2018 Vol. 45, No. 5
Article Contents

JIN Wenqiang, GAO Guangming, GAO Xiang, XIAO Juan, NIU Yingjie, WANG Zili, SUN Jia, XUE Zhibo. 2018. Lithogeochemistry and island arc origins of Don Javier porphyry coppermolybdenum deposit in southern Peru[J]. Geology in China, 45(5): 931-942. doi: 10.12029/gc20180504
Citation: JIN Wenqiang, GAO Guangming, GAO Xiang, XIAO Juan, NIU Yingjie, WANG Zili, SUN Jia, XUE Zhibo. 2018. Lithogeochemistry and island arc origins of Don Javier porphyry coppermolybdenum deposit in southern Peru[J]. Geology in China, 45(5): 931-942. doi: 10.12029/gc20180504

Lithogeochemistry and island arc origins of Don Javier porphyry coppermolybdenum deposit in southern Peru

    Fund Project: Supported by China Geological Survey Program (No. 12120114010301)
More Information
  • Author Bio: JIN Wenqiang, male, born in 1983, master, engineer, engages in exploring and mining of mineral resources; E-mail: 232178920@qq.com
  • The belt of Palaeocene-Eocene copper-molybdenum porphyry deposits in southern Peru is an important part of the Andes metallogenic belt with a large number of world-class porphyry copper-molybdenum deposits. The recently explored Don Javier porphyry copper-molybdenum deposit is another major discovery in this belt. In this paper, studies of the petrology and geochemistry of ore-bearing porphyry and surrounding rocks were conducted to validate their petrogenesis and tectonic setting. According to major and trace element characteristics, the authors have reached some conclusions:① The ore-bearing porphyry belongs to peraluminous calc alkaline series dacite porphyry, the surrounding rocks belong to peraluminous calc alkaline series of granodiorite, and both have the same material source. ② The two types of rocks are enriched in light rare earth element and large ion lithophile elements; in chondrite normalized rare-earth element pattern, they show obvious right deviation type characterized by left steep and right slow, and both show Eu negative anomaly, which indicates that the petrogenesis of magmatic rocks involved crystallization differentiation or other geological processes. ③ The ore-bearing porphyry and surrounding rocks were formed in an an island arc environment, belonging to a classic rock island. ④ The Don Javier copper molybdenum deposit may have been formed in favourable conditions of the subduction of Nazca Plate to the South American plate, the melting of calc alkaline magma and the strike slip extrusion.

  • 加载中
  • Acosta H, Quispe J, Santiesteban A. and Acosta J.2008.Épocas metalogenéticasy tipos de yacimientos metálicos en la margen occidental del Sur del Perú: latitudes 14's-18's.

    Google Scholar

    Resúmenesextenidos XIV CongresoPeruano de Geología[C]. 273. AMC Mining Consultants(Canada) Ltd.2013.Don Javier Cu-Mo project Arequipa, Peru Technical Report[R].75-76

    Google Scholar

    Beijing General Research Institute of Mining & Metallurgy. 2013. Research Report on Mineral Processing Technology of Don Javier Copper Molybdenum Ore[R]. 3-25(in Chinese).

    Google Scholar

    Bustamante A, Cardozo M, Acosta J. 2014. Overview of the main Peruvian Copper Porphyry Belts and Deposits[R]. 2-27

    Google Scholar

    Brown G C.1982.Calc-alkaline intrusive rocks their diversity, evolution, and relation to volcanic arcs[C]//Thorpe R S(ed.). Andesites-orogenic Andesites and Related Rocks. New York: John Wiley & Sons, 437-464.

    Google Scholar

    Deckart K, Silva W, Spröhnle C, Vela I.2014. Timing and duration of hydrothermal activity at the Los Bronces porphyry cluster:An update[J]. Mineralium Deposita, 49:535-546. doi: 10.1007/s00126-014-0512-9

    CrossRef Google Scholar

    Defant M J, Drummond M S. 1990. Derivation of some morden arc magmas by of young subducted lithosphere[J]. Nature, 347:662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    Dela Roche H, Leterrier J, GrandclaudeP. 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and majorelement analyses——Its relationships with current nomenclature[J]. Chemical Geology, 29:183-210. doi: 10.1016/0009-2541(80)90020-0

    CrossRef Google Scholar

    Green T H, Pearson N J. 1986. Rare-earth element partitioning between sphene andcoexisting silicate liquid at high pressure and temperature[J]. Chemical Geology, 55(1/2):105 -119.

    Google Scholar

    Instituto Geológico Mineroy Metalúrgico(INGEMET).Estudio de los Recursos Minerales del Perú[R]. 2003: 12-25.

    Google Scholar

    Jahn B M, Wu F Y, Lo C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and SrNd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex central China[J]. Chemical Geology, 157(1/2):119 -146.

    Google Scholar

    Jin Wenqiang. 2010. On Geological Features and Genesis Study of the Cercana-Don jovier Porphyry Copper Deposit in Southern Peru(disseration for master degree)[D]. Changsha: Central South University, 7-16(in Chinese with English abstract).

    Google Scholar

    Le Bel L M. 1985. Mineralization in the Arequipa segment: The porphyry Cu deposit of Cerro Verde/Santa Rosa[C]//Pitcher W S, Atherton M P, Cobbing E J, Beckinsale R D (eds.). Magma-tism at a plate edge. The Peruvian Andes. New York: JohnWiley and Sons Inc. 250-260.

    Google Scholar

    Li Changnian.1992.Traceelements Petrology of Igneous Rocks[M]. Wuhan:China University of Geosciences Press, 74-117.

    Google Scholar

    Li Zhidan, Chen Junqiang, Wang Jiaying, Wen Sibo, Xiao Zhibin, Tang Chao, Liu Xing, Yu Reng'an. 2016. Geology and geochemistry of the Gonghudong skarn copper deposit in Darhan Muminggan Joint Banner, Inner Mongolia and its significance[J]. Geology in China, 43(4):1367-1384(in Chinese with English abstract).

    Google Scholar

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    Mao Jingwen, Luo Maocheng, Xie Guiqing, Liu Jun, Wu Senghua. 2014. Basic characteristics and new advances in reserch and exploration on porphyry copper deposits[J]. Acta Geologica Sinica, 88(12):2156-2169(in Chinese with English abstract).

    Google Scholar

    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 37(3/4):215-224.

    Google Scholar

    Pearce J A, Harris N B W, Tindle A G. 1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25:956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J(eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313-345.

    Google Scholar

    Sun Zhuanrong, Dong Guochen, Zhao Zuoxin, Wang Weiqing, Liu Shengqiang. 2017. Petrological, geochemical and geochronological features of Lailishan ganitoids in western Yunnan and their genesis of partial melting of crustal soure[J]. Geology in China, 44(6):1140-1158(in Chinese with English abstract).

    Google Scholar

    Thompson R N. 1982. Magmatism in the British Tertiary volcanic province, Scott[J]. Geology, 18:49-107.

    Google Scholar

    Wei Shaogang, Song Yang, Tang Juxing, Gao Ke, Feng Jun, Li Yanbo, Hou Lin. Geochronology, geochemistry and petrogenesis of quartz diorite porphyrite from the Sena copper (gold) deposit, Tibet[J]. Geology in China, 2016, 43(6):1894-1912(in Chinese with English abstract).

    Google Scholar

    William M V. 2005. The Late Paleozoic-Early Mesozoic Chocolate Formation ofsouthern Peru: New data and interpretations[C]//The International Symposium Onandean Geodynamics, Extended Abstracts, 490-492.

    Google Scholar

    Winter J D. 2001. An Introduction to Igneousand Metamorphic Petrology[M]. NewJersey: PrinceHall, 1 -697.

    Google Scholar

    Wright J B. 1969. A simple alkalinity ratio and its application to questions ofnon-orogenic granite genesis[J]. Geological Magazine, 106:370-384. doi: 10.1017/S0016756800058222

    CrossRef Google Scholar

    Zhang Dongyang, Zhang Zhaocong, Xue Chunji, Ai Yu. 2010. Petrology and geochemistry of the ore-forming porphy ries in the Lamasu copper deposit, western Tianshan:Implications for petrogenesis[J]. Acta Petrologica Sinica, 26(3):680-694(in Chinese with English abstract).

    Google Scholar

    Zhao Zhenhua, . 1982. Research methord of rare earth element geochemistry[J]. Geology and Geochemistry, (1):26-33(in Chinese).

    Google Scholar

    金文强. 2010.秘鲁南部Cercana-Don Jovier斑岩铜矿地质特征及成因探讨(硕士论文)[D].长沙: 中南大学, 7-16.http://cdmd.cnki.com.cn/article/cdmd-10533-2010187531.htm

    Google Scholar

    李昌年. 1992.火成岩微量元素岩石学[M].武汉:中国地质大学出版社, 74-117.

    Google Scholar

    李志丹, 陈军强, 王佳营, 文思博, 肖志斌, 汤超, 赵行, 俞礽安. 2016.内蒙古达茂旗宫忽洞矽卡岩型铜矿床地质、地球化学特征及其意义[J].中国地质, 43(4):1367-1384.

    Google Scholar

    毛景文, 罗茂澄, 谢桂青, 刘军, 吴胜华. 2014.斑岩铜矿床的基本特征和研究勘查新进展[J].地质学报, 88(12):2156-2169.

    Google Scholar

    孙转荣, 董国臣, 赵作新, 王伟清, 刘圣强. 2017.滇西来利山花岗岩年代学、地球化学特征及其壳源部分熔融成因[J].中国地质, 44(6):1140-1158.

    Google Scholar

    韦少港, 宋扬, 唐菊兴, 高柯, 冯军, 李彦波, 候淋. 2016.西藏色那铜(金)矿床石英闪长玢岩年代学、地球化学与岩石成因[J].中国地质, 43(6):1894-1912.

    Google Scholar

    张东阳, 张招崇, 薛春纪, 艾羽. 2010.西天山喇嘛苏铜矿成矿斑岩的岩石学、地球化学特征及成因探讨[J].岩石学报, 26(3):680-694.

    Google Scholar

    赵振华. 1982.稀土元素地球化学研究方法[J].地质地球化学, (1):26-33.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(2661) PDF downloads(1077) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint