2024 No. 1
Article Contents

LU Zhaoqun, MENG Xiangxin, QI Xiequan, ZHU Guangji, LIU Kaili, YIN Xiuzhen. Hydrogeochemical characteristics and genesis of geothermal water in northern Zhangqiu[J]. Carsologica Sinica, 2024, 43(1): 12-24. doi: 10.11932/karst2024y001
Citation: LU Zhaoqun, MENG Xiangxin, QI Xiequan, ZHU Guangji, LIU Kaili, YIN Xiuzhen. Hydrogeochemical characteristics and genesis of geothermal water in northern Zhangqiu[J]. Carsologica Sinica, 2024, 43(1): 12-24. doi: 10.11932/karst2024y001

Hydrogeochemical characteristics and genesis of geothermal water in northern Zhangqiu

  • The northern part of Zhangqiu district in Jinnan City has developed a thick sedimentary formation from the late Paleozoic to the Cenozoic. In this district, relatively well-developed fault structures and magmatic rocks provide good geothermal conditions. Abundant geothermal resources have been discovered in the study area, with three geothermal wells located near the fault zone. Therefore, establishing the genesis model of geothermal resources is significant for their future sustainable development and utilization.

    Based on hydrochemical and isotopic data of the study area, hydrochemical characteristics, water-rock interaction process, recharge source and formation age of geothermal water have been analyzed in this study. Besides, the elevation of the recharge area, thermal reservoir temperature, and depth of hot water circulation have also been calculated. Research findings show that geothermal water in the study area is composed of Cl·SO4-Na·Ca or SO4·Cl-Ca·Na, whose hydrochemical components mainly come from water-rock dissolution in the similar hydrogeochemical process. The source of water recharge is supplied by atmospheric precipitation, at an elevation from +563 m to +616 m. The 14C apparent age ranges from 5.55 ka to 29.71 ka. The geothermal water is mixed with modern water and ancient water. The chalcedony temperature scale shows that the temperature of geothermal reservoir is at 41.9–52.4 ℃, with the circulation depth of geothermal water at 622–1,565 m. The study area is a small-opened karst hot reservoir with deep circulation, during which geothermal water is heated up. Formation and enrichment of geothermal water are significantly controlled by fault structures. The geothermal reservoir is of stratified and banded type, belonging to geothermal resources at medium-low temperature.

  • 加载中
  • [1] 徐雪球, 杜建国, 王素娟. 江苏省地热资源开发利用现状与建议[C]//中国地热能:成就与展望——李四光倡导中国地热能开发利用40周年纪念大会暨中国地热发展研讨会论文集, 2010: 346-349.

    Google Scholar

    XU Xueqiu, DU Jianguo, WANG Sujuan. Current situation and suggestions on the development and utilization of geothermal resources in Jiangsu Province[C]//Geothermal Energy in China: Achievements and Prospects—Proceedings of the 40th Anniversary Conference of Li Siguang's Advocacy for the Development and Utilization of Geothermal Energy in China and the Symposium on Geothermal Energy Development in China, 2010: 346-349.

    Google Scholar

    [2] 王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4):449-459. doi: 10.3975/cagsb.2017.04.02

    CrossRef Google Scholar

    WANG Guiling, ZHANG Wei, LIANG Jiyun, LIN Wenjing, LIU Zhiming, WANG Wanli. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449-459. doi: 10.3975/cagsb.2017.04.02

    CrossRef Google Scholar

    [3] 王奎峰, 李文平, 韩代成, 赵辉. 山东省临清地热田地热水化学特征及热水起源研究[J]. 地质调查与研究, 2014, 37(3):230-236. doi: 10.3969/j.issn.1672-4135.2014.03.012

    CrossRef Google Scholar

    WANG Kuifeng, LI Wenping, HAN Daicheng, ZHAO Hui. Hydrochemistry and origin of the Linqing geothermal field in Shandong Province[J]. Geological Survey and Research, 2014, 37(3): 230-236. doi: 10.3969/j.issn.1672-4135.2014.03.012

    CrossRef Google Scholar

    [4] 张保建. 鲁西北地区地下热水的水文地球化学特征及形成条件研究[D]. 北京:中国地质大学(北京), 2011.

    Google Scholar

    ZHANG Baojian. Hydrogeochemical characteristics and formation conditions of the geothermal water in northwestern Shandong Province[D]. Beijing: China University of Geosciences (Beijing), 2011.

    Google Scholar

    [5] 张保建, 沈照理, 乔增宝, 亓麟. 聊城市东部岩溶地热田地下热水水化学特征及成因分析[J]. 中国岩溶, 2009, 28(3):263-268. doi: 10.3969/j.issn.1001-4810.2009.03.006

    CrossRef Google Scholar

    ZHANG Baojian, SHEN Zhaoli, QIAO Zengbao, QI Lin. Analysis on hydro-chemical features and origin of the hot spring in karst geothermal field, east Liaocheng City[J]. Carsologica Sinica, 2009, 28(3): 263-268. doi: 10.3969/j.issn.1001-4810.2009.03.006

    CrossRef Google Scholar

    [6] 卞跃跃, 赵丹. 四川康定地热田地下热水成因研究[J]. 地球学报, 2018, 39(4):491-497. doi: 10.3975/cagsb.2018.060401

    CrossRef Google Scholar

    BIAN Yueyue, ZHAO Dan. Genesis of geothermal waters in the Kangding geothermal field, Sichuan Province[J]. Acta Geoscientica Sinica, 2018, 39(4): 491-497. doi: 10.3975/cagsb.2018.060401

    CrossRef Google Scholar

    [7] 谭梦如, 周训, 张彧齐, 刘海生, 余鸣潇, 海阔. 云南勐海县勐阿街温泉水化学和同位素特征及成因[J]. 水文地质工程地质, 2019, 46(3):70-80.

    Google Scholar

    TAN Mengru, ZHOU Xun, ZHANG Yuqi, LIU Haisheng, YU Mingxiao, HAI Kuo. Hydrochemical and isotopic characteristics and formation of the Mengajie hot spring in Menghai county of Yunnan[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 70-80.

    Google Scholar

    [8] 徐刚, 伍坤宇, 王鹏, 陈永东, 李兴彦, 胡林, 刘子畅, 李海. 藏北温泉盆地地热田水文地球化学特征研究[J]. 中国岩溶, 2020, 39(3):299-310. doi: 10.11932/karst20200301

    CrossRef Google Scholar

    XU Gang, WU Kunyu, WANG Peng, CHEN Yongdong, LI Xingyan, HU Lin, LIU Zichang, LI Hai. Hydrogeochemical characteristics of the geothermal field in Wenquan basin, northern Tibet[J]. Carsologica Sinica, 2020, 39(3): 299-310. doi: 10.11932/karst20200301

    CrossRef Google Scholar

    [9] 徐成华, 于丹丹, 骆祖江. 南京汤泉地下热水化学特征及其指示意义[J]. 科学技术与工程, 2020, 20(28):11472-11478. doi: 10.3969/j.issn.1671-1815.2020.28.011

    CrossRef Google Scholar

    XU Chenghua, YU Dandan, LUO Zujiang. Hydrogeochemistry of geothermal water from the Tangquan in Nanjing and its indicating significance[J]. Science Technology and Engineering, 2020, 20(28): 11472-11478. doi: 10.3969/j.issn.1671-1815.2020.28.011

    CrossRef Google Scholar

    [10] 廖昕, 蒋翰, 徐正宣, 宋章, 欧阳吉, 张云辉, 巫锡勇. 西藏东部阿旺地下热水化学特征及其成因初探[J]. 工程地质学报, 2020, 28(4):916-924.

    Google Scholar

    LIAO Xin, JIANG Han, XU Zhengxuan, SONG Zhang, OUYANG Ji, ZHANG Yunhui, WU Xiyong. Hydrogeochemical characteristics and genesis mechanism of geothermal water in Awang, eastern Tibet[J]. Journal of Engineering Geology, 2020, 28(4): 916-924.

    Google Scholar

    [11] 卢兆群, 彭明章, 董妍, 亓协全, 朱光骥, 孟祥鑫. 山东平阴地热水水文地球化学特征及成因分析[J]. 中国地质调查, 2022, 9(1):104-114.

    Google Scholar

    LU Zhaoqun, PENG Mingzhang, DONG Yan, QI Xiequan, ZHU Guangji, MENG Xiangxin. Hydrogeochemical characteristics and genesis analysis of geothermal water in Pingyin of Shandong Province[J]. Geological Survey of China, 2022, 9(1): 104-114.

    Google Scholar

    [12] 尚敏, 易武, 张兰新. 济南北部地区地热资源形成条件研究[J]. 三峡大学学报(自然科学版), 2008(4):22-25.

    Google Scholar

    SHANG Min, YI Wu, ZHANG Lanxin. Research on forming condition of geothermal resources in north region of Jinan[J]. Journal of Three Gorges University (Natural Science), 2008(4): 22-25.

    Google Scholar

    [13] 张中祥, 张海林. 济南北部地热田开发与保护建议[J]. 地质调查与研究, 2008, 31(3):264-269.

    Google Scholar

    ZHANG Zhongxiang, ZHANG Hailin. Development and protection suggestion for geothermal field in northern Jinan, Shandong Province[J]. Geological Survey and Research, 2008, 31(3): 264-269.

    Google Scholar

    [14] 隋海波, 康凤新, 李常锁, 韩建江, 邢立亭. 水化学特征揭示的济北地热水与济南泉水关系[J]. 中国岩溶, 2017, 36(1):49-58. doi: 10.11932/karst20170106

    CrossRef Google Scholar

    SUI Haibo, KANG Fengxin, LI Changsuo, HAN Jianjiang, XING Liting. Relationship between north Ji'nan geothermal water and Ji'nan spring water revealed by hydrogeochemical characteristics[J]. Carsologica Sinica, 2017, 36(1): 49-58. doi: 10.11932/karst20170106

    CrossRef Google Scholar

    [15] 蒙永辉, 王集宁, 于得芹. 章丘市枣园桃花山地热田地质特征分析[J]. 山东国土资源, 2010, 26(11):24-27. doi: 10.3969/j.issn.1672-6979.2010.11.005

    CrossRef Google Scholar

    MENG Yonghui, WANG Jining, YU Deqin. Analysis on geological characteristics of Taohuashan geothermal field in Zaoyuan of Zhangqiu City[J]. Shandong Land and Resources, 2010, 26(11): 24-27. doi: 10.3969/j.issn.1672-6979.2010.11.005

    CrossRef Google Scholar

    [16] 蒙永辉, 于得芹. 章丘枣园桃花山地热水与百脉泉水力联系浅析[C]//地质调查环境保障实现找矿新突破-2012年华东六省一市地学科技论坛文集, 2012:285-289.

    Google Scholar

    MENG Yonghui, YU Deqin. Hydraulic connection analysis on geothermal water and Baimai springs located on Zaoyuan peach blossom mountain in Zhangqiu City[C]//Geological survey, environmental protection and new breakthroughs in ore prospecting-collected papers of the 2012 Geological Science and Technology Forum of Six Provinces and One City in East China, 2012: 285-289.

    Google Scholar

    [17] 程洪柱. 济南东部宁家埠地区地热资源特征与开发利用探讨[J]. 中国煤炭地质, 2018, 30(Suppl.1):72-75. doi: 10.3969/j.issn.1674-1803.2018.S1.14

    CrossRef Google Scholar

    CHENG Hongzhu. Probing into geothermal resource features, exploitation and utilization in Ningjiabu area to the east of Jinan[J]. Coal Geology of China, 2018, 30(Suppl.1): 72-75. doi: 10.3969/j.issn.1674-1803.2018.S1.14

    CrossRef Google Scholar

    [18] 程洪柱, 成世才, 王振涛. 基于水化学特征的“奥灰”地热流体水文地球化学演化机制研究:以济南东部章宁1地热井为例[J]. 山东国土资源, 2019, 35(8):20-25.

    Google Scholar

    CHENG Hongzhu, CHENG Shicai, WANG Zhentao. Study on hydrogeochemical evolution mechanism of "Ordovician limestone" geothermal fluid based on hydrochemical characteristics: Setting No. 1 Zhangning geothermal well in eastern Ji'nan as an example[J]. Shandong Land and Resources, 2019, 35(8): 20-25.

    Google Scholar

    [19] 张元培, 牛俊强, 王炜. 湖北京山地区地热田地球化学特征及热源分析[J]. 物探与化探, 2010, 34(6):806-809, 813.

    Google Scholar

    ZHANG Yuanpei, NIU Junqiang, WANG Wei. Geochemical characteristics and heat source of the geothermal field in Jingshan area, Hubei Province[J]. Geophysical and Geochemical Exploration, 2010, 34(6): 806-809, 813.

    Google Scholar

    [20] 潘明, 郝彦珍, 吕勇, 李波. 云南昌宁橄榄河热泉水化学特征及复合成因机制研究[J]. 中国岩溶, 2021, 40(2):281-289. doi: 10.11932/karst20210208

    CrossRef Google Scholar

    PAN Ming, HAO Yanzhen, LYU Yong, LI Bo. Hydrochemical characteristics and composite genesis of a geothermal spring in Ganlanhe, Changning, Yunnan Province[J]. Carsologica Sinica, 2021, 40(2): 281-289. doi: 10.11932/karst20210208

    CrossRef Google Scholar

    [21] 闫晓雪, 甘浩男, 岳高凡. 广东惠州—从化典型地热田水文地球化学特征及成因分析[J]. 地质论评, 2019, 65(3):743-754.

    Google Scholar

    YAN Xiaoxue, GAN Haonan, YUE Gaofan. Hydrogeochemical characteristics and genesis of typical geothermal fields from Huangshandong to Conghua in Guangdong[J]. Geological Review, 2019, 65(3): 743-754.

    Google Scholar

    [22] Gibbs R J. Mechanisms controlling world chemistry[J]. Science, 1970, 170: 1088-1090. doi: 10.1126/science.170.3962.1088

    CrossRef Google Scholar

    [23] 刘伟坡, 沙娜, 程旭学, 王文祥, 王雨山, 李海学, 张梦南. 海原县山前地下水化学特征分析[J]. 人民黄河, 2019, 41(8):82-87. doi: 10.3969/j.issn.1000-1379.2019.08.016

    CrossRef Google Scholar

    LIU Weipo, SHA Na, CHENG Xuxue, WANG Wenxiang, WANG Yushan, LI Haixue, ZHANG Mengnan. Study on hydro-geochemical characteristics in piedmont of Haiyuan county[J]. Yellow River, 2019, 41(8): 82-87. doi: 10.3969/j.issn.1000-1379.2019.08.016

    CrossRef Google Scholar

    [24] 王瑞, 李潇瀚. 百泉泉域岩溶地下水水化学演化特征及成因[J]. 中国岩溶, 2021, 40(3):398-408

    Google Scholar

    WANG Rui, LI Xiaohan. Hydrochemical characteristics and genesis of karst groundwater in the Baiquan spring catchment[J]. Carsologica Sinica, 2021, 40(3): 398-408.

    Google Scholar

    [25] 尚英男. 环境同位素示踪技术在地热地球化学研究中的应用[J]. 世界核地质科学, 2006,23(1):21-26 doi: 10.3969/j.issn.1672-0636.2006.01.005

    CrossRef Google Scholar

    SHANG Yingnan. Application of environmental isotope tracing technology to geothermal geochemistry[J]. World Nuclear Geoscience, 2006,23(1): 21-26. doi: 10.3969/j.issn.1672-0636.2006.01.005

    CrossRef Google Scholar

    [26] 柳鉴容, 宋献方, 袁国富, 孙晓敏, 刘鑫, 王仕琴. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 2009, 54(22):3521-3531. doi: 10.1360/csb2009-54-22-3521

    CrossRef Google Scholar

    LIU Jianrong, SONG Xianfang, YUAN Guofu, SUN Xiaomin, LIU Xin, WANG Shiqin. Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources[J]. Chinese Science Bulletin, 2009, 54(22): 3521-3531. doi: 10.1360/csb2009-54-22-3521

    CrossRef Google Scholar

    [27] 薛磊, 申中华, 张佰康. 济南市东部地区地热流体的化学特征研究[J]. 地下水, 2020, 42(4):10-15.

    Google Scholar

    XUE Lei, SHEN Zhonghua, ZHANG Baikang. The brief analysis of the chemical characteristics of geothermal fluid in east Jinan[J]. Ground Water, 2020, 42(4): 10-15.

    Google Scholar

    [28] 阮云峰, 赵良菊, 肖洪浪, 周茅先, 程国栋. 黑河流域地下水同位素年龄及可更新能力研究[J]. 冰川冻土, 2015, 37(3):767-782.

    Google Scholar

    RUAN Yunfeng, ZHAO Liangju, XIAO Honglang, ZHOU Maoxian, CHENG Guodong. The groundwater in the Heihe river basin: Isotope age and renewability[J]. Journal of Glaciology and Geocryology, 2015, 37(3): 767-782.

    Google Scholar

    [29] 卢兆群, 成世才, 陈刚, 陈纪平, 徐健. 山东平阴氡温泉水化学特征及成因分析[J]. 中国煤炭地质, 2020, 32(11):65-72. doi: 10.3969/j.issn.1674-1803.2020.11.13

    CrossRef Google Scholar

    LU Zhaoqun, CHENG Shicai, CHEN Gang, CHEN Jiping, XU Jian. Radon hot spring hydrochemical features and genetic analysis in Pingyin, Shandong[J]. Coal Geology of China, 2020, 32(11): 65-72. doi: 10.3969/j.issn.1674-1803.2020.11.13

    CrossRef Google Scholar

    [30] 黄奇波, 覃小群, 刘朋雨, 张连凯, 程瑞瑞, 李腾芳. 山西柳林泉域岩溶地下水溶解无机碳特征及控制因素[J]. 地质论评, 2019, 65(4):961-972.

    Google Scholar

    HUANG Qibo, QIN Xiaoqun, LIU Pengyu, ZHANG Liankai, CHENG Ruirui, LI Tengfang. Characteristics and control factors of dissolved inorganic carbon in karst groundwater in Liuling spring catchment, Lvliang, Shanxi[J]. Geological Review, 2019, 65(4): 961-972.

    Google Scholar

    [31] 王莹, 周训, 于湲, 柳春晖, 周海燕. 应用地热温标估算地下热储温度[J]. 现代地质, 2007, 21(4):605-612. doi: 10.3969/j.issn.1000-8527.2007.04.003

    CrossRef Google Scholar

    WANG Ying, ZHOU Xun, YU Yuan, LIU Chunhui, ZHOU Haiyan. Application of geothermometers to calculation of temperature of geothermal reservoirs[J]. Geoscience, 2007, 21(4): 605-612. doi: 10.3969/j.issn.1000-8527.2007.04.003

    CrossRef Google Scholar

    [32] Giggenbach W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52: 2749-2765.

    Google Scholar

    [33] 康凤新, 隋海波, 郑婷婷. 山前岩溶热储聚热与富水机理:以济南北岩溶热储为例[J]. 地质学报, 2020, 94(5):1606-1624. doi: 10.3969/j.issn.0001-5717.2020.05.018

    CrossRef Google Scholar

    KANG Fengxin, SUI Haibo, ZHENG Tingting. Heat accumulation and water enrichment mechanism of piedmont karstic geothermal reservoirs: A case study of northern Jinan[J]. Acta Geologica Sinica, 2020, 94(5): 1606-1624. doi: 10.3969/j.issn.0001-5717.2020.05.018

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(8)

Article Metrics

Article views(1412) PDF downloads(128) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint