2025 Vol. 44, No. 2
Article Contents

ZHANG Jianchun, ZHU Jiang, HE Changde, JIA Zhi, ZHU Lifei, YI Yin, GONG Jiyi. Research progress on the water-carbon coupling processes at different scales in karst regions[J]. Carsologica Sinica, 2025, 44(2): 261-273. doi: 10.11932/karst20250205
Citation: ZHANG Jianchun, ZHU Jiang, HE Changde, JIA Zhi, ZHU Lifei, YI Yin, GONG Jiyi. Research progress on the water-carbon coupling processes at different scales in karst regions[J]. Carsologica Sinica, 2025, 44(2): 261-273. doi: 10.11932/karst20250205

Research progress on the water-carbon coupling processes at different scales in karst regions

More Information
  • Karst regions are characterized by exposed bedrock, poor soils, and severe soil erosion, leading to a fragile and sensitive ecological environment, making them a key region for global environmental change research. The water cycle and carbon cycle are two key processes within ecosystems. The water cycle serves as a crucial material foundation for maintaining ecosystem stability and acts as an important vehicle for material circulation. In contrast, the carbon cycle represents a significant aspect of energy flow and material circulation. The interplay between these cycles is vital for sustaining ecosystem functions and environmental effects. In karst regions, the hydrological processes are complex, and the ecological environment is vulnerable. The water-carbon coupling is affected by natural and human factors, hence, studying the coupling process of karst region is essential for exploring the ecosystem in this area. Although considerable researches have been conducted on water-carbon coupling processes in karst areas, there remains a lack of systematic induction and summary of existing scientific findings, and future research directions need to be clearly guided and sorted. Thus, a comprehensive review and analysis of the water-carbon coupling processes in karst regions is particularly necessary.

    This study firstly starts from different spatial scales, from the leaf-scale level to the regional-scale level, to reveal the coupling mechanism between the water cycle and the carbon cycle. Combining the topographical and geomorphic characteristics of karst areas, the regional water - carbon coupling research of which is expanded from the Soil -Plant-Atmosphere-Continuum (SPAC) to the Soil-Rock-Plant-Atmosphere-Continuum (SRPAC). The Water Use Efficiency (WUE) is a key indicator for measuring water-carbon exchange,which is affected by the factors such as unique topography, vegetation, and etc., showing significant differences from the non-karst areas. At the leaf-scale, stomatal behavior regulates photosynthesis and transpiration, affectingthe plant's water-use strategy. At the plant scale, the water-carbon utilization of vegetation exhibits topographic variations, with WUE being constrained by factors such as soil moisture. At the ecosystem scale, water-carbon coupling correlates with hydro-thermal environment and CO2 concentrations, whilethe groundwater circulationdrives the carbon cycling process. At the regional scale, water-carbon coupling manifests through the relationship between vegetation carbon sequestration and runoff generation and confluence,showing the exploration of the spatial-temporal distribution of WUE is of great significance for rocky desertification control.

    Secondly, an analysis is carried out from multiple perspectives such as climate change, vegetation restoration, land-use change, and engineering measures to summarize the impacts of natural and human activities on the water-carbon coupling processes. Climate change leads to fluctuations in precipitation patterns and temperature, directly altering the path and intensity of the water cycle, and thus affecting the carbon cycle. Vegetation restoration indirectly affects water-carbon coupling by regulating the regional climate and hydrology through soil and water conservation by roots and increasing vegetation coverage. Land-use change profoundly affects the water-carbon cycle process by influencing the carbon cycle and water resource distribution through changes in soil and runoff. Various engineering measures, such as the construction of water conservancy facilities, soil-water conservation projects, and tunnel construction, also have a significant impact on water-carbon coupling processes.

    Finally, potential future research hot spots are sorted out and extended classification methods of water-carbon coupling in combination with the karst geological background are proposed in this paper. It is suggested that a comprehensive monitoring system should be established, various carbon sink studies be integrated, and an interdisciplinary approach be adopted to carry out the simulation and prediction research on water-carbon coupling process in karst areas.. The water-carbon coupling model should be improved, and the spatial-temporal resolution of data should be enhanced. In-depth research on the impacts of climate change and various human activities on the water-carbon coupling process in karst areas should be conducted in multiple directions. This study provides a new perspective for future research on water-carbon balance in karst areas and shows positive significances for the scientific formulation of water resource and carbon balance management policies in karst regions.

  • 加载中
  • [1] Mukheibir P. Water access, water scarcity, and climate change[J]. Environmental Management, 2010, 45(5): 1027-1039. doi: 10.1007/s00267-010-9474-6

    CrossRef Google Scholar

    [2] Swain S S, Mishra A, Sahoo B, Chatterjee C. Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach[J]. Journal of Hydrology, 2020, 590: 125260. doi: 10.1016/j.jhydrol.2020.125260

    CrossRef Google Scholar

    [3] 赵风华, 于贵瑞. 陆地生态系统碳—水耦合机制初探[J]. 地理科学进展, 2008, 27(1):32-38. doi: 10.11820/dlkxjz.2008.01.005

    CrossRef Google Scholar

    ZHAO Fenghua, YU Guirui. A Review on the Coupled Carbon and Water Cycles in the Terrestrial Ecosystems[J]. Progress in Geography, 2008, 27(1): 32-38. doi: 10.11820/dlkxjz.2008.01.005

    CrossRef Google Scholar

    [4] Piao S, Yue C, Ding J, Guo Z. Perspectives on the role of terrestrial ecosystems in the 'carbon neutrality' strategy[J]. Science China Earth Sciences, 2022, 65(6): 1178-1186. doi: 10.1007/s11430-022-9926-6

    CrossRef Google Scholar

    [5] 陈喜, 张志才. 喀斯特地区地球关键带科学与生态水文学发展综述[J]. 中国岩溶, 2022, 41(3):356-364. doi: 10.11932/karst20220303

    CrossRef Google Scholar

    CHEN Xi, ZHANG Zhicai. An overview on the development of science and ecological hydrology of the earth critical zones in karst area[J]. Carsologica Sinica, 2022, 41(3): 356-364. doi: 10.11932/karst20220303

    CrossRef Google Scholar

    [6] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth Science Reviews, 2010, 99(3-4): 162-172. doi: 10.1016/j.earscirev.2010.03.001

    CrossRef Google Scholar

    [7] 樊千涛, 马姜明, 于名召, 贺桂珍. 漓江流域喀斯特综合干扰评价及其空间特征[J]. 生态学报, 2024, 44(4):1404-1417. doi: 10.20103/j.stxb.202301300146.

    CrossRef Google Scholar

    FAN Qiantao, MA Jiangming, YU Mingzhao, HE Guizhen. Comprehensive disturbance evaluation of karst and its spatial characteristics in the Lijiang River Basin, Guilin, China[J]. Acta Ecologica Sinica, 2024, 44(4): 1404-1417. doi: 10.20103/j.stxb.202301300146.

    CrossRef Google Scholar

    [8] Chen L, Tan L, Zhao M, Wang T, Gao Y. Karst carbon sink processes and effects: A review[J]. Quaternary International, 2023, 652: 63-73. doi: 10.1016/j.quaint.2023.02.009

    CrossRef Google Scholar

    [9] 王世杰, 刘再华, 倪健, 闫俊华, 刘秀明. 中国南方喀斯特地区碳循环研究进展[J]. 地球与环境, 2017, 45(1): 2-9. doi: 10.14050/j.cnki.1672-9250.2017.01.001.

    CrossRef Google Scholar

    WANG Shijie, LIU Zaihua, NI Jian, YAN Junhua, LIU Xiuming. A review of research progress and future prospective of carbon cycle in karst area of South China.[J]. Earth and Environment, 2017, 45(1): 2-9. doi: 10.14050/j.cnki.1672-9250.2017.01.001.

    CrossRef Google Scholar

    [10] 覃蔡清, 李思亮, 岳甫均, 丁虎, 徐胜, 刘丛强. 喀斯特关键带溶解性碳的迁移转化过程及其对降雨事件的响应[J]. 第四纪研究, 2021, 41(4):1128-1139. doi: 10.11928/j.issn.1001-7410.2021.04.19

    CrossRef Google Scholar

    QIN Caiqing, LI Siliang, YUE Fujun, DING Hu, XU Sheng, LIU Congqiang. Biogeochemical processes of dissolved carbon in the karst critical zone and its response to rainstorms[J]. Quaternary Sciences, 2021, 41(4): 1128-1139. doi: 10.11928/j.issn.1001-7410.2021.04.19

    CrossRef Google Scholar

    [11] 袁道先, 蔡桂鸿. 岩溶环境学 [M]. 重庆: 重庆出版社, 1988: 1-332.

    Google Scholar

    YUAN Daoxian, CAI Guihong. The science of karst environment [M]. Chongqing: Chongqing Publishing House, 1988: 1-332.

    Google Scholar

    [12] 刘梅先, 徐宪立. 气候变化及人为活动驱动下的西南喀斯特生态水文研究评述[J]. 农业现代化研究, 2018, 39(6):930-936. doi: 10.13872/j.1000-0275.2018.0088.

    CrossRef Google Scholar

    LIU Meixian, XU Xianli. Ecohydrology in karst region of southwestern China under changing climate and human activities: A review[J]. Research of Agricultural Modernization, 2018, 39(6): 930-936. doi: 10.13872/j.1000-0275.2018.0088.

    CrossRef Google Scholar

    [13] 何洁, 严友进, 易兴松, 王勇, 戴全厚. 喀斯特地区土壤异质性及其与植物相互作用[J]. 应用生态学报, 2021, 32(6):2249-2258. doi: 10.13287/j.1001-9332.202106.006.

    CrossRef Google Scholar

    HE Jie, YAN Youjin, YI Xingsong, WANG Yong, DAI Quanhou. Soil heterogeneity and its interaction with plants in karst areas[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2249-2258. doi: 10.13287/j.1001-9332.202106.006.

    CrossRef Google Scholar

    [14] 罗毓融, 胡稳, 杨青. 不同喀斯特岩性区森林生态系统水源涵养功能分析[J]. 贵州科学, 2019, 37(1):54-59. doi: 10.3969/j.issn.1003-6563.2019.01.012

    CrossRef Google Scholar

    LUO Yurong, HU Wen, YANG Qing. Water conservation function of forest ecosystem in different karst lithologic areas[J]. Guizhou Science, 2019, 37(1): 54-59. doi: 10.3969/j.issn.1003-6563.2019.01.012

    CrossRef Google Scholar

    [15] Liu X, Fu Z, Zhang W, Xiao S, Chen H, Wang K. Soluble carbon loss through multiple runoff components in the shallow subsurface of a karst hillslope: Impact of critical zone structure and land use [J]. Catena, 2023, 222.

    Google Scholar

    [16] 姜林林, 贾黎明, 刘聪. 陆地生态系统碳·氮·水耦合机制研究进展[J]. 安徽农业科学, 2012, 40(14):8277-8283. doi: 10.3969/j.issn.0517-6611.2012.14.101

    CrossRef Google Scholar

    JIANG Linlin, JIA Liming, LIU Cong. Research advances in the coupling of interactive functions between carbon, nitrogen and water cycles in terrestrial ecosystems[J]. Journal of Anhui Agricultural Sciences, 2012, 40(14): 8277-8283. doi: 10.3969/j.issn.0517-6611.2012.14.101

    CrossRef Google Scholar

    [17] Wang M, Sun C, Wang X. Analysis of the water-energy coupling efficiency in China: based on the three-stage SBM-DEA model with undesirable outputs[J]. Water, 2019, 11(4): 1-15. doi: 10.3390/w11040632

    CrossRef Google Scholar

    [18] Qiu B, Xue Y, Fisher J B, Guo W, Berry J A, Zhang Y. Satellite chlorophyll fluorescence and soil moisture observations lead to advances in the predictive understanding of global terrestrial coupled carbon-water cycles[J]. Global Biogeochemical Cycles, 2018, 32: 360-375. doi: 10.1002/2017GB005744

    CrossRef Google Scholar

    [19] 陈喜, 张志才, 容丽, 束龙仓, 阎长虹, 苏维词, 石朋. 西南喀斯特地区水循环过程及其水文生态效应 [M]. 北京: 科学出版社, 2014.

    Google Scholar

    [20] Rong L, Chen X, Chen X, Wang S, Du X. Isotopic analysis of water sources of mountainous plant uptake in a karst plateau of southwest China. Hydrological Processes, 25. Isotopic analysis of water sources of mountainous plant uptake in a karst plateau of southwest China[J]. Hydrological Processes, 2011, 25(23): 3666-3675. doi: 10.1002/hyp.8093

    CrossRef Google Scholar

    [21] Morison J I L, Baker N R, Mullineaux P M, Davies WJ. Improving water use in crop production[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1491): 639-658. doi: 10.1098/rstb.2007.2175

    CrossRef Google Scholar

    [22] Cai L, Chen X, Huang R, Smettem K. Runoff change induced by vegetation recovery and climate change over carbonate and non-carbonate areas in the karst region of South-west China[J]. Journal of Hydrology, 2022, 604: 127231. doi: 10.1016/j.jhydrol.2021.127231

    CrossRef Google Scholar

    [23] Ding Z, Liu Y, Wang L, Chen Y, Tang X. Effects and implications of ecological restoration projects on ecosystem water use efficiency in the karst region of Southwest China[J]. Ecological Engineering, 2021, 170(2): 1-9. doi: 10.1016/j.ecoleng.2021.106356

    CrossRef Google Scholar

    [24] 余新晓, 武昱鑫, 贾国栋. 森林植被不同尺度的碳水过程及耦合机制研究进展[J]. 水土保持学报, 2024, 38(1):1-13. doi: 10.13870/j.cnki.stbcxb.2024.01.039.

    CrossRef Google Scholar

    YU Xinxiao, WU Yuxin, JIA Guodong. Research progress of Carbon-Water processes and coupling mechanisms of forest vegetation at different scales[J]. Journal of Soil and Water Conservation, 2024, 38(1): 1-13. doi: 10.13870/j.cnki.stbcxb.2024.01.039.

    CrossRef Google Scholar

    [25] Comstock J P. Hydraulic and chemical signalling in the control of stomatal conductance and transpiration[J]. Journal of Experimental Botany, 2002, 53(367): 195-200. doi: 10.1093/jexbot/53.367.195

    CrossRef Google Scholar

    [26] Meinzer F C. Co‐ordination of vapour and liquid phase water transport properties in plants[J]. Plant, Cell & Environment, 2002, 25(2): 265-274. doi: 10.1046/j.1365-3040.2002.00781.x

    CrossRef Google Scholar

    [27] Sperry J S, Hacke U G, Oren R, Comstock J. P. Water deficits and hydraulic limits to leaf water supply[J]. Plant, cell & environment, 2002, 25(2): 251-263. doi: 10.1046/j.0016-8025.2001.00799.x

    CrossRef Google Scholar

    [28] Dai Y, Dickinson R E, Wang Y P. A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance[J]. Journal of Climate, 2004, 17(12): 2281-2299. doi: 10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2

    CrossRef Google Scholar

    [29] 曹生奎, 冯起, 司建华, 常宗强, 席海洋, 卓玛错. 植物水分利用效率研究方法综述[J]. 中国沙漠, 2009, 29(5):853-858. doi: http://ir.casnw.net/handle/362004/20731

    CrossRef Google Scholar

    CAO Shengkui, FENG Qi, SI Jianhua, CHANG Zongqiang, XI Haiyang, Zhuomacuo. Summary on research methods of water use efficiency in plant[J]. Journal of Desert Research, 2009, 29(5): 853-858. doi: http://ir.casnw.net/handle/362004/20731

    CrossRef Google Scholar

    [30] 沈芳芳, 樊后保, 吴建平, 刘文飞, 雷学明, 雷学臣. 植物叶片水平δ13C与水分利用效率的研究进展[J]. 北京林业大学学报, 2017, 39(11):114-124. doi: 10.13332/j.1000-1522.20170142.

    CrossRef Google Scholar

    SHEN Fangfang, FAN Houbao, WU Jianping, LIU Wenfei, LEI Xueming, LEI Xuechen. Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level[J]. Journal of Beijing Forestry University, 2017, 39(11): 114-124. doi: 10.13332/j.1000-1522.20170142.

    CrossRef Google Scholar

    [31] 姜寒冰, 张玉翠, 任晓东, 要家威, 沈彦俊. 作物水分利用效率研究方法及尺度传递研究进展[J]. 中国生态农业学报(中英文), 2019, 27(1):50-59. doi: 10.13930/j.cnki.cjea.180501.

    CrossRef Google Scholar

    JIANG Hanbing, ZHANG Yucui, REN Xiaodong, YAO Jiawei, SHEN Yanjun. A review of progress in research and scaling-up methods of crop water use efficiency[J]. Chinese Journal of Eco-Agriculture, 2019, 27(1): 50-59. doi: 10.13930/j.cnki.cjea.180501.

    CrossRef Google Scholar

    [32] Gregg P J W. Source partitioning using stable isotopes: coping with too many sources[J]. Oecologia, 2003, 136(2): 261-269. doi: 10.1007/s00442-003-1218-3

    CrossRef Google Scholar

    [33] Stock B C, Jackson A L, Ward E J, Parnell A C, Semmens B X. Analyzing mixing systems using a new generation of Bayesian tracer mixing models [J]. PeerJ, 2018, 6(4).

    Google Scholar

    [34] Wu Z, Behzad H M, He Q, Wu C, Bai Y, Jiang Y. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China[J]. Journal of Hydrology, 2021, 597: 126199. doi: 10.1016/j.jhydrol.2021.126199

    CrossRef Google Scholar

    [35] 李周, 赵雅洁, 宋海燕, 张静, 陶建平, 刘锦春. 喀斯特土层厚度异质性对草地群落结构和优势种生长的影响[J]. 草业科学, 2017, 11(10):2023-2032. doi: 10.11829/j.issn.1001-0629.2017-0296

    CrossRef Google Scholar

    LI Zhou, ZHAO Yajie, SONG Haiyan, ZHANG Jing, TAO Jianping, LIU Jinchun. The effects of soil thickness heterogeneity on grassland plant community structure and growth of dominant species in karst area[J]. Pratacultural Science, 2017, 11(10): 2023-2032. doi: 10.11829/j.issn.1001-0629.2017-0296

    CrossRef Google Scholar

    [36] Estrada-Medina H, Querejeta I, Allen M, Graham R, Jimenez-Osornio J. Karst features and plant water sources in Yucatan, Mexico[C]//AGU Spring Meeting Abstracts. 2008, 2007: H34A-06.

    Google Scholar

    [37] Moreno-Gutiérrez C, Dawson T E, Nicolás E, Querejeta J I. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem[J]. New Phytol, 2012, 196(2): 489-496. doi: 10.1111/j.1469-8137.2012.04276.x

    CrossRef Google Scholar

    [38] Barbeta A, Peñuelas J. Sequence of plant responses to droughts of different timescales: lessons from holm oak (Quercus ilex) forests[J]. Transactions of the Botanical Society of Edinburgh, 2016, 9(4): 321-338. doi: 10.1080/17550874.2016.1212288

    CrossRef Google Scholar

    [39] Rumman R, Atkin O K, Bloomfield K J, Eamus D. Variation in bulk‐leaf 13C discrimination, leaf traits and water‐use efficiency–trait relationships along a continental‐scale climate gradient in Australia[J]. Global Change Biology, 2018, 24(3): 1186-1200. doi: 10.1111/GCB.13911

    CrossRef Google Scholar

    [40] 吕仕洪, 李象钦, 白坤栋, 韦春强, 曾丹娟, 徐广平. 石漠化区先锋树种对青冈幼苗的保育作用及枝叶性状的影响[J]. 生态学杂志, 2018, 37(7):1917-1924. doi: 10.13292/j.1000-4890.201807.024.

    CrossRef Google Scholar

    LYUShihong, LI Xiangqin, BAI Kundong, WEI Chunqiang, ZENG Danjuan, XU Guangping. The effects of three pioneer tree species on facilitation and twig and leaf traits of Cyclobalanopsis glauca seedlings in a rocky desertification region of Guangxi, China[J]. Chinese Journal of Ecology, 2018, 37(7): 1917-1924. doi: 10.13292/j.1000-4890.201807.024.

    CrossRef Google Scholar

    [41] Wang T, Sun S, Yin Y, Zhao J, Tang Y, Wang Y, Gao F, Luan X. Status of crop water use efficiency evaluation methods: A review [J]. Agricultural and Forest Meteorology, 2024: 349.

    Google Scholar

    [42] Gulías J, Seddaiu G, Cifre J, Salis M, Ledda L. Leaf and Plant Water Use Efficiency in Cocksfoot and Tall Fescue Accessions under Differing Soil Water Availability[J]. CROP SCI, 2012, 2012,52(5): 2321-2331. doi: 10.2135/cropsci2011.10.0579

    CrossRef Google Scholar

    [43] 路伟伟, 余新晓, 贾国栋, 李瀚之. 基于树轮δ~(13)C值的北京山区油松水分利用效率[J]. 生态学报, 2017, 37(6):2093-2100. doi: 10.5846/stxb201511062252

    CrossRef Google Scholar

    LU Weiwei, YU Xinxiao, JIA Guodong, LI Hanzhi. Variation characteristics of long-term water use efficiency based on tree-ring carbon isotope discrimination[J]. Acta Ecologica Sinica, 2017, 37(6): 2093-2100. doi: 10.5846/stxb201511062252

    CrossRef Google Scholar

    [44] Weiwei LU, Xinxiao YU, Guodong JIA, Ziqiang LIU. Responses of Intrinsic Water-use Efficiency and Tree Growth to Climate Change in Semi-Arid Areas of North China[J]. Scientific Reports, 2018, 8(1): 308. doi: 10.1038/s41598-017-18694-z

    CrossRef Google Scholar

    [45] 张桂玲, 李艳琴, 罗绪强, 莫愁, 任艳, 陆汉芝, 秦会斌. 季节性干旱下喀斯特次生林不同树种水分利用效率变化 [J]. 地球与环境, 2021, 49(1): 25-31.

    Google Scholar

    ZHANG Guiling, LI Yanqin, LUO Xuqiang, MO Chou, REN Yan, LU Hanzhi, QIN Huibinet. Change of Water Use Efficiency of Different Species in Karst Secondary Forest under Seasonal Drought [J]. Earth and Environment 2021, 49(1): 25-31.

    Google Scholar

    [46] 卢玲, 李新, 黄春林, Frank Veroustraete. 中国西部植被水分利用效率的时空特征分析[J]. 冰川冻土, 2007, 29(5):777-784. doi: 10.3969/j.issn.1000-0240.2007.05.016

    CrossRef Google Scholar

    LU Ling, LI Xin, HUANG Chunlin, Frank Veroustraete. Analysis of the spatio-temporal characteristics of water use efficiency of vegetation in West China[J]. Journal of Glaciology and Geocryology, 2007, 29(5): 777-784. doi: 10.3969/j.issn.1000-0240.2007.05.016

    CrossRef Google Scholar

    [47] 袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 13(1):1-6. doi: CNKI:SUN:DSJJ.0.1993-01-000

    CrossRef Google Scholar

    Daoxian Y. CARBON CYCLE AND GLOBAL KARST[J]. Quaternary Sciences, 1993, 13(1): 1-6. doi: CNKI:SUN:DSJJ.0.1993-01-000

    CrossRef Google Scholar

    [48] Gao Q, Tao Z, Huang X, Nan L, Yu K, Wang Z. Chemical weathering and CO2 consumption in the Xijiang River basin, South China[J]. Geomorphology, 2009, 106(3-4): 324-332. doi: 10.1016/j.geomorph.2008.11.010

    CrossRef Google Scholar

    [49] Kang Z Q, Yuan D X, Chang Y, Li QY, Xiong Z B. The main controlling factor of karst carbon sequestration: about water cycle[J]. Journal of Jilin University, 2011, 41(5): 1542-1547.

    Google Scholar

    [50] AMC, BMR. History of forest hydrology[J]. Journal of Hydrology, 1993, 150(2-4): 189-216. doi: 10.1016/0022-1694(93)90111-L

    CrossRef Google Scholar

    [51] Goddéris Y, Brantley S L, François L M, Schott J, Pollard D, Déqué M, Dury M. Rates of consumption of atmospheric CO2 through the weathering of loess during the next 100 yr of climate change[J]. Biogeosciences, 2013, 10(1): 135-148. doi: 10.5194/bg-10-135-2013

    CrossRef Google Scholar

    [52] Zhao H, Jiang Y, Xiao Q, Zhang C, Behzad H M. Coupled carbon-nitrogen cycling controls the transformation of dissolved inorganic carbon into dissolved organic carbon in karst aquatic systems[J]. Journal of Hydrology, 2021, 592(1): 1-12. doi: 10.1016/j.jhydrol.2020.125764

    CrossRef Google Scholar

    [53] 刘宁, 孙鹏森, 刘世荣. 陆地水-碳耦合模拟研究进展[J]. 应用生态学报, 2012, 23(11):3187-3196. doi: 10.13287/j.1001-9332.2012.0476.

    CrossRef Google Scholar

    LIU Ning, SUN Pengsen, LIU Shirong. Research advances in simulating land water-carbon coupling[J]. Chinese Journal of Applied Ecology, 2012, 23(11): 3187-3196. doi: 10.13287/j.1001-9332.2012.0476.

    CrossRef Google Scholar

    [54] Xiao J F, Sun G, Chen J, Chen H, Chen S, Dong G, Gao S, Guo H, Guo J, Han S. Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China[J]. Agricultural and Forest Meteorology, 2013(182): 76-90. doi: 10.1016/j.agrformet.2013.08.007

    CrossRef Google Scholar

    [55] 段凯, 孙阁, 刘宁. 变化环境下流域水—碳平衡演化研究综述[J]. 水利学报, 2021, 52(3):300-309. doi: 10.13243/j.cnki.slxb.20200172.

    CrossRef Google Scholar

    DUAN Kai, SUN Ge, LIU Ning. A review of research on watershed water-carbon balance evolution in a changing environment[J]. Journal of Hydraulic Engineering, 2021, 52(3): 300-309. doi: 10.13243/j.cnki.slxb.20200172.

    CrossRef Google Scholar

    [56] 孙桂凯, 黄瑞, 王国帅, 王熙财, 马龙, 王蕾, 莫崇勋. 2001–2018年西江流域水分利用效率时空变化及影响因素[J]. 水土保持研究, 2023, 30(3):327-335. doi: 10.13869/j.cnki.rswc.2023.03.042.

    CrossRef Google Scholar

    SUN Guikai, HUANG Rui, WANG Guoshuai, WANG Xicai, MA Long, WANG Lei, MO Chongxun. Spatiotemporal variation of water use efficiency and its influencing factors in xijiang river basin from 2001 to 2018[J]. Research of Soil and Water Conservation, 2023, 30(3): 327-335. doi: 10.13869/j.cnki.rswc.2023.03.042.

    CrossRef Google Scholar

    [57] 于贵瑞, 王秋凤, 于振良. 陆地生态系统水—碳耦合循环与过程管理研究[J]. 地球科学进展, 2004(5):831-839. doi: 10.3321/j.issn:1001-8166.2004.05.022

    CrossRef Google Scholar

    [58] Black J R W L. Range fertilization: plant response and water use[J]. Journal of Range Management, 1979, 32(5): 345-349. doi: 10.2307/3898012

    CrossRef Google Scholar

    [59] Xiaojuan Huang, Jingfeng Xiao, Mingguo Ma. Evaluating the performance of satellite-derived vegetation indices for estimating gross primary productivity using FLUXNET observations across the globe[J]. Remote Sensing, 2019, 11(15): 1-22. doi: 10.3390/rs11151823

    CrossRef Google Scholar

    [60] Hong J, Kim J. Impact of the Asian monsoon climate on ecosystem carbon and water exchanges: a wavelet analysis and its ecosystem modeling implications[J]. Global Change Biology, 2011, 17(5): 1900-1916. doi: 10.1111/j.1365-2486.2010.02337.x

    CrossRef Google Scholar

    [61] 马龙龙, 杜灵通, 丹杨, 王乐, 乔成龙, 孟晨, 倪细炉. 基于CiteSpace的陆地生态系统碳水耦合研究现状及趋势[J]. 生态学报, 2020, 40(15):5441-5449. doi: 10.5846/stxb201907091439

    CrossRef Google Scholar

    MA Longlong, DU Lingtong, DAN Yang, WANG Le, QIAO Chenglong, MENG Chen, NI Xilu. Current status and future trends for carbon and water coupling of terrestrial ecosystem based on CiteSpace[J]. Acta Ecologica Sinica, 2020, 40(15): 5441-5449. doi: 10.5846/stxb201907091439

    CrossRef Google Scholar

    [62] 赵阳, 曹文洪, 谢刚, 成晨, 殷小琳, 刘冰, 张晓明. 黄土丘陵区小流域土地覆被变化对径流产沙量的影响[J]. 中国环境科学, 2014, 34(8):2111-2117. doi: 10.3969/j.issn.1000-6923.2014.08.027

    CrossRef Google Scholar

    ZHAO Yang, CAO Wenhong, XIE Gang, CHENG Chen, YIN Xiaolin, LIU Bing, ZHANG Xiaoming. Effect of land cover change on runoff and sediment yield of small watershed in Loess Hilly-gully region[J]. China Environmental Science, 2014, 34(8): 2111-2117. doi: 10.3969/j.issn.1000-6923.2014.08.027

    CrossRef Google Scholar

    [63] Fu Z, Stoy P C, Luo Y, Chen J, Niu S. Climate controls over the net carbon uptake period and amplitude of net ecosystem production in temperate and boreal ecosystems[J]. Agricultural and Forest Meteorology, 2017, 243: 9-18. doi: 10.1016/j.agrformet.2017.05.009

    CrossRef Google Scholar

    [64] 刘鑫, 李思亮, 岳甫均, 钟君, 覃蔡清, 丁虎. 喀斯特系统生物地球化学循环及对全球变化的响应[J]. 中国岩溶, 2022, 41(3):465-476. doi: 10.11932/karst20220313

    CrossRef Google Scholar

    LIU Xin, LI Siliang, YUE Fujun, ZHONG Jun, QIN Caiqing, DING Hu. Biogeochemical cycles of karst systems and their response to global change[J]. Carsologica Sinica, 2022, 41(3): 465-476. doi: 10.11932/karst20220313

    CrossRef Google Scholar

    [65] Littell J S, Peterson D L, Riley K L, Liu Y, Luce C H. A review of the relationships between drought and forest fire in the United States[J]. Global Change Biology, 2016, 22(7): 2353-2369. doi: 10.1111/gcb.13275

    CrossRef Google Scholar

    [66] Yang Y, Guan H, Batelaan O, Mcvicar TR, Di L, Piao S, Wei L, Bing L, Zhao J, Simmons C T. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems[J]. Scientific Reports, 2016, 6: 1-8. doi: 10.1038/srep23284

    CrossRef Google Scholar

    [67] 王发, 聂云鹏, 陈洪松, 付智勇, 连晋姣. 典型喀斯特白云岩小流域土壤-表层岩溶带厚度空间异质性特征[J]. 地质科技通报, 2024, 43(1):306-314. doi: 10.19509/j.cnki.dzkq.tb20220399.

    CrossRef Google Scholar

    WANG Fa, NIE Yunpeng, CHEN Hongsong, FU Zhiyong, LIAN Jinjiao. Spatial heterogeneity characteristics of soil-epikarst thickness in a typical karst dolomite small watershed[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 306-314. doi: 10.19509/j.cnki.dzkq.tb20220399.

    CrossRef Google Scholar

    [68] Wu Y, Liu S, Qiu L, Sun Y. SWAT-DayCent coupler: An integration tool for simultaneous hydro-biogeochemical modeling using SWAT and DayCent[J]. Environmental Modelling & Software, 2016, 86(dec.): 81-90. doi: 10.1016/j.envsoft.2016.09.015

    CrossRef Google Scholar

    [69] Zhao F, Wu Y, Sivakumar B, Long A, Qiu L, Chen J, Wang L, Liu S, Hu H. Climatic and hydrologic controls on net primary production in a semiarid loess watershed[J]. Journal of Hydrology, 2019, 568: 803-815. doi: 10.1016/j.jhydrol.2018.11.031

    CrossRef Google Scholar

    [70] Luo P, Kang S, Apip, Zhou M, Nover D. Water quality trend assessment in Jakarta: A rapidly growing Asian megacity [J]. PLoS ONE 14(7): e0219009.

    Google Scholar

    [71] 孙美荣, 张维诚. 森林生态学研究进展-气候变化下的森林碳水耦合[J]. 林业和草原机械, 2021(6):38-41,26. doi: 10.13594/j.cnki.mcjgjx.2021.06.009.

    CrossRef Google Scholar

    SUN Meirong, ZHANG Weicheng. Advances in forest ecology: forest carbon-water coupling under climate change[J]. Forestry and Grassland Machinery, 2021(6): 38-41,26. doi: 10.13594/j.cnki.mcjgjx.2021.06.009.

    CrossRef Google Scholar

    [72] Wang K, Zhang C, Chen H, Yue Y, Zhang W, Zhang M, Qi X, Fu Z. Karst landscapes of China: patterns, ecosystem processes and services[J]. Landscape Ecology, 2019, 34(12): 2743-2763. doi: 10.1007/s10980-019-00912-w

    CrossRef Google Scholar

    [73] Tong X, Wang K, Yue Y, Brandt M, Liu B, Zhang C, Liao C, Fensholt R. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 54: 105-113. doi: 10.1016/j.jag.2016.09.013

    CrossRef Google Scholar

    [74] Sun H, Bai Y, Lu M, Wang J, Tuo Y, Yan D, Zhang W. Drivers of the water use efficiency changes in China during 1982−2015[J]. The Science of the total environment, 2021, 799: 145-149.

    Google Scholar

    [75] 肖霜霜, 陈武荣, 傅 伟, 张建兵. 土地利用方式对喀斯特土壤微生物资源限制的影响[J]. 中国岩溶, 2024, 43(5):1065-1075. doi: 10.11932/karst20240507

    CrossRef Google Scholar

    XIAO Shuangshuang, CHEN Wurong, FU Wei, ZHANG Jianbing. Effects of land use patterns on the limitation of soil microbial resources in the karst areas of Southwest China[J]. Carsologica Sinica, 2024, 43(5): 1065-1075. doi: 10.11932/karst20240507

    CrossRef Google Scholar

    [76] 陶波, 葛全胜, 李克让, 邵雪梅. 陆地生态系统碳循环研究进展[J]. 地理研究, 2001, 20(5):564-575. doi: 10.3321/j.issn:1000-0585.2001.05.006

    CrossRef Google Scholar

    TAO Bo, GE Quansheng, LI Kerang, SHAO Xuemei. Progress in the studies on carbon cycle in terrestrial ecosystem[J]. Geographical Research, 2001, 20(5): 564-575 doi: 10.3321/j.issn:1000-0585.2001.05.006

    CrossRef Google Scholar

    [77] Andrews J A, Schlesinger W H. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment[J]. Global Biogeochemical Cycles, 2001, 15(1): 149-162. doi: 10.1029/2000GB001278

    CrossRef Google Scholar

    [78] Ahearn D S, Sheibley R W, Dahlgren R A, Anderson M, Johnson J, Tate K W. Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California[J]. Journal of Hydrology, 2005, 313(3-4): 234-247. doi: 10.1016/j.jhydrol.2005.02.038

    CrossRef Google Scholar

    [79] 曾思博, 蒋勇军. 土地利用对岩溶作用碳汇的影响研究综述[J]. 中国岩溶, 2016, 35(2):153-163. doi: 10.11932/karst20160204

    CrossRef Google Scholar

    ZENG Si-bo, JIANG Yong-jun. Impact of Land-Use and Land-Cover change on the carbon sink produced by karst processes: A review[J]. Carsologica Sinica, 2016, 35(2): 153-163. doi: 10.11932/karst20160204

    CrossRef Google Scholar

    [80] Frank A B, Liebig M A, Tanaka D L. Management effects on soil CO2 efflux in northern semiarid grassland and cropland[J]. Soil & Tillage Research, 2006, 89(1): 78-85.

    Google Scholar

    [81] Jackson R B, Jobbágy E G, Avissar R, Roy S B, Barrett D J, Cook C W, Farley K A, le Maitre D C, McCarl Bruce A, Murray B C. Trading water for carbon with biological carbon sequestration.[J]. Science, 2005, 310(5756): 1944-1947. doi: 10.1126/science.1119282

    CrossRef Google Scholar

    [82] Kindu M, Schneider T, Teketay D, Knoke T. Drivers of land use/land cover changes in Munessa-Shashemene landscape of the south-central highlands of Ethiopia[J]. Environmental monitoring and assessment, 2015, 187: 1-17. doi: 10.1007/s10661-014-4167-x

    CrossRef Google Scholar

    [83] 李青松, 苏维词, 吕思思. 基于“源-汇”理念的黔中“两湖一库”地区土地利用变化及驱动力分析[J]. 中国岩溶, 2022, 41(6):928-939. doi: 10.11932/karst2021y34

    CrossRef Google Scholar

    LI Qingsong, SU Weici, LYU Sisi. Analysis of land use changes and their driving force in "Two Lakes and One Reservoir" area of central Guizhou Province based on the concepts of "Source and Sink"[J]. Carsologica Sinica, 2022, 41(6): 928-939. doi: 10.11932/karst2021y34

    CrossRef Google Scholar

    [84] 任惠敏, 付智勇, 王 发, 陈洪松. 喀斯特坡地不同土地利用方式碳氮流失的水文驱动特征[J]. 中国岩溶, 2023, 42(1):84-93. doi: 10.11932/karst20230107

    CrossRef Google Scholar

    REN Huimin, FU Zhiyong, WANG Fa, CHEN Hongsong. Hydrological driving characteristics of soil carbon and nitrogen losses under different land use modes on karst slopes[J]. Carsologica Sinica, 2023, 42(1): 84-93. doi: 10.11932/karst20230107

    CrossRef Google Scholar

    [85] 郑炜, 杨保, 徐宗永, 肖羚. 隧道建设活动对地表植被群落动态的影响:以武昆高速公路象鼻岭隧道为例[J]. 公路交通技术, 2012(5):145-149. doi: 10.3969/j.issn.1009-6477.2012.05.033

    CrossRef Google Scholar

    ZHENG Wei, YANG Bao, XU Zongyong, XIAO Ling. Influences of Tunnel Construction Activities on Tendencies of Surface Vegetational Types: With Xiangbiling Tunnel on Wuding-Kunming Expressway as an Example[J]. Technology of Highway and Transport, 2012(5): 145-149. doi: 10.3969/j.issn.1009-6477.2012.05.033

    CrossRef Google Scholar

    [86] 吴超, 蒋勇军, 沈立成, 刘九缠, 何瑞亮. 喀斯特槽谷典型植物水分利用效率对隧道建设的响应[J]. 生态学报, 2020, 40(12):4032-4040. doi: 10.5846/stxb201811202520

    CrossRef Google Scholar

    WU Chao, JIANG Yongjun, SHEN Licheng, LIU Jiuchan, HE Ruiliang. Response of water use efficiency of typical plants to tunnel construction in karst trough valley[J]. Acta Ecologica Sinica, 2020, 40(12): 4032-4040. doi: 10.5846/stxb201811202520

    CrossRef Google Scholar

    [87] Li J, Hong A, Yuan D, Jiang Y, Deng S, Cao C, Liu J. A new distributed karst-tunnel hydrological model and tunnel hydrological effect simulations[J]. Journal of Hydrology, 2021, 593: 1-17. doi: 10.1016/j.jhydrol.2020.125639.

    CrossRef Google Scholar

    [88] Zheng X, Yang Z, Wang S, Chen Y, Hu R, Zhao X, Wu X, Yang X. Evaluation of hydrogeological impact of tunnel engineering in a karst aquifer by coupled discrete-continuum numerical simulations[J]. Journal of Hydrology, 2021, 597: 125765. doi: 10.1016/j.jhydrol.2020.125765

    CrossRef Google Scholar

    [89] Pan Z, Yang S, Lou H, Gong J, Zhou B, Wang H, Li H, Li J, Dai Y, Yi Y, Gao C, Huang X. Small reservoirs can enhance the terrestrial carbon sink of controlled basins in karst areas worldwide[J]. Science of The Total Environment, 2024, 951: 175517. doi: 10.1016/j.scitotenv.2024.175517

    CrossRef Google Scholar

    [90] Wang W, Li S, Zhong J, Slowinski S, Li S, Li C, Su J, Yi Y, Dong K, Xu S, Van Cappellen P, Liu C. Carbonate mineral dissolution and photosynthesis-induced precipitation regulate inorganic carbon cycling along the karst river-reservoir continuum, SW China[J]. Journal of Hydrology, 2022, 615: 128621. doi: 10.1016/j.jhydrol.2022.128621

    CrossRef Google Scholar

    [91] Yin B, Guan D, Zhou L, Zhou J, He X. Sensitivity assessment and simulation of water resource security in karst areas within the context of hydroclimate change[J]. Journal of Cleaner Production, 2020, 258: 120994. doi: 10.1016/j.jclepro.2020.120994

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(26) PDF downloads(11) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint