2018 Vol. 45, No. 3
Article Contents

QU Hongying, LIU Jiannan, PEI Rongfu, HE Shuyue, ZHOU Shumin, WANG Hui, ZHOU Jianhou. 2018. Thermochronology of the monzonitic granite related to the Hutouya Cu-Pb-Zn polymetallic deposit in Qiman Tage, Qinghai Province[J]. Geology in China, 45(3): 511-527. doi: 10.12029/gc20180307
Citation: QU Hongying, LIU Jiannan, PEI Rongfu, HE Shuyue, ZHOU Shumin, WANG Hui, ZHOU Jianhou. 2018. Thermochronology of the monzonitic granite related to the Hutouya Cu-Pb-Zn polymetallic deposit in Qiman Tage, Qinghai Province[J]. Geology in China, 45(3): 511-527. doi: 10.12029/gc20180307

Thermochronology of the monzonitic granite related to the Hutouya Cu-Pb-Zn polymetallic deposit in Qiman Tage, Qinghai Province

    Fund Project: Supported by China Geological Survey Program(No. DD20160007)
More Information
  • Author Bio: QU Hongying, female, born in 1978, doctor, associate researcher, mainly engages in the study of ore deposition and economic geology; E-mail: hongyingqu@126.com
  • Corresponding author: LIU Jiannan, male, born in 1982, doctor, assistant researcher, mainly engages in the study of ore deposition; E-mail: 454664253@qq.com 
  • The Hutouya mining area in Qiman Tage of Qinghai Province owns the characteristics of inner-and exo-contact belt skarn subtype mineralization. The magmatic intrusive activities are strong in this area. The carbonatite formation of different ages is exposed extensively. The combination of metal metallogenic elements is complex. The potential for the ore prospecting is great. This study is based on the thermochronology theory for rock bodies. The total energy of rock bodies is proportional to its scale. The thermal energy is larger as the scale of rock bodies is larger, the thermal effect is larger as the thermal energy is larger, and the cooling rate is larger as the thermal effect is larger. The cooling rate is calculated via the closure temperature of different minerals. The authors studied Ar-Ar ages of biotite and plagioclase from the Hutouya mining area. The 40Ar-39Ar plateau ages of biotite and plagioclase from the HTY002 monzonitic granite sample related to mineralization are 2(33.6 ±2.2) Ma and (231.5 ±1.3) Ma, respectively. The 40Ar-39Ar plateau ages from the HTY016 sample are (229.6±2.3) Ma and (219.3±1.8) Ma, respectively. The 40Ar-39Ar plateau ages of the HTY019 sample are (224.7±2.6) Ma and (222.2±2.2) Ma, respectively. The calculated cooling rates are 57.14℃/Ma, 11.65℃/Ma, and 48.00℃/Ma. Where the compositions of the intrusive rocks are similar, the differences of the unit thermal energies of their emplacement are very small. Because the total energy of rock bodies is proportional to its scale, the total energies of rock bodies of different scales are different. The thermal energy of large rock bodies is large, the time of balance with the surrounding rock is long, the thermal effect is large, and the cooling rate is low. The cooling rates of different minerals from the Hutouya mining area are similar. The values of the cooling rates are high, varying from 11 to 57℃/Ma, so the thermal effect is large. It is thus concluded that the potential for the ore prospecting is great in the Hutouya mining area.

  • 加载中
  • Cassata W S, Renne P R. 2013. Systematic variations of argon diffusion in feldspars and implications for thermochronometry[J]. Geochimca et Cosmochimca Acta, 112:251-287. doi: 10.1016/j.gca.2013.02.030

    CrossRef Google Scholar

    Cermak V, Rybach L. 1982. Thermal conductivity and specific heat of minerals and rocks[C]//Angenheister G (ed. ). Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group V. Springer-Verlag, Berlin, 89-134.

    Google Scholar

    Chen Wen, Zhang Yan, Zhang Yueqiao, Jin Guishan, Wang Qingli. 2006. Late Cenozoic episodic uplifting in southeastern part of the Tibetan plateau-evidence from Ar-Ar thermochronology[J]. Acta Petrologica Sinica, 22(4):867-872 (in Chinese with English abstract).

    Google Scholar

    Dodson M H. 1973. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 40:259-274. doi: 10.1007/BF00373790

    CrossRef Google Scholar

    Dowty E. 1980. Crystal-chemical factors affecting the mobility of ions in minerals[J]. America Mineral., 65:174-182.

    Google Scholar

    Feng Chengyou, Li Dongsheng, Wu Zhengshou, Li Junhong, Zhang Zhanyu, Zhang Aikui, Shu Xiaofeng, Su Shunsheng. 2010. Major types' time-space distribution and metallogeneses of polymetallic deposits in the Qimantage metallogenic belt' eastern Kunlun area[J]. Northwestern Geology, 43(4):10-17 (in Chinese with English abstract).

    Google Scholar

    Feng Chengyou, Wang Xueping, Shu Xiaofeng, Zhang Aikui, Xiao Ye, Liu Jiannan, Ma Shengchao, Li Guochen, Li Daxin. 2011. Isotopic chronology of Hutouya skarn-type lead-zinc polymetallic ore district in the Qimantage area, Qinghai Province, and its' geological significance[J]. Journal of Jilin University (Earth Science Edition), 41(6):1806-1817 (in Chinese with English abstract).

    Google Scholar

    Ferrow E M. 1987. Mössbauer and X-ray studies on the oxidation of annite and ferriannite[J].Physical Chemistry Mineral., 14:270-275. doi: 10.1007/BF00307993

    CrossRef Google Scholar

    Foland K A. 1994. Argon diffusion in feldspars[C]//Parsons I(ed. ). Feldspars and Their Reactions. Dordrecht, Kluwer, 415-447.

    Google Scholar

    Furlong K P, Hanson R B, Bowers J B. 1991. Modeling thermal regimes[J]. Review of Mineral, 26:437-506.

    Google Scholar

    Giletti B J. 1974. Diffusion Related to Geochronology[M]. Geochemical Transport and Kinetics, 1-362.

    Google Scholar

    Grove M, Harrison T M. 1996.40Ar* diffusion in Fe-rich biotite[J]. American Mineralogist, 81:940-951. doi: 10.2138/am-1996-7-816

    CrossRef Google Scholar

    Guo Xianzheng, Jia Qunzi, Li Jinchao, Kong Huilei, Li Yazhi, Xu Rongke, Nanka Ewu. 2016. Geochemical characteristics and geochronology of porphyroid biobite monzogranite from the Reshui Mo polymetallic depoist, East Kunlun Mountains[J]. Geology in China, 43(4):1165-1177 (in Chinese with English abstract).

    Google Scholar

    Hames W E, Bowring S A. 1994. An empirical evaluation of the argon diffusiongeometry in muscovite[J]. Earth and Planetary Science Letters, 124:161-167. doi: 10.1016/0012-821X(94)00079-4

    CrossRef Google Scholar

    Harrison T M. 1981. Diffusion of 40Ar in hornblende[J]. Contributions to Mineralogy and Petrology, 78:324-331.

    Google Scholar

    Harrison T M, McDougall I. 1981. Excess 40Ar in metamorphic rocks from Broken Hill, New South Wales:implications for 40Ar/39Ar age spectra and the thermal history of the region[J]. Earth Planet. Sc.Lett., 55(1):123-149. doi: 10.1016/0012-821X(81)90092-3

    CrossRef Google Scholar

    Hewitt D A, Wones D R.1975. Physical properties of some synthetic Fe-Mg-Al trioctahedral biotites[J]. American Mineralogist, 60:854-862.

    Google Scholar

    Hodges K V, Hames W E, Bowring S A. 1994. 40Ar/39Ar age gradients in micas from a high-temperature-low-pressure metamorphic terrain——Evidence for very slow cooling and implications for the interpretation of age spectra[J]. Geology, 22:55-58. doi: 10.1130/0091-7613(1994)022<0055:AAAGIM>2.3.CO;2

    CrossRef Google Scholar

    Hu Xinghua, Zhu Guchang, Liu Huan, Li Zhifeng, Zheng Wei, Xu Wenhai. 2011. Characteristics and mineralization of the Hutouya polymetallic deposit in the Qimantage metallogenic belt[J]. Geology and Exploration, 47(2):216-221 (in Chinese with English abstract).

    Google Scholar

    Jäger, Emile, Niggli E, Wenk E. 1967. Rb-Sr Altersbestimmungen an Glimmern der Zentralalpen (Rb-Sr age determinations on micas from the Central Alps):Beitragezur Geologische Karteder Schweiz[J]. NF, 134:1-67.

    Google Scholar

    Lee J K W, Onstott T C, Cashman K V. 1991. Incremental heating of hornblende in vacuo:implications for 40Ar/39Ar geochronology and the interpretation of thermal histories[J]. Geology, 19:872-876. doi: 10.1130/0091-7613(1991)019<0872:IHOHIV>2.3.CO;2

    CrossRef Google Scholar

    Lee J K W. 1993. The argon release mechanisms of hornblende in vacuo[J]. Chemical Geology, 106:133-170. doi: 10.1016/0009-2541(93)90170-N

    CrossRef Google Scholar

    Li Kan, Gao Yongbao, Qian Bing, He Shuyue, Liu Yongle, Zhang Zhaowei, Zhang Jiangwei, Wang Yalei. 2015. Geochronology, geochemical characteristics and Hf isotopic compositions of granite in the Hutouya deposit Qimantag, East Kunlun[J]. Geology in China, 42(3):630-645 (in Chinese with English abstract).

    Google Scholar

    Li Wenyuan. Metallogenic geologica characteristics and newly discovered orebodies in Northwest China[J]. Geology in Chian, 42(3):365-380 (in Chinese with English abstract).

    Google Scholar

    Liu Chengdong, Mo Xuanxue, Lui Zhaohua, Yu Xuehui, Chen Hongwei, Li Shuwei, Zhao Xin. 2004. Crust-manlte magma mixing in East Kunlun:Evidence from zircon SHRIMP chronology[J]. Chinese Science Bulletin, 49(6):596-602 (in Chinese).

    Google Scholar

    Liu Yunhua, Mo Xuanxue, Yu Xuehui, Zhang Xueting, Xu Guobin. 2006. Zircon SHRIMP U-Pb dating of the Jingren granite, Yemaquan region of the East Kunlun and its geological significance[J]. Acta Petrologica Sinica, 49(6):592-602 (in Chinese with English abstract).

    Google Scholar

    Lo C H, James K W, Tullis C O. 2000. Argon release mechanisms of biotite in vacuo and the role of short-circuit diffusion and recoil[J]. Chemistry Geology, 165:135-166. doi: 10.1016/S0009-2541(99)00167-9

    CrossRef Google Scholar

    Lovera O M, Richter F M, Harrison T M. 1989. The 40Ar/39Ar geothermometry for slowly cooled samples having a distribution of diffusion domain sizes[J]. Journal of Geophysics Research, 94:17917-17935. doi: 10.1029/JB094iB12p17917

    CrossRef Google Scholar

    Lovera O M, Grove M, Harrison T M. 2002. Systematic analysis of Kfeldspar 40Ar/39Ar step heating results Ⅱ:relevance of laboratory argon diffusion properties to nature[J]. Geochimca et Cosmochimca Acta, 66:1237-1255. doi: 10.1016/S0016-7037(01)00846-8

    CrossRef Google Scholar

    Ludwig K R. 2001. User's manual for isoplot/ex, v2.49, a geochronologica toolkit for Microsoft Excel[J]. Geochronological Center Special Publication No. la:1-58.

    Google Scholar

    Luo Zhaohua, Ke Shan, Cao Yongqing, Deng Jinfu, Chen Hongwei. 2002. Late Indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China, 21(6):292-297 (in Chinese with English abstract).

    Google Scholar

    Ma Fang, Mu Zhiguo. 2002. Ar mechanism of the enhydrite under the condition of the vacuo:New questions of the Ar-Ar thermochronology[J]. Earth Science Frontiers, 9(2):505-510 (in Chinese with English abstract).

    Google Scholar

    McDougall I, Harrison T M. 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method (second edition)[M]. Oxford, Oxford University Press, 269.

    Google Scholar

    Norwood C B.1974. Radiogenic Argon Diffusion in the Biotite Micas MS Thesis[M].RI:Brown University, 58.

    Google Scholar

    Ohta T, Takeda H, Takeuchi Y.1982. Mica polytypism:Similarities in the crystal structures of coexisting 2M and 2M1 oxybiotite[J]. American Mineral., 67:298-310.

    Google Scholar

    Peacock S M.1989. Numerical constraints on rates of metamorphism, fluid production, and fluid flux during regional metamorphism[J]. Geological Society of America Bull., 101:476-478. doi: 10.1130/0016-7606(1989)101<0476:NCOROM>2.3.CO;2

    CrossRef Google Scholar

    Philpotts A R. 1990. Principles of Igneous and Metamorphic Petrology[M]. Prentice Hall, Englewood Cliffs.

    Google Scholar

    Robbins G A. 1972. Radiogenic Argon Diffusion in Muscovite under Hydrothermal Conditions[D]. Brown University.

    Google Scholar

    Roy R, Beck A, Touloukian Y. 1981. Thermo-physical properties of rocks[C]//Touloukian Y, Judd W, Roy R (eds. ). Physical Properties of Rocks and Minerals. Mc Graw-Hill, New York, 409-502.

    Google Scholar

    Sletten V M, Onstott T C. 1998. The effect of the instability of muscovite during in vacuo heating on 40Ar/39Ar step-heating spectra[J]. Geochim. Cosmochim. Acta, 62:123-142. doi: 10.1016/S0016-7037(97)00323-2

    CrossRef Google Scholar

    Spear F S. 1993. Metamorphic Phase Equilibria and PressureTemperature-Time Paths. Mineralogical Society of America, Washington D.C.

    Google Scholar

    Steiger R H, Jager E. 1977. Subcommission on geochronology:Converntion on the use of decay constants in geo-and cosmochronology[J]. Earth and Planetary Science Letters, 36:359-362. doi: 10.1016/0012-821X(77)90060-7

    CrossRef Google Scholar

    Stuwe K. 2002. Introduction to the Geodynamics of the Lithosphere:Quantative Description of Geological Problems[M]. SpringerVerlag, Berlin.

    Google Scholar

    Taylor S R, McLennan S M. 1985. The Continental Crust:Composition and Evolution[M]. Blackwell Scientific Publication, Oxford, 1-372.

    Google Scholar

    Vedder W, Wilkins R. 1969. Dehydroxylation and rehydroxylation, oxidation and reduction of micas[J]. American Mineralogist, 54:482-509.

    Google Scholar

    Wei Junying and Wang Guanyu. 1988. Isotopic Geochemistry[M]. Beijing:Geological Publishing House, 1-379 (in Chinese).

    Google Scholar

    Xiao Qinghui, Qiu Ruizhao, Deng Jinfu, Li Tingdong, Mo Xuanxue, Hong Dawei, Lu Xinxiang, Wang Tao, Wu Fuyuan, Xie Caifu. 2005. Granitoids and continental crustal growth modes in China[J]. Geology in China, 32(3):343-352 (in Chinese with English abstract).

    Google Scholar

    Zhang Bangdong, Ling Hongfei, Wu Juncai. 2013. New thinking, method and calculated examples of high temperature thermochronology of granite plutons[J]. Geological Journal of Chian Universities, 19(3):385-402 (in Chinese with English abstract).

    Google Scholar

    Zheng Zhen, Chen Yanjing, Deng Xiaohua, Yun Suwei, Cheng Hongjin. 2016. Muscovite 40Ar/39Ar dating of the Baiganhu W-Sn orefield, Qimantag, Eadt Kunlun Mountains, and its geological implications[J]. Geology in China, 43(4):1341-1352 (in Chinese with English abstract).

    Google Scholar

    陈文, 张彦, 金贵善, 王清利. 2006.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据[J].岩石学报, 22(4):867-872.

    Google Scholar

    丰成友, 李东生, 吴正寿, 李军红, 张占玉, 张爱奎, 舒晓峰, 苏顺生. 2010.东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J].西北地质, 43(4):10-17.

    Google Scholar

    丰成友, 王雪萍, 舒晓峰, 张爱奎, 肖晔, 刘建楠, 马圣钞, 李国臣, 李大新. 2011.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J].吉林在学学报:地球科学版, 41(6):1806-1817.

    Google Scholar

    国显正, 贾群子, 李金超, 孔会磊, 栗亚芝, 许荣科, 南卡俄吾. 2016.东昆仑热水钼矿区似斑状黑云母二长花岗岩元素地球化学及年代学研究[J].中国地质, 43(4):1167-1177.

    Google Scholar

    胡杏花, 朱谷昌, 刘欢, 李智峰, 郑纬, 徐文海.2011.祁漫塔格矿带虎头崖多金属矿矿床特征和成矿作用分析[J].地质与勘探, 47(2):216-221.

    Google Scholar

    李侃, 高永宝, 钱兵, 何书跃, 刘永乐, 张照伟, 张江伟, 王亚磊. 2015.东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J].中国地质, 42(3):630-645.

    Google Scholar

    李文渊. 2015.中国西北部成矿地质特征及找矿新发现[J].中国地质, 42(3):365-380.

    Google Scholar

    刘成东, 莫宣学, 罗照华, 喻学惠, 谌宏伟, 李述为, 赵欣. 2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据[J].科学通报, 49(6):596-602.

    Google Scholar

    刘云华, 莫宣学, 喻学惠, 张雪亭, 许国斌. 2006.东昆仑野马地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报, 22(10):2457-2463.

    Google Scholar

    罗照华, 柯珊, 曹永清, 邓晋福, 谌宏伟. 2002.东昆仑印支晚期幔源岩浆活动[J].地质通报, 21(6):292-297.

    Google Scholar

    马芳, 穆治国. 2002.含水矿物在真空下的释Ar机制:Ar-Ar热年代学面临的新问题[J].地学前缘, 9(2):505-510.

    Google Scholar

    魏菊英, 王关玉. 1988.同位素地球化学[M].北京:地质出版社, 1-379.

    Google Scholar

    肖庆辉, 邱瑞照, 邓晋福, 李廷栋, 莫宣学, 洪大卫, 卢欣详, 王涛, 吴福元, 谢才富. 2005.中国花岗岩与大陆地壳生长方式初步研究[J].中国地质, 32(3):343-352.

    Google Scholar

    章邦桐, 凌洪飞, 吴俊奇. 2013.花岗岩体高温热年代学研究的新思路、方法及计算实例[J].高校地质学报, 19(3):385-402.

    Google Scholar

    郑震, 陈衍景, 邓小华, 岳素伟, 陈红瑾. 2016.东昆仑祁漫塔格地区白干湖钨锡矿田白云母40Ar/39Ar定年及地质意义[J].中国地质, 43(4):1341-1352.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(4)

Article Metrics

Article views(2849) PDF downloads(817) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint