2018 Vol. 45, No. 6
Article Contents

ZHANG Senqi, YAN Weide, LI Dunpeng, JIA Xiaofeng, ZHANG Shengsheng, LI Shengtao, FU Lei, WU Haidong, ZENG Zhaofa, LI Zhiwei, MU Jianqiang, CHENG Zhengpu, HU Lisha. 2018. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Geology in China, 45(6): 1087-1102. doi: 10.12029/gc20180601
Citation: ZHANG Senqi, YAN Weide, LI Dunpeng, JIA Xiaofeng, ZHANG Shengsheng, LI Shengtao, FU Lei, WU Haidong, ZENG Zhaofa, LI Zhiwei, MU Jianqiang, CHENG Zhengpu, HU Lisha. 2018. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Geology in China, 45(6): 1087-1102. doi: 10.12029/gc20180601

Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province

    Fund Project: Supported by China Geological Survey Program (No. DD20160192, DD20179033, DD20179621)
More Information
  • Author Bio: ZHANG Senqi, male, born in 1962, master, professor, mainly engages in the study of geothermal geology, hydrogeology, and environmental geology survey and research; E-mail: senqizhang@126.com
  • Corresponding author: FU Lei, male, born in 1986, master, engineer, majors in the study of geothermal geology, hydrogeology, and environmental geology survey and research; E-mail:pengyou0808@163.com 
  • Based on regional geology, geothermal geology and integrated geophysical exploration results, the GR1 hot dry rock exploration well was completed in the central part of Qiabuqia Town in the Gonghe basin. The GR1 well is the highest temperature hot-dry rock exploration well in China, which has laid an important foundation for China's first EGS demonstration project. The temperature measurement results show that the temperature at the depth of 2500 m is 150℃, entering into the hot dry rock section. The temperature of the bottom hole at the depth of 3705 m is 236℃. The average geothermal gradient of 2500-3705 m is 71.4℃/km, which is higher than that of the other 3 hot dry rock exploration wells. At 2800-3705 m of GR1 well the geothermal gradient is higher than 80℃/km. The exploration results show that the depth of the hot dry rock is 2104.31-2500 m, which is oval-shaped in the east-west direction, with an area of 246.90 km2. The evaluation results show that the total theoretical resources of the Qiabuqia hot dry rock is 1638.16EJ in the depth of 3-5 km, equivalent to 55.909 billion tons of standard coal.

  • 加载中
  • Barbier E. 2002. Geothermal energy technology and current status:an overview[J]. Renewable & Sustainable Energy Reviews, 6 (1):3-65.

    Google Scholar

    Brown D. 1995. The US hot dry rock program-20 years of experience in reservoir testing[C]//Proceedings of World Geothermal Congress: 2607-2611.

    Google Scholar

    Chamorro C R, García-cuesta J L, Mondéjar M E, Pérez-Madrazo, A. 2014. Enhanced geothermal systems in Europe:An estimation and comparison of the technical and sustainable potentials[J]. Energy, 65(2):250-263.

    Google Scholar

    Chelemanski, Zhang Yi, Chen Ming. 1982. Practical Geothermal Science[M]. Beijing:Geological Publishing House (in Chinese).

    Google Scholar

    Feng Yimin, Cao Xuanduo, Zhang Erpeng, Hu Yunxu, Pan Xiaoping, Yang Junlu, Jia Qunzi, Li Wenming. 2003. Tectonic evolution framework and nature[J]. Northwest Geology, 36(1):1-10(in Chinese with English abstract).

    Google Scholar

    GB-T-11615-2010. 2010. Geothermal Resources Geological Exploration Standard[S].

    Google Scholar

    Goes S, Govers R, Vacher P. 2000. Shallow mantle temperatures under Europe from P and S wave tomography[J]. Journal of Geophysical Research Solid Earth, 105 (B5):11153-11169. doi: 10.1029/1999JB900300

    CrossRef Google Scholar

    Haimson B C. 1997. Borehole breakouts and core disking as tools for estimating in situ stress in deep holes[C]//International Symposium on Rock Stress-RS Kumamoto 97: 35-42.

    Google Scholar

    He Zhiliang, Feng Jianyun, Zhang Ying, Li Pengwei. 2017. A tentative discussion on an evaluation system of geothermal unit ranking and classification in China[J]. Earth Science Frontiers, 24(3):168-179.

    Google Scholar

    Jiang Hongcai, Zhou Ruiliang. 1994. Distribution of geothermal water in structure system of Qinghai-Xizang(Tibet) plateau and its prospecting[J]. Bulletin of the 562 Comprehensive Geological Brigade, Chinese Acadmy of Geological Sciences, (11/12):243-259 (in Chinese with English abstract).

    Google Scholar

    Jiang Lin, Ji Jianqing, Xu Qinqin. 2013. Geologic analysis on the prospects of the enhanced geothermal system(EGS)in the Bohai Bay Basin[J]. Geology and Exploration, 49(1):167-178(in Chinese with English abstract).

    Google Scholar

    Li Shengshuang, Sun Weidong, Zhang Guowei, Chen Jiayi, Yang Yongcheng. 1996. Geochronology and geochemistry of the Heigouxia metamorphic volcanic rock in the Minqing tectonic Belt:Evidence from the Paleozoic ocean basin and its closing era[J]. Science China Earth Sciences, 26(3):223-230(in Chinese).

    Google Scholar

    Luo Biji, Zhang Hongfei, Xiao Zunqi. 2012. Petrogenesis and tectonic implications of the Early Indosinian Meiwu Pluton in West Qinling, central China[J]. Earth Science Frontiers, 19(3):199-213 (in Chinese with English abstract).

    Google Scholar

    Li Y, Schmitt D R. 1998. Drilling-induced core fractures and in situ stress[J]. Journal of Geophysical Research Solid Earth, 103(B3):5225-5239. doi: 10.1029/97JB02333

    CrossRef Google Scholar

    Mackenzie G D, Thybo H, Maguire P K H. 2005. Crustal velocity structure across the Main Ethiopian Rift:results from twodimensional wide-angle seismic modelling[J]. Geophysical Journal of the Royal Astronomical Society, 162(3):994. doi: 10.1111/gji.2005.162.issue-3

    CrossRef Google Scholar

    Matsuki K, Kaga N, Yokoyama T, Tsuda N. 2004. Determination of three dimensional in situ stress from core discing based on analysis of principal tensile stress[J]. International Journal of Rock Mechanics & Mining Sciences, 41(7):1167-1190.

    Google Scholar

    Panel DOE. 2006. The future of geothermal energy:Impact of enhanced geothermal systems on the United States in the 21st Century[J]. Geothermics, 17(5):881.

    Google Scholar

    Polsky Y, Capuano L J, Finger J, Huh M, Knudsen S, Mansure A J C, Raymond D, Swanson R. 2008. Enhanced Geothermal Systems (EGS)well construction technology evaluation report[J]. Physical Review D, 17(10):2529-2551.

    Google Scholar

    Priestley K, Debayle E, Mckenzie D, Pilidou S. 2006. Upper mantle structure of eastern Asia from multimode surface waveform tomography[J]. Journal of Geophysical Research Solid Earth, 111 (B10).

    Google Scholar

    Rybach L. 2010."The Future of Geothermal Energy" and its challenges[C]//Proceedings of World Geothermal Congress, 2010: 25-29.

    Google Scholar

    Song Bowen, Xu Yadong, Liang Yinping, Jiang Shangsong, Luo Mansheng, Ji Junliang, Han Fang, Wei Yi, Xu Zenglian, Jiang Gaolei. 2014. Evolution of Cenozoic sedimentary basins in Western China[J]. Earth Science——Journal of China University of Geosciences, 39(8):1035-1051 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.093

    CrossRef Google Scholar

    Stiegeler S E. 2008.A Dictionary of Earth Sciences[M]. Rowman & Allanheld.

    Google Scholar

    Simmons S, Kirby S, Jones C. 2016. The geology, geochemistry and geohydrology of the FORGE Deep Well Site, Milford, Utah[C]//41st Workshop on Geothermal Reservior Engineering, 2016: 1-10.

    Google Scholar

    Wang Chenghu. 2014. Brief review and outlook of main estimate and measurement methods for in-situ stresses in rock mass[J]. Geological Review, 60(5):971-995(in Chinese with English abstract).

    Google Scholar

    Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijuan, Zhao Ping, Zhu Chuanqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 30(32):25-31 (in Chinese with English abstract).

    Google Scholar

    Wang Changgui, Lv Yousheng. 2004. Gonghe Basin:A new and worth-researching basin[J]. Xinjiang Petroleum Geology, 25(5):471-473 (in Chinese with English abstract).

    Google Scholar

    Xu Tianfu, Yuan Yilong, Jiang Zhenjiao, Hou Zhaoyun, Feng Bo. 2016. Hot dry rock and enhanced geothermal engineering:International experience and China prospect[J]. Journal of Jilin University(Earth Science Edition), 46(4):1139-1152(in Chinese with English abstract).

    Google Scholar

    Xu J F, Castillo P R, Li X H, Yu X Y, Zhang B R, Han Y W. 2002. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China:implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean[J]. Earth & Planetary Science Letters, 198(3):323-337.

    Google Scholar

    Xu Shuying, Xu Defu, Shi Shengren. 1984. A disscussion on the devolopment of landforms and evolution of environments in the Gonghe Basin[J]. Journal of Lanzhou University(Natural Science), 20(1):146-157 (in Chinese with English abstract).

    Google Scholar

    Yang Jingsui, Shirendeng, Wucailai, Wang Xibin, Robinson P T. 2009. Dur'ngoi ophiolitein East Kunlun, Northeast Tibetan Plateau:Evidence for Paleo-Tethyan Suturein Northwest China[J]. Journal of Earth Science, 20(2):303-331. doi: 10.1007/s12583-009-0027-y

    CrossRef Google Scholar

    Yuan Daoyang, Zhang Peizhen, Liu Xiaolong, Liu Baichi, Zheng Wenjun, He Wengui. 2004. The tectonic activity and deformation features during the Late Quaternary of Elashan Mountain active fault zone in Qinghai Province and its implication for the deformation of the northeastern margins of the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 11(4):393-402(in Chinese with English abstract).

    Google Scholar

    Yang lirong, Yue Leping, Wang Hongliang, Zhang Rui, Guo Huaijun, Zhu Xiaohui, Zhang Yunxiang, Gong Hujun. 2016. Quaternary stratigraphic realm and sedimentary sequence of the Qilian Mountain and adjacent areas[J]. Geology in China, 43(3):1041-1054(in Chinese with English abstract).

    Google Scholar

    Yang Lizhong, Liu Jinhui, Sun Zhanxue, Wang Andong, Wan Jianjun, Zhou Yi. 2016. Study of the characteristics of radioactive heat production rate and hot dry rock resources potential in Zhangzhou City[J]. Modern Mining, 563(3):123-127, 133(in Chinese with English abstract).

    Google Scholar

    Zhang Henglei, Hu Xiangyun, Liu Tianyou. 2012. Fast inversion of magnetic source boundary and top depth via second order derivative[J]. Chinese Journal of Geophysics, 55(11):3839-3847 (in Chinese with English abstract).

    Google Scholar

    Zhang Fawang, Wang Guiling, Hou Xinwei Li Jianhua, Li Yujing. 2000. An Analysis of the formation of geothermal resources and the effects of groundwater circulation on the wall rock temperature field-taking the Pingdingshan Mining Field as an example[J]. Acta Geoscientia Sinica, 21(2):142-146(in Chinese with English ahstract).

    Google Scholar

    Zhao Ping, Wang Jiyang, Wang Ji, an, Luo Dinggui. 1995. Characteristics of heat production distribution in SE China[J]. Acta Petrologica Sinica, 11 (3):292-305 (in Chinese with English abstract).

    Google Scholar

    Zhang Senqi, Jia Xiaofeng, Zhang Yang, Li Shengtao, Li Zhiwei, Tian Puyuan, Ming Yuanyuan, Zhang Chao. 2017. Volcanic magma chamber survey and geothermal geological condition analysis for hot dry rock at the Weishan Volcano in Wudalianchi Region, Heilongjiang Province[J]. Acta Geologica Sinica, 91(7):1506-1521 (in Chinese with English abstract).

    Google Scholar

    Zhang Guowei, Guo Anlin, Yao Anping. 2004. Western QinlingSongpan continental tectonic node in China's continental tectonics[J]. Earth Science Frontiers, 11(3):23-32(in Chinese with English abstract).

    Google Scholar

    Zhang Xueting, Yang Shengde, Yang Zhanjun. 2007. The Plate Tectonics of Qinghai Province-A Guide to the Geotectonic Map of Qinghai Province[M]. Beijing:Geological Publishing House(in Chinese).

    Google Scholar

    冯益民, 曹宣铎, 张二朋, 胡云绪, 潘晓萍, 杨军录, 贾群子, 李文明. 2003.西秦岭造山带的演化、构造格局和性质[J].西北地质, 36(1):1-10. doi: 10.3969/j.issn.1009-6248.2003.01.001

    CrossRef Google Scholar

    何治亮, 冯建赟, 张英, 李朋威. 2017.试论中国地热单元分级分类评价体系[J].地学前缘, 24 (3):168-179.

    Google Scholar

    GB-T-11615-2010. 2010.地热资源地质勘查规范[S].

    Google Scholar

    姜鸿才, 周瑞良. 1994.青藏高原构造体系控制下的地热水分布及找热方向[J].中国地质科学院562综合大队集刊, (11/12):243-259.

    Google Scholar

    蒋林, 季建清, 徐芹芹. 2013.渤海湾盆地应用增强型地热系统(EGS)的地质分析[J].地质与勘探, 49 (1):167-178.

    Google Scholar

    骆必继, 张宏飞, 肖尊奇. 2012.西秦岭印支早期美武岩体的岩石成因及其构造意义[J].地学前缘, 19 (3):199-213.

    Google Scholar

    李曙光, 孙卫东, 张国伟, 陈家义, 杨永成. 1996.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学-古生代洋盆及其闭合时代的证据[J].中国科学(地球科学), 26 (3):223-230.

    Google Scholar

    切列缅斯基, 赵羿, 陈明. 1982.实用地热学[M].北京:地质出版社.

    Google Scholar

    宋博文, 徐亚东, 梁银平, 江尚松, 骆满生, 季军良, 韩芳, 韦一, 徐增连, 姜高磊. 2014.中国西部新生代沉积盆地演化[J].地球科学——中国地质大学学报, 39(8):1035-1051.

    Google Scholar

    汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 饶松, 唐晓音, 孔彦龙, 罗璐, 李卫卫. 2012.中国大陆干热岩地热资源潜力评估[J].科技导报, 30 (32):25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    CrossRef Google Scholar

    王昌桂, 吕友生. 2004.共和盆地——一个值得研究的新盆地[J].新疆石油地质, 25 (5):471-473. doi: 10.3969/j.issn.1001-3873.2004.05.003

    CrossRef Google Scholar

    王成虎. 2014.地应力主要测试和估算方法回顾与展望[J].地质论评, 60 (5):971-996.

    Google Scholar

    许天福, 袁益龙, 姜振蛟, 侯兆云, 冯波. 2016.干热岩资源和增强型地热工程:国际经验和我国展望[J].吉林大学学报(地球科学版), 46 (4):1139-1152.

    Google Scholar

    徐叔鹰, 徐德馥, 石生仁. 1984.共和盆地地貌发育与环境演化探讨[J].兰州大学学报(自科版), 20 (1):150-161, 188.

    Google Scholar

    袁道阳, 张培震, 刘小龙, 刘百篪, 郑文俊, 何文贵. 2004.青海鄂拉山断裂带晚第四纪构造活动及其所反映的青藏高原东北缘的变形机制[J].地学前缘, 11 (4):393-402. doi: 10.3321/j.issn:1005-2321.2004.04.006

    CrossRef Google Scholar

    杨利荣, 岳乐平, 王洪亮, 张睿, 郭怀军, 朱小辉, 张云翔, 弓虎军. 2016.祁连山及邻区第四纪地层区划与沉积序列[J].中国地质, 43(3):1041-1054.

    Google Scholar

    杨立中, 刘金辉, 孙占学, 王安东, 万建军, 周毅. 2016.漳州岩体放射性生热率特征及干热岩资源潜力[J].现代矿业, 563 (3):123-127. doi: 10.3969/j.issn.1674-6082.2016.03.045

    CrossRef Google Scholar

    张森琦, 贾小丰, 张杨, 李胜涛, 李志伟, 田蒲源, 明圆圆, 张超. 2017.黑龙江省五大连池尾山地区火山岩浆囊探测与干热岩地热地质条件分析[J].地质学报, 91 (7):1506-1521. doi: 10.3969/j.issn.0001-5717.2017.07.007

    CrossRef Google Scholar

    张国伟, 郭安林, 姚安平. 2004.中国大陆构造中的西秦岭-松潘大陆构造结[J].地学前缘, 11 (3):23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004

    CrossRef Google Scholar

    张雪亭, 杨生德, 杨站君. 2007.青海省板块构造研究——1:100万青海省大地构造图说明书[M].北京:地质出版社.

    Google Scholar

    张恒磊, 胡祥云, 刘天佑. 2012.基于二阶导数的磁源边界与顶部深度快速反演[J].地球物理学报, 55 (11):3839-3847. doi: 10.6038/j.issn.0001-5733.2012.11.031

    CrossRef Google Scholar

    张发旺, 王贵玲, 侯新伟, 李建华, 李玉静. 2000.地下水循环对围岩温度场的影响及地热资源形成分析——以平顶山矿区为例[J].地球学报, 21 (2):53-142.

    Google Scholar

    赵平, 汪集旸, 汪缉安, 罗定贵. 1995.中国东南地区岩石生热率分布特征[J].岩石学报, 11 (3):292-305. doi: 10.3321/j.issn:1000-0569.1995.03.011

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(5)

Article Metrics

Article views(5034) PDF downloads(1526) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint