2018 Vol. 45, No. 4
Article Contents

ZHAO Ligang, LI Chengdong, WU Zhiyu, GAO Xuesheng, XU Yawen, ZHANG Kuo, CHANG Qingsong. 2018. Detrital zircon U-Pb geochronology of the Qinling Group in Wulichuan-Zhaigen area, West Henan[J]. Geology in China, 45(4): 753-766. doi: 10.12029/gc20180408
Citation: ZHAO Ligang, LI Chengdong, WU Zhiyu, GAO Xuesheng, XU Yawen, ZHANG Kuo, CHANG Qingsong. 2018. Detrital zircon U-Pb geochronology of the Qinling Group in Wulichuan-Zhaigen area, West Henan[J]. Geology in China, 45(4): 753-766. doi: 10.12029/gc20180408

Detrital zircon U-Pb geochronology of the Qinling Group in Wulichuan-Zhaigen area, West Henan

    Fund Project: Support by Science Funds of National Natural Science Foundation (No. 41272065) and China Geological Survey Program (No. DD20160043)
More Information
  • Author Bio: ZHAO Ligang, male, born in 1981, assistant professor, master, mainly engages in the study of regional metallogeny; E-mail: zhaoligang981@126.com
  • Corresponding author: LI Chengdong, tjlcd99@163.com  
  • The Qinling Group is the main component of the Qinling microcontinent, and the accurate determination of its age is of great significance for the study of the tectonic evolution of the Qinling orogenic belt. This paper presents zircon LA-MC-ICPMS U-Pb geochronologic data of the albite two-mica schist from Yanlinggou Formation and the sillimanite two-mica monzo-gneiss from Guozhuang Formation of Qinling Group in Wulichuan-Zhaigen area. The dating results of the magmatic core of detrital zircons from albite two-mica schist show 5 age groups mainly, i.e., 545-551 Ma, 754-778 Ma, 900-1000 Ma, 1340-1830 Ma and 2300-2500 Ma, in which the 900-1000 Ma group exhibits most obvious peaks of detrital zircons, and an inconsistent line of the upper intersection point of (2478 ±25) Ma can be fitted to a part of data points. The sillimanite two-mica monzo-gneiss ages are mainly concentrated in 1400-1800 Ma, with only four data points being in the range of 1134-1243 Ma, and the youngest magmatic core of detrital zircons is (1103 ±6) Ma. According to the data, the authors hold that the age of Yanlinggou Formation was younger than 900 Ma, and older than 438 Ma pluton of Wuduoshan. Guozhuang Formation is mainly formed during late Mesoproterozoic, younger than 1122 Ma, and older than 962 Ma Neoproterozoic granitic rocks. The sedimentary material of Yanlinggou Formation complex was mainly from Neoproterozoic granitic rocks and Proterozoic continental crust, with a little from Guozhuang Formation. Most sources of Guozhuang Formation were from the late Paleoproterozoic to Mesoproterozoic granitic continental crust. Yanlinggou Formation and Guozhuang Formation were formed in different periods, and there was a discontinuity between them. Their sedimentary materials were also different, and even a small amount of material of Yanlinggou Formation was postredeposition material from Guozhuang Formation. The two formations are different tectonic sheets. Therefore, the Yanlinggou Formation should be separated from the Qinling Group.

  • 加载中
  • Chen Ruibao, Zhang Yan'an. 1993. The sequence and deformation features of Xiahc Rock Group in western Henan[J]. Henan Geology, 11(2):104-111(in Chinese with Englishabstract).

    Google Scholar

    Diwu Chunrong, Sun Yong, Zhao Yan, Liu Bingxiang, Lai Shaocong, 2014. Geochronological, geochemical, and Nd-Hf isotopic studies of the Qinling Complex, central China:Implications for the evolutionary history of the North Qinling Orogenic Belt[J]. Geoscience Frontiers, 5:499-513. doi: 10.1016/j.gsf.2014.04.001

    CrossRef Google Scholar

    Gehrels G, Johnsson M J, Howwell D G. 1999. Detrital zircon geochronology of the Adams Argillite and Nation RiverFormation, East-Central Alaska, U. S. A[J]. Sedi. Res., 69:135-144. doi: 10.2110/jsr.69.135

    CrossRef Google Scholar

    Hennan Bureau of Geology and Mineral Resources. 1997. Stratigraphic Division and Correlation of China:Henan Lithostratigraphy[M]. Wuhan:China University of Geosciences Press(in Chinese with English abstract).

    Google Scholar

    Kalsbeek F, Frei D, Affaton P. 2008. Constraints on provenance, stratigraphic correlation and structural context of the Volta basin, Ghana, from detrital zircon geochronology:An Amazonianconnection[J]. Sedi. Geol., 212:86-95. doi: 10.1016/j.sedgeo.2008.10.005

    CrossRef Google Scholar

    Li Huaikun, Geng Jianzhen, Hao Shuang, Zhang Yongqing, Li Huimin. 2009. Research on the dating zircon U-Pb age by LA-MCICPMS[J]. Bulletion of Mineralogy, Petrology and Geochemistry, 28(supp.):77(in Chinese with Englishabstract).

    Google Scholar

    Li Huaikun, Zhu Shixing, Xiang Zhenqun, Su Wenbo, Lu Songnian, Zhou Hongying, Geng Jianzhen, Li Sheng, Yang Fengjie. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing:Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton[J]. Acta Petrologica Sinica, 26(7):2131-2140(in Chinese with English abstract).

    Google Scholar

    Li Meng, Wang Chao, Li Rongshe, Peng Yan. 2015. Age and provenance of the Yingou Group in Sunan area of North Qilian Mountain:Evidence from detritalzircon U-Pb dating[J]. Geology in China, 42(3):601-615(in Chinese with English abstract).

    Google Scholar

    Liu Yongsheng, Hu Zhaochu, Gao Shan, Detlef Günther, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    Ludwig K R. 2003. User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 4:1-71.

    Google Scholar

    Lu Songnian, Li Huaikun, Chen Zhihong, Hao Guojie, Zhou Hongying, Guo Jinjing, Niu Guanghua, Xiang Zhenqun. 2003. Meso-Neoproterozoic Geological Evolution in the Qingling Orogeny and Its Response to the Supercontinental Event of Rodinia[M]. Beijing:Geological Publishing House, 1-194(in Chinese with Englishabstract).

    Google Scholar

    Lu Songnian, Chen Zhihong, Xiang Zhenqun, Li Huaikun, Li Huimin, Song Biao. 2006. U-Pb ages of detrital zircons from the parametamorphic rocks of the Qingling Group and their geological significance[J]. Earth Science Frontiers, 13(6):303-310(in Chinese with English abstract).

    Google Scholar

    Meng Qingren, Zhang Guowei. 2000. Geologic framework and tectonic evolution of the Qingling orogeny, Central China[J]. Tectonophysics, 323(3/4):183-196.

    Google Scholar

    Naipauer M, Vujovich G I, Cingolani C A, et al. 2010. Detrital zircon analysis from the Neoproterozoic-Cambrian sedimentary cover(Cuyania terrane), Sierra de Pie De Palo, Argentina:Evidence ofa rift and passive margin system[J].J. South Amer. Ear. Sci., 29:306-326. doi: 10.1016/j.jsames.2009.10.001

    CrossRef Google Scholar

    Nelson J, Gehrels G. 2007. Detrital zircon geochronology and provenance of the southeastern Yukon-Tanana Terran[J]. Cana. J. Ear. Sci., 44:297-316. doi: 10.1139/e06-105

    CrossRef Google Scholar

    Pei Xianzhi, Wang Tao, Wang Yang, Li Houmin, Li Guoguang. 1999. Major geological events of Jinning period and their tectonic settings in the north Qingling[J]. Geological Journal of China Universities, 5(2):137-147(in Chinese with Englishabstract).

    Google Scholar

    Shi Yu, Yu Jinhai, Xu Xisheng, Qiu Jiansheng, Chen Lihui. 2009. Geochronology and geochemistry of the Qingling Group in the eastern Qingling Orogen[J]. Acta Petrologica Sinica, 25(10):2651-2670(in Chinese with Englishabstract).

    Google Scholar

    Simon E Jackson, Norman J Pearson, William L Griffin, Elena A. Belousova. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 211:47-69. doi: 10.1016/j.chemgeo.2004.06.017

    CrossRef Google Scholar

    Sircombe K N. 1999. Tracing provenance through the isotope ages oflittoral and sedimentary detrital zircon, eastern Australia[J]. Sedi. Geol., 124:47-67. doi: 10.1016/S0037-0738(98)00120-1

    CrossRef Google Scholar

    Tom Anderson. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192(1/2):59-79.

    Google Scholar

    Wan Yusheng, Liu Dunyi, Dong Chunyan, Yin Xiaoyan. 2011. SHRIMP zircon dationg of meta-sedimentary rock from the Qingling Group in the north of Xixia, North Qingling Orogenic Belt:Constraints on complex histories of source region and timing of deposition and metamorphism[J]. Acta Petrologica Sinica, 27(4):1172-1178(in Chinese with Englishabstract).

    Google Scholar

    Wang Tao, Hu Nenggao, Pei Xianzhi, Yang Jiaxi, Li Wuping. 1997. The composition, tectonic framework and evolution of Qinling Complex, Central China[J]. Acta Geoscientia Sinica, 18(4):345-351(in Chinese with Englishabstract).

    Google Scholar

    Yan Quanren, Wang Zongqi, Yan Zhen, Chen Junlu, Xiang Zhongjin, Wang Tao, Zhang Hongyuan. 2009. Tectonic affinity and timing of two types of amphibolites within the Qingling Group, North Qinling orogenic belt[J]. Acta Petrologica Sinica, 25:2177-2194(in Chinese with Englishabstract).

    Google Scholar

    Yang Li, Chen Fukun, Yang Yizeng, Li Shuangqing, Zhu Xiyan. 2010. Zircon U-Pb ages of the Qinling Group in Danfeng area:Recording Mesoproterozoic and Neoproterozoic magmatism and Early Paleozoic metamorphism in the North Qingling terrain[J]. Acta Petrologica Sinica, 26(5):1589-1603(in Chinese with Englishabstract).

    Google Scholar

    Yang Jingsui, Xu Zhiqin, Pei Xianzhi, Shi Rendeng, Wu Cailai, Zhang Jianxin, Li Haibing, Meng Fancong, Rong He. 2002. Discovery of diamond in north Qinling:Evidence for a giant UHPM Beltacross Central China and recognition of Paleozoic and Mesozoic dual deep subduction between North China and Yangtze Plates[J]. Acta Geologica Sinica, 76(4):484-495(in Chinese with Englishabstract).

    Google Scholar

    You Zhengdong, Suo Shutian, Han Yujing, Zhong Zengqiu, Chen Nengsong. 1991. The Metamorphic Processes and Tectonic Analyses in the Core Complex of an Orogenic Belt:An Example from the Eastern Qingling Mountains[M]. Wuhan:Press of China University of Geosciences, 1-326(in Chinese with Englishabstract).

    Google Scholar

    Zhang Guowei. 1988. Formation and Evolution of the Qinling Orogenic Belt[M]. Xi'an:Northwest University Publishing House, 1-192(in Chinese with Englishabstract).

    Google Scholar

    Zhang Guowei and Zhou Dingwu. 1990. The Qinling complex and the Qinling orogenic belt[C]//Liu G H, Zhang S C(eds. ). Geological Memoirs of the Qinling-Daba Mountains(1) Metamorphic Geology. Beijing: Beijing Scientific and Technical Publishing House, 11-24(in Chinese with Englishabstract).

    Google Scholar

    Zhang Guowei, Zhang Zongqing, Dong Yunpeng. 1995. Nature of main tectono-lithostratigraphic units of the Qingling Orogen:Implications for the Tectonic Evolutiong[J]. Acta Petrologica Sinica, 11(2):101-114(in Chinese with Englishabstract).

    Google Scholar

    Zhang Guowei, Dong Yunpeng, Yao Anping. 1997. The Crustal compositions, structures and tectonic evolution of the Qingling Orogenic belt[J]. Geology of Shaanxi, 15(2):1-14(in Chinese with Englishabstract).

    Google Scholar

    Zhang Guowei, Zhang Benren, Yuan Xuecheng, Xiao Qinghui. 2001. Qingling Orogenic Belt and Continental Dynamics[M]. Beijing:Science Press, 1-885(in Chinese with Englishabstract).

    Google Scholar

    Zhang Zongqing, Liu Dunyi, Fu Guomin. 1994. Study of Isotope Geochronology of Metamorphic Stratigraphy of North Qingling[M]. Beijing:Geological Publishing House, 1-191(in Chinese with English abstract).

    Google Scholar

    陈瑞保, 张延安. 1993.豫西峡河岩群层序及变形特征[J].河南地质, 11(2):104-111.

    Google Scholar

    河南省地质矿产局.1997.河南岩石地层[M].武汉:中国地质大学出版社.

    Google Scholar

    李怀坤, 耿建珍, 郝爽, 张永清, 李惠民.2009.用激光烧蚀多接受器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物岩石地球化学通报, 28(增刊):77.

    Google Scholar

    李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J].岩石学报, 26(7):2131-2140.

    Google Scholar

    李猛, 王超, 李荣社, 彭岩. 2015.北祁连肃南地区阴沟群形成时代及沉积源区讨论——碎屑锆石U-Pb年龄证据[J].中国地质, 42(3):601-615.

    Google Scholar

    陆松年, 李怀坤, 陈志宏, 郝国杰, 周红英, 郭进京, 牛广华, 相振群. 2003.秦岭中新元古代地质演化及对Rodinia超级大陆事件的响应[M].北京:地质出版社, 1-194.

    Google Scholar

    陆松年, 陈志宏, 相振群, 李怀坤, 李惠民, 宋彪. 2006.秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义探讨[J].地学前缘, 13(6):303-310.

    Google Scholar

    裴先治, 王涛, 王洋, 李厚民, 李国光. 1999.北秦岭晋宁期主要地质事件及其构造背景讨论[J].高校地质学报, 5(2):137-147.

    Google Scholar

    时毓, 于津海, 徐夕生, 邱检生, 陈立辉. 2009.秦岭造山带东段秦岭岩群的年代学和地球化学研究[J].岩石学报, 25(10):2651-2670.

    Google Scholar

    万渝生, 刘敦一, 董春艳, 殷小艳. 2011.西峡北部秦岭群变质沉积岩锆石SHRIMP定年:物源区复杂演化历史和沉积、变质时代确定[J].岩石学报, 27(4):1172-1178.

    Google Scholar

    王涛, 胡能高, 裴先治, 杨家喜, 李伍平. 1997.秦岭杂岩的组成、构造格局及演化[J].地球学报, 18(4):345-351.

    Google Scholar

    闫全人, 王宗起, 闫臻, 陈隽璐, 向忠金, 王涛, 张宏远. 2009.秦岭岩群中两类斜长角闪岩的性质和时代及地质意义[J].岩石学报, 25:2177-2194.

    Google Scholar

    杨力, 陈福坤, 杨一增, 李双庆, 祝禧艳. 2010.丹凤地区秦岭岩群片麻岩锆石U-Pb年龄:北秦岭地体中-新元古代岩浆作用和早古生代变质作用的记录[J].岩石学报, 26(5):1589-1603.

    Google Scholar

    杨经绥, 许志琴, 裴先台, 史仁灯, 吴才来, 张建新, 李海兵, 孟繁聪, 戎合. 2002.秦岭发现金刚石横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别[J].地质学报, 76(4):484-495.

    Google Scholar

    游振东, 索书田, 韩郁菁, 钟增球, 陈能松. 1991.造山带核部杂岩变质过程与构造解析——以东秦岭为例[M].武汉:中国地质大学出版社, 1-326.

    Google Scholar

    张国伟. 1988.秦岭造山带形成与演化[M].西安:西北大学出版社, 1-192.

    Google Scholar

    张国伟, 周鼎武. 1990. 秦岭杂岩和秦岭造山带[C]//刘国惠等. 秦岭-大巴山地质论文集(一)变质地质[M]. 北京: 北京科学技术出版社, 11-24.

    Google Scholar

    张国伟, 张宗清, 董云鹏.1995.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J].岩石学报, 11(2):101-114.

    Google Scholar

    张国伟, 董云鹏, 姚安平.1997.秦岭造山带基本组成与结构及其构造演化[J].陕西地质, 15(2):1-14.

    Google Scholar

    张国伟, 张本仁, 袁学诚, 肖庆辉.2001.秦岭造山带与大陆动力学[M].北京:科学出版社, 1-885.

    Google Scholar

    张宗清, 刘敦一, 付国民. 1994.北秦岭变质地层同位素年代研究[M].北京:地质出版社, 1-191.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2660) PDF downloads(1494) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint