled by carbonate dissolution:a study of the river waters draining karstdominatedterrain, Guizhou Province, China[J].Chemical Geology, 204(1/2):1-21. |
Hanshaw B B, Back W. 1979. Major geochemical processes in the evolution of carbonate-quifer systems[J]. Journal of Hydrology, 43(1/4):287-312. |
Hosono T, Nakano T, Igeta A, Tayasu I, Tanaka T, Yachi S. 2007.Impact of fertilizer on a small watershed of Lake Biwa:Use of sulfur and strontium isotopes in environmental diagnosis[J]. Science of the Total Enviroment, 384(1/3):342-354. |
Hu Mingcheng. 2012. Environmental hazards by sulfate and treatment method of waste water containing sulfate[J]. Journal of Chengdu University(Natural Science Edition), 31(2):181-184 (in Chinese with English abstract). |
Jiang Yingkui, Liu Congqiang, Tao Faxiang. 2007. Sulfur isotope composition characters of Wujiang river water in Guizhou province[J]. Advances in Water Science, 18(4):558-565 (in Chinese with English abstract). |
Krouse H R, Crinenko V A. 1991. Stable Isotopic:Natural and Anthropogenic Sulphur in the Environment[M]. Chichester:John Wiley, 1-440. |
Li Xiaodong, Liu Congqiang, Harue M, Li Siliang, Liu Xiaodong. 2010. The use of environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic effects on karst groundwater quality:A case study of the Shuicheng Basin, SW China[J]. Applited Geochemistry, 25(12):1924-1936. doi: 10.1016/j.apgeochem.2010.10.008 |
Li Xiaoqian, Liu Yunde, Zhou Aiguo, Zhang Bin. 2014. Sulfur and oxygen isotope compositions of dissolved sulfate in the Yangtze riverduring high water period and its sulfate source tracing[J]. Earth Science-Journal of China University of Geosciences, 39(11):1547-1554 (in Chinese with English abstract). |
Li Yun, Jiang Yuehua, Zhou Xun, Jian Junyuan, Zhou Quanping, Li Yunfeng. 2014. Characteristics of Hydraulic Connection and Sulfate Contamination within the Groundwater System of Yangzhou-Taizhou-Jingjiang Area[J]. Acta Geoscientica Sinica, 35(2):183-190 (in Chinese with English abstract). |
Liu Congqiang, Lang Yunchao, Satake H, Wu Jiahong, Li Siliang. 2008. Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground eater of Guiyang, SW China:Combined δ37Cl and δ34S approach[J]. Environmental Science & Technology, 42(15):5421-5427. |
Macpherson G L. 1996. Hydrogeology of thin limestones:the Konza Prairie long-term ecological research site, Northeastern Kansas[J]. Journal of Hydrology, 186(1-4):191-228. doi: 10.1016/S0022-1694(96)03029-6 |
Montoroi J P, Grünberger O, Nasri S. 2002. Groundwater geochemistry of a small reservoir catchment in Central Tunisia[J]. Applied Geochemistry, 17(8):1047-1060. doi: 10.1016/S0883-2927(02)00076-8 |
Niu Xinsheng, Liu Xifang, Chen Xiwen. 2014. Hydrochemical characteristics and origin for salt springs water in Dogai Coring area of north Qiangtang basin, Tibet[J]. Acta Geologica Sinica, 88(6):1003-1010. |
Ren Kun, Pan Xiaodong, Lan Ganjiang, Jiao Youjun, Zeng Jie, Meng Xiaojun, Pang Yuan. 2016. Sulfate concentrations and source identification in different water bodies of the Chadianqiao underground river basin in Central Guizhou[J]. Acta Geologica Sinica, 90(8):1922-1932 (in Chinese with English abstract). |
Wang Mingzhang. 2012. Considerations about the hydrogeology exploration works in Guizhou Province[J]. Guizhou Geology, 29(2):81-85 (in Chinese with English abstract). |
Xiao Huanyun, Liu Congqiang. 2002. Sources of nitrogen and sulfur in wet deposition at Guiyang, southwest China[J]. Atmospheric Environment, 36(33):5121-5130. doi: 10.1016/S1352-2310(02)00649-0 |
Yang Pingheng, Lu Bingqing, He Qiufang, Chen Xuebin. 2014.Hydrogeochemical characteristics of typical karst groundwater system in Chongqing[J]. Environmental Science, 35(4):1290-1296 (in Chinese with English abstract). |
Yang Yuncheng, Shen Zhaoli, Wen Dongguang, Hou Guangcai, Zhao Zhenhong, Wang Dong. 2008. Hydrochemical characteristics and sources of sulfatein groundwater of the Ordos Cretaceous Groundwater Basin[J]. Acta Geoscientica Snica, 29(5):553-562(in Chinese with English abstract). |
Zhang Yongshuang, Sun Lu, Yin Xiulan, Meng Hui. 2017. Progress and prospect of research on environmental geology og China:A review[J]. Geology in China, 44(5):901-912 (in Chinese with English abstract). |
Zhao Jinfeng, Xia Keqin, Shi Yuchuan, Sun Jinyu.2004. Isotope component characteristics of Geleshan Tunnal'Chongqin[J]. The Chinese Journal of Geological Hazard and Control, 15(2):94-97(in Chinese with English abstract). |
曹建华, 蒋忠诚, 袁道先, 夏日元, 章程. 2017.岩溶动力系统与全球变化研究进展[J].中国地质, 44(5):874-900. |
贵州省地矿局.贵州省地下水勘查规划[R]. 2009. |
胡明成. 2012.硫酸盐的环境危害及含硫酸盐废水处理技术[J].成都大学学报(自然科学版), 31(2):181-184. doi: 10.3969/j.issn.1004-5422.2012.02.023 |
李小倩, 刘运德, 周爱国, 张彬. 2014.长江干流丰水期河水硫酸盐同位素组成特征及其来源解析[J].地球科学:中国地质大学学报, 39 (11):1547-1554. |
李云, 姜月华, 周迅, 贾军元, 周权平, 李云峰. 2014.扬-泰-靖地区地下水系统水力联系与硫酸盐污染特征[J].地球学报, 35(2):183-190. |
董建忠, 刘杏娟. 2001.饮用水水质与居民死因的相关性研究[J].环境与健康杂志, 18(6):375 -376. doi: 10.3969/j.issn.1001-5914.2001.06.023 |
贵州省地质矿产局区域地质调查大队. 1992.贵州岩相古地理图集[M].贵阳:贵州科技出版社. |
郭照冰, 董琼元, 陈天, 陈天蕾, 包春晓, 周飞. 2010.硫稳定同位素对环境污染物的示踪[J].南京工程信息大学学报(自然科学版), 2(5):426-430. |
蒋颖魁, 刘丛强, 陶发祥. 2007.贵州乌江水系河水硫同位素组成研究[J].水科学进展, 18(4):558-565. doi: 10.3321/j.issn:1001-6791.2007.04.013 |
任坤, 潘晓东, 兰干江, 焦友军, 曾洁, 孟小军, 庞园. 2016.黔中茶店桥地下河流域不同水体硫酸盐浓度特征及来源识别[J].地质学报, 90(8):1922-1932. doi: 10.3969/j.issn.0001-5717.2016.08.020 |
王明章. 2012.贵州省水文地质工作思考[J].贵州地质, 29(2):81-85. doi: 10.3969/j.issn.1000-5943.2012.02.003 |
杨平恒, 卢丙清, 贺秋芳, 陈雪彬. 2014.重庆典型岩溶地下水系统水文地球化学特征研究[J].环境科学, 35(4):1290-1296. |
杨郧城, 沈照理, 文冬光, 侯光才, 赵振宏, 王冬. 2008.鄂尔多斯白垩系地下水盆地硫酸盐的水文地球化学特征及来源[J].地球学报, 29(5):553-562. doi: 10.3321/j.issn:1006-3021.2008.05.003 |
张永双, 孙璐, 殷秀兰, 孟晖. 2017.中国环境地质研究主要进展与展望[J].中国地质, 44(5):901-912. |
赵金凤, 夏克勤, 石豫川, 孙晋玉. 2004.重庆歌乐山隧址区地下水同位素组成特征及意义[J].中国地质灾害与防治学报, 15(2):94-97. doi: 10.3969/j.issn.1003-8035.2004.02.020 |
Hydrogeological map and location of sampling points in the study area
Concentration characteristics of SO42- in different types of groundwater
Relationship between the concentration of SO42- and the electrical conductivity
Relationship between δDv-SMOW and δ18Ov-SMOWin different types of groundwater
Relationship between δ34SSO4 and 1/[SO42-] in different
ZK3 borehole histogram and location of sample collection
Schematic diagram of water exploration by cross layer