2018 Vol. 45, No. 2
Article Contents

BAI Zhongkai, XIE Li, HAN Miao, LÜ Xiuxiang, SUN Zhichao, LI Qingyao, YANG Youxing, ZHANG Jinhu. 2018. Paleoproductivity conditions of lower member of Cambrian Xiaoerbulak Formation in Kalpin thrust belt, Tarim Basin[J]. Geology in China, 45(2): 227-236. doi: 10.12029/gc20180202
Citation: BAI Zhongkai, XIE Li, HAN Miao, LÜ Xiuxiang, SUN Zhichao, LI Qingyao, YANG Youxing, ZHANG Jinhu. 2018. Paleoproductivity conditions of lower member of Cambrian Xiaoerbulak Formation in Kalpin thrust belt, Tarim Basin[J]. Geology in China, 45(2): 227-236. doi: 10.12029/gc20180202

Paleoproductivity conditions of lower member of Cambrian Xiaoerbulak Formation in Kalpin thrust belt, Tarim Basin

    Fund Project: Supported by China Geological Survey Program (No. DD20160169, 12120115001801 and 12120115001901)
More Information
  • Author Bio: BAI Zhongkai, male, born in 1979, doctor, senior engineer, mainly engages in the basic geological survey of oil and gas; E-mail:baizk@126.com
  • Based on geological investigation of several outcrops, the analyses of 75 samples and the previous achievements, the authors studied the paleoproductivity conditions of lower member of Cambrian Xiaoerbulak Formation in Kalpin thrust belt. In order to get the reliable content of biogenic elements, the authors used the Ti element to deduce the terrigenous elemental content of Ba, Cu and Zn and obtain the corrected values of the biogenic elements Baxs, Cuxs and Znxs. According to the results, it can be concluded that the lower member of Cambrian Xiaoerbulake Formation has a high level of paleoproductivity. The values of the biogenic elements Baxs, Cuxs and Znxs of individual layers are higher, and this indicates that individual layers have higher paleoproductivity. The acritarchs microfossils such as Leiomarginata sp., Granomarginata squamacea Volkova, Dictyotidium priscum Kirjanov and Volkova and Lophosphaeridium sp. were found in the Cambrian Xiaoerbulak Formation, and all these factors provided a good material basis for the deposition of organic matter. The identifying indices such as Pr/Ph, V/(V+Ni), U/Th and δCe indicate that the lower member of Cambrian Xiaoerbulak Formation source rocks were developed under a favorable condition with an anaerobic sedimentary environment. The type of organic matter is Type Ⅰ-Ⅱ, and the organic matter has the characteristics of high maturity stage and potential of hydrocarbon generation. In summary, the lower member of Cambrian Xiaoerbulak Formation can be regarded as the potential source rock.

  • 加载中
  • Algeo T J, Maynard J B. 2004. Trace element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 206:289-318. doi: 10.1016/j.chemgeo.2003.12.009

    CrossRef Google Scholar

    Bai Zhongkai, Han Miao, Qiu Haijun, LÜ Xiuxiang, Xie Li, Yang Youxing, Sun Zhichao. 2017. Paleo-oxygen facies conditions of lower member of Cambrian Xiaoerbulak formation in Kalpin thrust belt, Tarim Basin[J]. China Mining Magazine, 26(S2):213-217(in Chinese with English abstract).

    Google Scholar

    Chen Hui, Xie Xinong, Li Hongjing, Su Ming, Peng Wei, Hu Chaoyong. 2010.Evaluation of the Permian marine hydrocarbon source rocks at Shangsi section in Sichuan Province using multiproxies of paleoproductivity and paleoredox[J]. Journal of Palaeogeography, 12(3):324-333(in Chinese with English abstract).

    Google Scholar

    Cheng Yuehong, Yu Xinghe, Han Baoqing, Du Haifeng, Bai Zhenhua. 2010. Geochemical characteristics of the 3rd Member of Paleogene Shahejie Formation in Dongpu Depression and their geological implications[J]. Geology in China, 37(2):357-366 (in Chinese with English abstract).

    Google Scholar

    Dymond J, ErwinSuess, MitehLyle. 1992. Barium in deep-sea sediment:A geochemical proxy for paleoproductivity[J]. Paleoceanography, 7(2):163-181. doi: 10.1029/92PA00181

    CrossRef Google Scholar

    Francois R, Honjo S, Manganini S J. 1995. Biogenic barium fluxes to the deep sea:Implications for paleoproducttivity reconstruction[J]. Global Biogeochemical Cycle, 9(2):289-303. doi: 10.1029/95GB00021

    CrossRef Google Scholar

    Fu Bihong.1995. Neotectonic deformation satellite imageries of Kalpin uplift in Tarim Basin[J]. Xinjiang Geology, 13 (3):283-290(in Chinese with English abstract).

    Google Scholar

    Hatch J R, Leventhal J S. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A[J]. Chemical Geology, 99(1/3):65-82.

    Google Scholar

    Hu Chaoyong, Pan Hanxiang, Ma Zhongwu, Shen Erbu, Yan Jiaxin. 2007. Iron abundance in the marine carbonate as a proxy of the paleoproductivity in hydrocarbon source rocks[J]. Earth Science-Journal of China University of Geosciences, 32(6):755-758(in Chinese with English abstract).

    Google Scholar

    Jones B J, Manning A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 111(1/4):111-129.

    Google Scholar

    Liang Digang, Zhang Shuichang, Zhang Baomin, Wang Feiyu.2000.Understanding on marine oil generation in China based on Tarim Basin[J]. Earth Science Frontiers, 7(4):534-547(in Chinese with English abstract).

    Google Scholar

    Li Yuejun, Peng Gengxin, Huang Zhinbin. 1999. Petroleum geology and exploration direction of Kalpin uplift[R]. 1-100(in Chinese).

    Google Scholar

    Liu Xun, You Guoqing. 2015. Tectonic regional subdivision of China in the light of plate theory[J]. Geology in China, 42(1):1-17(in Chinese with English abstract).

    Google Scholar

    LÜ Xiuxiang, Bai Zhongkai, Xie Yuquan, Yang Xianmao. 2014.Reconsideration on petroleum exploration prospects in the Kalpin thrust belt of northwestern Tarim Basin[J]. Acta Sedimentologica Sinica, 32(4):766-775(in Chinese with English abstract).

    Google Scholar

    LÜ Xiuxiang, Yan Junjun. 1996. Hydrocarbon prospects of Keping area on the northwestern margin of Tarim Basin[J]. Acta Sedimentologica Sinica, 14(3):30-37(in Chinese with English abstract).

    Google Scholar

    Luo Qingyong, Zhong Ningning, Zhu Lei, Wang Yannian, Qin Jing, Qin Lin, Zhang Yi, Ma Yong. 2013. Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, northern North China[J]. Chinese Science Bulletin, 58:1036-1047(in Chinese).

    Google Scholar

    Ni Jianyu, Yao Xuying. 2004. Method to study ancient oceanic productivity[J]. Marine Geology Letters, 20(3):30-39(in Chinese with English abstract).

    Google Scholar

    Piper D Z, Perkins R B. 2004. A modern vs Permian black shale:The hydrograph, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 206(3/4):177-197.

    Google Scholar

    Shen Jun, Feng Qinglai. 2010. Paleoproductivity evolution across the Permian-Triassic boundary of Dongpan section at Fusui in Guangxi[J]. Journal of Palaeogeography, 12(3):291-300(in Chinese with English abstract).

    Google Scholar

    Shu Liangshu, Zhu Wenbin, Wang Bo, Wu Changzhi, Ma Dongsheng, Ma Xuxuan, Ding Haifeng. 2013. The formation and evolution of ancient blocks in Xinjiang[J]. Geology in China, 40(1):43-60(in Chinese with English abstract).

    Google Scholar

    Taylor S R, Mcleman S M. 1985. The continental crust: Its composition and evolution[J]. Blackwell, Oxford: 28.http://www.oalib.com/references/7083383

    Google Scholar

    Tian Zhenglong, Chen Shaoyong, Long Aimin. 2004. A review on Barium as a geochemical proxy to reconstruct paleoproductivity[J]. Journal of Tropical Oceanography, 23(3):78-86(in Chinese with English abstract).

    Google Scholar

    Timothy D A, Calvert S E. 1998. Systematics of variations in excess Al and Al/Ti in sediment from the central equatorial Pacific[J]. Paleoceangraphy, 13(2):127-130. doi: 10.1029/97PA03646

    CrossRef Google Scholar

    Tonger, Liu Wenhui, Xu Yongchang, Chen Jianfa. 2004. The discussion on anoxic environments and its geochemical identifying indices[J]. Acta Sedimentologica Sinica, 22(2):365-372(in Chinese with English abstract).

    Google Scholar

    Wang Feiyu, Bian Lizeng, Zhang Shuichang, Zhang Baomin, Liang Digang. 2001.Two groups of organic material in Ordovician source rocks in Tarim Basin[J]. Science China(D), 31(2):96-102(in Chinese).

    Google Scholar

    Wang Feiyu, Zhang Shuichang, Zhang Baomin, Xiao Zhongyao, Liu Changwei.2003. Maturity and its history of Cambrian marine source rocks in the Tarim Basin[J]. Geochimica, 32(5):461-468(in Chinese with English abstract).

    Google Scholar

    Wang Zongxiu, Li Chunlin, Pak Nikolai, Ivleva Elena, Yu Xinqi, Zhou Gaozhi, Xiao Weifeng, Han Shuqin, Halilov Zailabidin, Takenov Nurgazy, Yan Xili. 2017. Tectonic division and Paleozoic oceancontinent transition in Western Tianshan Orogen[J]. Geology in China, 44(4):623-641(in Chinese with English abstract).

    Google Scholar

    Wei Hengye. 2012. Productivity and redox proxies of palaeo-oceans:An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 32(2):76-88(in Chinese with English abstract).

    Google Scholar

    Xiang Yu, Feng Qinglai, Shen Jun, Zhangning. 2013. Changhsingian radiolarian fauna from Anshun, Guizhou, and its relationship to TOC and paleoproductivity[J]. Science China:Earth Sciences, 43:1047-1056(in Chinese).

    Google Scholar

    Yan Detian, Wang Jianguo, Wang Zhuozhuo. 2009. Biogenetic barium distribution from the Upper Ordovician to Lower Silurian in the Yangtze area and its significance to paleoproductivity[J]. Journal of Xi' an Shiyou University (Natural Science Edition), 24 (4):16-19(in Chinese with English abstract).

    Google Scholar

    Yan Jiaxin, Zhang Haiqing. 1996. Paleo-oxygenation facies:A new research field in sedimentology[J]. Geological Science and Technology Information, 15 (3):7-13(in Chinese with English abstract).

    Google Scholar

    Zhang Chunming, Jiang Zaixing, Guo Yinghai, Zhang Weisheng.2013.Geochemical characteristics and paleoenvironment reconstruction of the Longmaxi formation in southeast Sichuan and northern Guizhou[J]. Geological Science and Technology Information, 32(2):124-130(in Chinese with English abstract).

    Google Scholar

    Zhang Guotao, Peng Zhongqin, Wang Chuanshang, Li Zhihong. 2016.Geochemical characteristics of the Lower Permian Liangshan Formation in Dushan area of Guizhou Province and their implications for the paleoenvironment[J]. Geology in China, 43(4):1291-1303(in Chinese with English abstract).

    Google Scholar

    Zhang Shuichang, Zhang Baomin, Wang Feiyu, Liang Digang, He Zhonghua, Zhao Mengjun, Bian Lizeng. 2001. Two sets of marine efficacious source rock in Tarim Basin——Organic properties, formation environment and their controlling factors[J]. Progress in Natural Science, 11(3):261-268(in Chinese).

    Google Scholar

    白忠凯, 韩淼, 邱海峻, 吕修祥, 谢李, 杨有星, 孙智超. 2017.塔里木盆地柯坪冲断带寒武系肖尔布拉克组下段古氧相研究[J].中国矿业, 26 (S2):213-217.

    Google Scholar

    陈慧, 解习农, 李红敬, 苏明, 彭伟, 胡超涌. 2010.利用古氧相和古生产力替代指标评价四川上寺剖面二叠系海相烃源岩[J].古地理学报, 12(3):324-333. doi: 10.7605/gdlxb.2010.03.008

    CrossRef Google Scholar

    程岳宏, 于兴河, 韩宝清, 杜海峰, 白振华. 2010.东濮凹陷北部古近系沙三段地球化学特征及地质意义[J].中国地质, 37(2):357-366.

    Google Scholar

    傅碧宏.1995.柯坪隆起的新构造运动变形及其卫星影像特征研究[J].新疆地质, 13 (3):283-290.

    Google Scholar

    胡超涌, 潘涵香, 马仲武, 沈尔卜, 颜佳新.2007.海相碳酸盐岩中的铁:烃源岩古生产力评估的新指标[J].地球科学——中国地质大学学报, 32(6):755-758.

    Google Scholar

    李曰俊, 彭更新, 黄智斌. 1999. 柯坪断隆石油地质概况与勘探方向[R]. 1-100.

    Google Scholar

    梁狄刚, 张水昌, 张宝民, 王飞宇.2000.从塔里木盆地看中国海相生油问题[J].地学前缘, 7(4):534-547.

    Google Scholar

    刘训, 游国庆. 2015.中国的板块构造区划[J].中国地质, 42(1):1-17.

    Google Scholar

    罗情勇, 钟宁宁, 朱雷, 王延年, 秦婧, 齐琳, 张毅, 马勇. 2013.华北北部中元古界洪水庄组埋藏有机碳与古生产力的相关性[J].科学通报, 58:1036-1047.

    Google Scholar

    吕修祥, 白忠凯, 谢玉权, 杨先茂.2014.塔里木盆地西北缘柯坪地区油气勘探前景再认识[J].沉积学报, 32(4):766-775.

    Google Scholar

    吕修祥, 严俊君.1996.塔里木盆地西北缘柯坪地区油气前景[J].沉积学报, 14 (3):30-37.

    Google Scholar

    倪建宇, 姚旭莹.2004.古海洋生产力的研究方法[J].海洋地质动态, 20(3):30-39.

    Google Scholar

    沈俊, 冯庆来. 2010.广西扶绥东攀剖面二叠纪-三叠纪之交古生产力演化[J].古地理学报, 12(3):291-300. doi: 10.7605/gdlxb.2010.03.004

    CrossRef Google Scholar

    舒良树, 朱文斌, 王博, 吴昌志, 马东升, 马绪宣, 丁海峰. 2013.新疆古块体的形成与演化[J].中国地质, 40(1):43-60.

    Google Scholar

    腾格尔, 刘文汇, 徐永昌, 陈践发. 2004.缺氧环境及地球化学判识标志的探讨——以鄂尔多斯盆地为例[J].沉积学报, 22(2):365-372.

    Google Scholar

    田正隆, 陈绍勇, 龙爱民.2004.以Ba为指标反演海洋古生产力的研究进展[J].热带海洋学报, 23(3):78-86.

    Google Scholar

    王飞宇, 边立曾, 张水昌, 张宝民, 梁狄刚.2001.塔里木盆地奥陶系海相源岩中两类生烃母质[J].中国科学(D), 31(2):96-102.

    Google Scholar

    王飞宇, 张水昌, 张宝民, 肖中尧, 刘长伟. 2003.塔里木盆地寒武系海相烃源岩有机成熟度及演化史[J].地球化学, 32(5):461-468.

    Google Scholar

    王宗秀, 李春麟, Pak Nikolai, Ivleva Elena, 余心起, 周高誌, 肖伟峰, 韩淑琴, Halilov Zailabidin, Takenov Nurgazy, 鄢犀利. 2017.西天山造山带构造单元划分及古生代洋陆转换过程[J].中国地质, 44(4):623-641.

    Google Scholar

    韦恒叶.2012.古海洋生产力与氧化还原指标——元素地球化学综述[J].沉积与特提斯地质, 32(2):76-88.

    Google Scholar

    向宇, 冯庆来, 沈俊, 张宁. 2013.贵州安顺长兴阶放射虫动物群及其与TOC和古生产力的关系[J].中国科学:地球科学, 43:1047-1056.

    Google Scholar

    严德天, 汪建国, 王卓卓. 2009.扬子地区上奥陶-下志留统生物钡特征及其古生产力意义[J].西安石油大学学报(自然科学版), 24(4):16 -19.

    Google Scholar

    颜佳新, 张海清. 1996.古氧相:一个新的沉积学研究领域[J].地质科技情报, 15 (3):7-13.

    Google Scholar

    张春明, 姜在兴, 郭英海, 张维生. 2013.川东南-黔北地区龙马溪组地球化学特征与古环境恢复[J].地质科技情报, 32(2):124-130.

    Google Scholar

    张国涛, 彭中勤, 王传尚, 李志宏. 2016.贵州独山下二叠统梁山组地球化学特征及其沉积环境意义[J].中国地质, 43(4):1291-1303.

    Google Scholar

    张水昌, 张保民, 王飞宇, 梁狄刚, 何忠华, 赵孟军, 边立曾. 2001.塔里木盆地两套海相有效烃源层——Ⅰ.有机质性质、发育环境及控制因素[J].自然科学进展, 11(3):261-268.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(4)

Article Metrics

Article views(2339) PDF downloads(774) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint