2025 Vol. 44, No. 2
Article Contents

WANG Zhongzhong, HU Feiyue, JIA Long, ZHI Bingfa. Analysis of hydrochemical characteristics and controlling factors of groundwater in the covered karst area of northern Guangzhou[J]. Carsologica Sinica, 2025, 44(2): 228-237. doi: 10.11932/karst20250202
Citation: WANG Zhongzhong, HU Feiyue, JIA Long, ZHI Bingfa. Analysis of hydrochemical characteristics and controlling factors of groundwater in the covered karst area of northern Guangzhou[J]. Carsologica Sinica, 2025, 44(2): 228-237. doi: 10.11932/karst20250202

Analysis of hydrochemical characteristics and controlling factors of groundwater in the covered karst area of northern Guangzhou

More Information
  • Guangzhou is clearly positioned as the core engine of the Guangdong−Hong Kong−Macao Greater Bay Area and shoulders the responsibility of leading the high-quality development of the Greater Bay Area. The northern Guangzhou serves as a demonstration area for urban-rural integration, featuring a distinctive ecological agriculture industry and a functional area for rural tourism. However, the covered karst in this area is highly developed. Consequently, the environmental problems, such as karst ground collapse and the deterioration of groundwater quality, have limited to some extent the local construction and development. In order to study the hydrochemical characteristics and formation of groundwater in the covered karst area of northern Guangzhou. We utilized fourteen groups of karst water samples and fourteen groups of rock chemical composition test data collected during the dry season from 2017 to 2018. We conducted a qualitative analysis of the hydrochemical characteristics and controlling factors of groundwater using mathematical statistics, Piper diagrams, the Gibbs model, ion ratio diagrams, the and chlor-alkali index. Additionally, using the hydrogeochemical reaction simulation software PHREEQC, we performed a quantitative analysis of the hydrogeochemical processes, with a particular emphasis on the dissolution−precipitation equilibrium of minerals in groundwater.

    The results show, (1) The karst water in the covered karst area of northern Guangzhou is characterized as extremely soft to slightly hard, neutral, and fresh. The total dissolved solids (TDS) and total hardness of the karst water are low, and the pH remains relatively stable. The dominant anion and cation are ${\rm{HCO}}_3^{-}$ and Ca2+, respectively. The trend of ion concentrations is Ca2+>K++Na+>Mg2+ and ${\rm{HCO}}_3^{-}$ >Cl>${\rm{SO}}_4^{2-}$ , respectively. The hydrochemical types of karst water are primarily of the HCO3 type. (2) The ρ(K++Na+)/ρ(K++Na++Ca2+) of karst water ranges from 0.1 to 0.6, and the ρ(Cl)/ρ (Cl+${\rm{HCO}}_3^{-}$ ) ranges from 0.1 to 0.5. The chlor-alkali indices (CAI1 and CAI2) mainly fall within the ranges of -2 to 1 and -0.25 to 0.25, respectively, indicating weak cation exchange adsorption. In 78.57% of the water samples, the ratio of γ(K++ Na+) to γ(Cl) ions is at or above the 1∶1 line, indicating that K+, Na+ and Cl primarily originate from the dissolution of rock salt. The ratios of γ(Ca2++Mg2+) to γ(${\rm{HCO}}_3^{-}$ + ${\rm{SO}}_4^{2-}$ ) ions are concentrated near or above the 1∶1 line. Furthermore, 85.71% of the water samples display ratios of γ(Ca2+) to γ(${\rm{HCO}}_3^{-}$) ions that are either near the 1∶1 line or between the 1∶1 line and 2∶1 line. Additionally, 85.71% of the water samples exhibit ratios of γ(Ca2+) to γ(Mg2+) ions above the 1∶1 line. These findings suggest that Ca2+, Mg2+ and ${\rm{HCO}}_3^{-}$ ions are derived from the dissolution of carbonate minerals, while ${\rm{SO}}_4^{2-}$ ions originate from the dissolution of carbonate rocks and evaporitic salts, such as gypsum. (3) The lithology of covered karst is dominated by limestone, followed by dolomite limestone. The ratio of CaO to MgO in the rock chemical composition of limestone (19.36−119.73) is much larger than that of dolomitic limestone (1.43−4.71), and the dissolution ability of limestone is obviously stronger than that of dolomitic limestone. (4) PHREEQC software has been used to establish a reverse hydrogeochemical model in the rock sampling points from SY20 to SY19 in the Caopu area of Lyutian Town . The simulation results quantitatively confirmed the dissolution of calcite, dolomite, gypsum, and rock salt in karst water, with respective dissolution amounts of 2.599×10−4 mol·L−1, 8.474×10−5 mol·L−1, 4.165×10−6 mol·L−1, and 3.446×10−5 mol·L−1. (5) The saturation indices of calcite and dolomite in karst water show a good correspondence with karst development. Among the water sampling points where calcite is in a good dissolved state, 85.71% of the points exhibit karst development. In contrast, among the water sampling points where dolomite is in a dissolved state, 66.67% of the points exhibit karst development. The saturation indices of calcite and dolomite in groundwater indicate the trend of karst development and can serve as criteria for fine evaluation of karst development.

    This study reveals the hydrochemical characteristics of groundwater, as well as its formation and evolution in the covered karst area of northern Guangzhou. It also explores the relationship between groundwater mineral saturation indices and karst development. The research findings can provide a scientific basis for the exploitation and utilization of groundwater and for the protection of geological environment in the covered karst area of Guangzhou, which holds significant practical implications.

  • 加载中
  • [1] 张人权, 梁杏, 靳孟贵, 万力, 于青春. 水文地质学基础( 第六版)[M].北京: 地质出版社, 2011.

    Google Scholar

    ZHANG Renquan, LIANG Xing, JIN Menggui, WAN Li, YU Qingchun. Fundamentals of hydrogeology(6th Edition)[M]. Beijing: Geological Publishing House, 2011.

    Google Scholar

    [2] 苏东, 龚绪龙, 杨磊, 黄敬军, 许书刚, 龚亚兵, 崔龙玉. 常州市地下水化学特征与成因分析[J]. 地质论评, 2023, 69(3):1039-1049.

    Google Scholar

    SU Dong, GONG Xulong, YANG Lei, HUANG Jingjun, XU Shugang, GONG Yabing, CUI Longyu. Hydrogeochemical characteristics and controlling factors of groundwater in Changzhou[J]. Geological Review, 2023, 69(3): 1039-1049.

    Google Scholar

    [3] 史箫笛, 康小兵, 许模, 邓宏科. 川滇高原斜坡地带峡谷区岩溶水化学特征及演化规律[J]. 地质学报, 2019, 93(11):2975-2984.

    Google Scholar

    SHI Xiaodi, KANG Xiaobing, XU Mo, DENG Hongke. Hydrochemical characteristics and evolution laws of karst grounderwater in the slope zone of the canyon area, Sichuan-Yunnan Plateau[J]. Acta Geologica Sinica, 2019, 93(11): 2975-2984.

    Google Scholar

    [4] 屈秋楠, 宋小庆, 唐娱杰, 杨振华. 地下含水层水资源赋存条件及其水化学特征: 以贵州省安龙县幅为例[J]. 中国岩溶, 2019, 38(3): 378-387.

    Google Scholar

    QU Qiunan, SONG Xiaoqing, TANG Yujie, YANG Zhenhua. Groundwater occurrence condition and hydrochemical characteristics: A case study of Anlong county map sheet in Guizhou Province[J]. Carsologica Sinica, 2019, 38(3): 378-387.

    Google Scholar

    [5] 唐金平, 张强, 胡漾, 邵江, 何文君, 张宇. 巴中北部岩溶山区地下水化学特征及演化分析[J]. 环境科学, 2019, 40(10):4543-4552.

    Google Scholar

    TANG Jinping, ZHANG Qiang, HU Yang, SHAO Jiang, HE Wenjun, ZHANG Yu. Hydrochemical characteristics of karst groundwater in the mountains of northern Bazhong city, China[J]. Environmental Science, 2019, 40(10): 4543-4552.

    Google Scholar

    [6] 蒙彦. 广花盆地岩溶塌陷多参数监测预警与风险防控[D]. 武汉:中国地质大学, 2020.

    Google Scholar

    MENG Yan. Multi-parameter monitoring, early warning and risk prevention of karst collapse in Guanghua Basin[D]. Wuhan: China University of Geosciences, 2020.

    Google Scholar

    [7] 侯文隽, 龚星, 刘锋, 李红中. 碳酸盐岩水热协同混合溶蚀作用机理的数值试验研究[J]. 中国岩溶, 2023, 42(4):775-784.

    Google Scholar

    HOU Wenjuan, GONG Xing, LIU Feng, LI Hongzhong. Numerical experiment on the mechanism of mixing corrosion of carbonate rocks by hydrothermal synergistic effect[J]. Carsologica Sinica, 2023, 42(4): 775-784.

    Google Scholar

    [8] Débora Maria Diniz Barbosa, Rodrigo Sérgio De Paula, Leila Nunes Menegasse Velásquez, Matheus Alonso Castelo Pen. Hydrogeochemistry of aquifers in the northern portion of the Lagoa Santa Karst Environmental Protection Area and surroundings, state of Minas Gerais, Brazil[J]. Journal of South American Earth Sciences, 2024, 144: 105042. doi: 10.1016/j.jsames.2024.105042

    CrossRef Google Scholar

    [9] Moran-Ramírez J, Ramos-Leal J A, Mahlknecht J, Santacruz-DeLeón G, Martín-Romero F, Fuentes Rivas R, Mora A. Modeling of groundwater processes in a karstic aquifer of Sierra Madre Oriental, Mexico[J]. Applied Geochemistry, 2018, 95: 97-109. doi: 10.1016/j.apgeochem.2018.05.011

    CrossRef Google Scholar

    [10] 郝艳茹, 王鹏, 张明珠, 张晋, 李丹, 庞园. 广花盆地地下水化学特征及其演化分析[J]. 生态环境学报, 2020, 29(2):337-344.

    Google Scholar

    HAO Yanru, WANG Peng, ZHANG Mingzhu, ZHANG Jin, LI Dan, PANG Yuan. Hydrochemical characteristic and its driving force of groundwater in the covered Karst in Pearl River basin[J]. Ecology and Environmental Sciences, 2020, 29(2): 337-344.

    Google Scholar

    [11] 张明珠, 朱嵩, 曾慧, 庞园. 帽峰山地区地下水化学时空分布特征分析与污染评价[J]. 环境工程, 2018, 36(10):135-139.

    Google Scholar

    ZHANG Mingzhu, ZHU Song, ZENG Hui, PANG Yuan. Spatial and seasonal geochemical characteristics and contamination assessment of groundwater in MaoFeng mountain area[J]. Environmental Engineering, 2018, 36(10): 135-139.

    Google Scholar

    [12] 王忠忠, 黄文龙, 庄卓涵, 胡飞跃, 刘广宁. 珠三角丘陵山区岩溶塌陷发育特征及地质模式:以广州北部为例[J]. 地质与勘探, 2023, 59(6):1304-1314. doi: 10.12134/j.dzykt.2023.06.015

    CrossRef Google Scholar

    WANG Zhongzhong, HUANG Wenlong, ZHUANG Zhuohan, HU Feiyue, LIU Guangning. Development features and geological models of karst collapse in hilly areas of the Pearl River Delta: A case study of northern Guangzhou[J]. Geology and Exploration, 2023, 59(6): 1304-1314. doi: 10.12134/j.dzykt.2023.06.015

    CrossRef Google Scholar

    [13] 苗迎, 孔祥胜, 宋朝静. 南宁市区地下水水化学特征及形成机制[J]. 中国岩溶, 2015, 34(3):228-233.

    Google Scholar

    MIAO Ying, KONG Xiangsheng, SONG Zhaojing. Hydrochemical characteristics and formation mechanism of groudwater in Nanning City[J]. Carsologica Sinica, 2015, 34(3): 228-233.

    Google Scholar

    [14] 徐建华. 现代地理学中的数学方法[M]. 北京: 高等教育出版社, 2017.

    Google Scholar

    XU Jianhua. Mathematical methods in contemporary geography[M]. Beijing: Higher Education Press, 2017.

    Google Scholar

    [15] 孙丰英. 淮南煤田岩溶地下水化学特征及形成机制研究[D]. 淮南:安徽理工大学, 2021.

    Google Scholar

    SUN Fengying. Study on hydrochemical characteristics and formation mechanism of karst groundwater in Huainan coalfield[D]. Huainan: Anhui University of Science and Technology, 2021.

    Google Scholar

    [16] William J. Deutsch, Randy Siegel. Groundwater geochemistry. Fundamentals and applications to contamination[M]. New Jersey: CRC Press, 1997.

    Google Scholar

    [17] 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1986: 87-88.

    Google Scholar

    SHEN Zhaoli. Hydrogeochemical basis[M]. Beijing: Geological Publishing House, 1986: 87-88.

    Google Scholar

    [18] 王金金. 北京平谷平原区浅层地下水化学特征演化研究[D].成都:成都理工大学, 2020.

    Google Scholar

    WANG Jinjin. Study on evolution of chemical characteristics of shallow groundwater in Pinggu plain of Beijing[D].Chengdu: China University of Geosciences, 2020.

    Google Scholar

    [19] 刘绍, 肖长来, 梁秀娟, 刘伟, 李明乾, 张芷豪. 双辽市地下水水文地球化学演化规律研究[J]. 中国农村水利水电, 2021(9):85-90, 95.

    Google Scholar

    LIU Shao, XIAO Changlai, LIANG Xiujuan, LIU Wei, LI Mingqian, ZHANG Zhihao. Research on the evolution law of hydrochemical chemistry of groundwater in Shuangliao city[J]. China Rural Water and Hydropower, 2021(9): 85-90, 95.

    Google Scholar

    [20] 广东省地质矿产局. 广东省区域地质志[M]. 北京: 地质出版社, 1988.

    Google Scholar

    Guangdong Geology and Mineral Resources Bureau. Regional geology of Guangdong Province[M]. Beijing: Geological Publishing House, 1988.

    Google Scholar

    [21] HUANG Qibo, QIN Xiaoqun, LIU Pengyu, CHENG Ruirui, LI Tengfang. Regional evolution and control factors of karst groundwater in Liulin spring catchment[J]. Environmental Science, 2019, 40(5): 2132-2142.

    Google Scholar

    [22] 柳浩然, 张文强, 刘文, 马雪莹, 关琴, 张海林. 基于长期监测的济南趵突泉水文地球化学演化规律研究[J]. 中国岩溶, 2023, 42(5):1-13.

    Google Scholar

    LIU Haoran, ZHANG Wenqiang, LIU Wen, MA Xueying, GUAN Qin, ZHANG Hailin. Hydrogeochemical evolution characteristics of Jinan Baotu Spring based on long-term monitoring[J]. Carsologica Sinica, 2023, 42(5): 1-13.

    Google Scholar

    [23] 刘影, 王中美, 杨秀丽, 罗和平, 李宗发. 贵安新区东部岩溶地下水水化学特征[J]. 长江科学院院报, 2022, 39(1):39-46. doi: 10.11988/ckyyb.20200877

    CrossRef Google Scholar

    LIU Ying, WANG Zhongmei, YANG Xiuli, LUO Heping, LI Zongfa. Analysis of hydrochemical characteristics of karst groundwater in the east of Gui'an New Area[J]. Journal of Changjiang River Scientific Research Institute, 2022, 39(1): 39-46. doi: 10.11988/ckyyb.20200877

    CrossRef Google Scholar

    [24] GUO Yongli, ZHANG Cheng, XIAO Qiong, BU Hua. Hydrogeochemical characteristics of a closed karst groundwater basin in North China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 325(3): 365-379.

    Google Scholar

    [25] 王瑞, 李潇瀚. 百泉泉域岩溶地下水水化学演化特征及成因[J]. 中国岩溶, 2021, 40(3):398-408.

    Google Scholar

    WANG Rui, LI Xiaohan. Hydrochemical characteristics and formation causes of karst groundwater in Baiquan spring catchment[J]. Carsologica Sinica, 2021, 40(3): 398-408.

    Google Scholar

    [26] 龚亚兵, 龚绪龙, 许书刚, 唐鑫, 苏东, 吴夏懿. 苏南地区地下水化学特征及演化分析[J]. 地质论评, 2022, 68(6): 2207-2218.

    Google Scholar

    GONG Yabing , GONG Xulong, XU Shugang, TANG Xin, SU Dong, WU Xiayi. Hydrogeochemical characteristics and evolution of groundwater in southern Jiangsu[J]. Geological Review, 2022, 68(6): 2207-2218.

    Google Scholar

    [27] WEN Yao, QIU Jiahao, CHENG Si, XU Changchang, GAO Xiaojiang. Hydrochemical evolution mechanisms of shallow groundwater and its quality assessment in the estuarine coastal zone: A case study of Qidong, China[J]. International Journal of Environmental Research and Public Health, 2020, 17(10): 3382-3407. doi: 10.3390/ijerph17103382

    CrossRef Google Scholar

    [28] 姚锦梅, 周训, 李娟, 戴文育, 康星洪. 广东雷州半岛玄武岩地下水水文地球化学特征及演化模拟[J]. 地质通报, 2007, 26(3): 327-334.

    Google Scholar

    YAO Jinmei, ZHOU Xun, LI Juan, DAI Wenyu, KANG Xinghong. Hydrogeochemical characteristics and evolution simulation of groundwater in basalts on the Leizhou Peninsula, Guangdong, China. Geological Bulletin of China, 2007, 26(3): 327-334.

    Google Scholar

    [29] YANG Nuan, WANG Guangcai, SHI Zheming, ZHAO Dan, JIANG Wanjun, GUO Liang, LIAO Fu, ZHOU Pengpeng. Application of multiple approaches to investigate the hydrochemistry evolution of groundwater in an arid region: Nomhon, northwestern China[J]. Water, 2018, 10(11): 1667-1685. doi: 10.3390/w10111667

    CrossRef Google Scholar

    [30] 曹振东, 危润初, 段启杉, 谭廷静. 犀牛洞地下河水—岩作用反向模拟[J]. 人民黄河, 2012, 34(10):74-76.

    Google Scholar

    CAO Zhendong, WEl Runchu, DUAN QiShan, TAN Tingjing. Inverse geochemical simulation of water-rock interaction of Xiniudong underground river of Xinniu cave[J]. Yellow River, 2012, 34(10): 74-76.

    Google Scholar

    [31] 郭钰颖, 吕智超, 王广才, 马栾, 许庆宇, 黄旭娟, 高树志. 峰峰矿区东部地下水水文地球化学模拟[J]. 煤田地质与勘探, 2016, 44(6):101-105.

    Google Scholar

    GUO Yuying, LYU Zhichao, WANG Guangcai, MA Luan, XU Qingyu, HUANG Xujuan, GAO Shuzhi. Hydrogeochemical simulation of groundwater in Eastern Fengfeng mining area[J]. Coal Geology & Exploration, 2016, 44(6): 101-105.

    Google Scholar

    [32] 李义连, 王焰新, 周来茹, 高红波, 张江华. 地下水矿物饱和度的水文地球化学模拟分析:以娘子关泉域岩溶水为例[J]. 地质科技情报, 2002(1):32-36.

    Google Scholar

    LI Yilian, WANG Yanxin, ZHOU Lairu, GAO Hongbo, ZHANG Jianghua. Hydrogeochemical modeling on saturation of minerals in groundwater: a case study at Niangziguan, northern China[J]. Bulletin of Geological Science and Technology, 2002(1): 32-36.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(21) PDF downloads(2) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint