2024 Vol. 43, No. 6
Article Contents

YANG Yanfang, JU Hejian, CHENG Yang, WANG Yong, YAN Shuhao, WANG Shanshan, LI Qin. Remote sensing interpretation and application of geological environment conditions in early identification of potential geo-hazards: A case study of Huaping county[J]. Carsologica Sinica, 2024, 43(6): 1362-1375. doi: 10.11932/karst20240613
Citation: YANG Yanfang, JU Hejian, CHENG Yang, WANG Yong, YAN Shuhao, WANG Shanshan, LI Qin. Remote sensing interpretation and application of geological environment conditions in early identification of potential geo-hazards: A case study of Huaping county[J]. Carsologica Sinica, 2024, 43(6): 1362-1375. doi: 10.11932/karst20240613

Remote sensing interpretation and application of geological environment conditions in early identification of potential geo-hazards: A case study of Huaping county

More Information
  • Huaping county is located in the mountains bordering the Yunnan–Guizhou Plateau and the Qinghai–Xizang Plateau, where geo-hazards occur frequently. In order to understand the background of disaster generation and the laws of their occurrence, as well as to enhance the accuracy of early identification of potential geo-hazards and reduce the likelihood of disasters, this study has developed a county-level system for remote sensing interpretation of the geological environment. This system is designed for the early identification of potential geo-hazards, based on practical work and existing norms and standards. Additionally, this study has established a set of full-element interpretation signs for geological environment conditions in Huaping county by utilizing Beijing-2 High-Resolution Optical Remote Sensing Images, thereby completing the remote sensing interpretation of the geological environment in Huaping county. Based on the interpretation results of the geological environment in this county, this study examines the potential landslide hazards in Bade village, Huaping county, as a case study. It demonstrates how remote sensing interpretation of the geological environment facilitates the early identification and risk assessment of potential geo-hazards occurring in a single geographic unit. The overall findings of this study are as follows:

    (1) The remote sensing interpretation system of county-level geological conditions, based on potential geo-hazards, can be summarized and classified into seven categories: topography and geomorphology, geological structure, stratum lithology, hydrogeology, land use, human activities, and adverse geological phenomena.

    (2) With the use of seven categories of geological environment elements, the process of interpreting and assessing potential disasters in a single geographic unit can be summarized as the following steps. First, the characteristics of surface deformation, and indicators of topography and geomorphology were analyzed to determine the activity and the topographic associated with the occurrence of potential geo-hazards. Second, based on the four kinds of indicators of geological structure, stratum lithology, hydrogeological conditions, and adverse geological phenomena, hidden dangers in the disaster environment were assessed. Third, with the use of two indicators of human activities and land use, the type of the hidden bearing body and the associated hazards were evaluated. Finally, the risk level of the hidden danger was evaluated based on the activity and the potential harm involved. It is important to note that this assessment was conducted indoors, and the final risk level must be verified in the field.

    (3) Conducting a full-element optical remote sensing interpretation of geological environment can rapidly and accurately assess the disaster-bearing conditions of specific geo-hazards in a single geographical unit such as the potential landslides in Badu village, Huaping county. This approach can significantly enhance the accuracy of early identification of potential geo-hazards and holds significant importance for identifying such geo-hazards in the mountainous areas of Southwest China. It is recommended to implement a thorough remote sensing interpretation.

  • 加载中
  • [1] 范一大, 吴玮, 王薇, 刘明, 温奇. 中国灾害遥感研究进展[J]. 遥感学报, 2016, 20(5):1170-1184.

    Google Scholar

    FAN Yida, WU Wei, WANG Wei, LIU Ming, WEN Qi. Research progress of disaster remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5): 1170-1184.

    Google Scholar

    [2] 李树德. 中国滑坡、泥石流灾害的时空分布特点[J]. 水土保持研究, 1999, 6(4):33-37.

    Google Scholar

    LI Shude. The temporal and spacial distribution of landslide and debris flow disasters in China[J]. Research of Soil and Water Conservation, 1999, 6(4): 33-37.

    Google Scholar

    [3] 铁永波, 葛华, 高延超, 白永健, 徐伟, 龚凌枫, 王家柱, 田凯, 熊小辉, 范文录, 张宪政. 二十世纪以来西南地区地质灾害研究历程与展望[J]. 沉积与特提斯地质, 2022, 42(4):653-665.

    Google Scholar

    TIE Yongbo, GE Hua, GAO Yanchao, BAI Yongjian, XU Wei, GONG Lingfeng, WANG Jiazhu, TIAN Kai, XIONG Xiaohui, FAN Wenlu, ZHANG Xianzheng. The research progress and prospect of geological hazards in Southwest China since the 20th century[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4): 653-665.

    Google Scholar

    [4] 葛大庆, 戴可人, 郭兆成, 李振洪. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版), 2019, 44(7):949-956.

    Google Scholar

    GE Daqing, DAI Keren, GUO Zhaocheng, LI Zhenhong. Early identification of serious geological hazards with integrated remote sensing technologies: Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949-956.

    Google Scholar

    [5] Xie M W, Huang J X, Wang L W, Huang J H, Wang Z F. Early landslide detection based on D-InSAR technique at the Wudongde hydropower reservoir[J]. Environmental Earth Sciences, 2016, 75(8): 1-13.

    Google Scholar

    [6] Sun Q, Zhang L, Ding X, Hu J, Li Z W, Zhu J J. Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis[J]. Remote Sensing of Environment, 2015, 156: 45-57. doi: 10.1016/j.rse.2014.09.029

    CrossRef Google Scholar

    [7] 王绚, 范宣梅, 杨帆, 董秀军. 植被茂密山区地质灾害遥感解译方法研究[J]. 武汉大学学报(信息科学版), 2020, 45(11):1771-1781.

    Google Scholar

    WANG Xuan, FAN Xuanmei, YANG Fan, DONG Xiujun. Remote sensing interpretation method of geological hazards in lush mountainous area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1771-1781.

    Google Scholar

    [8] 闫茂华, 魏云杰, 李亚民, 刘明学, 王文沛, 王俊豪, 曹峰. 云南德钦日因卡滑坡孕灾背景及形成机理[J]. 地质通报, 2020, 39(12):1971-1980. doi: 10.12097/j.issn.1671-2552.2020.12.011

    CrossRef Google Scholar

    YAN Maohua, WEI Yunjie, LI Yamin, LIU Mingxue, WANG Wenpei, WANG Junhao, CAO Feng. Development characteristics and formation mechanism of Deqin Riyinka landslide in Yunnan[J]. Geological Bulletin of China, 2020, 39(12): 1971-1980. doi: 10.12097/j.issn.1671-2552.2020.12.011

    CrossRef Google Scholar

    [9] 李滨, 殷跃平, 高杨, 邢爱国, 黄波林, 贺凯, 赵超英, 万佳威. 西南岩溶山区大型崩滑灾害研究的关键问题[J]. 水文地质工程地质, 2020, 47(4):5-13.

    Google Scholar

    LI Bin, YIN Yueping, GAO Yang, XING Aiguo, HUANG Bolin, HE Kai, ZHAO Chaoying, WAN Jiawei. Critical issues in rock avalanches in the karst mountain areas of Southwest China[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 5-13.

    Google Scholar

    [10] 许强. 构建新“三查”体系 创建地灾防治新机制[OL]. 北京:中国矿业报, 2018(2018-3-12). https://www.51ore.com/kyxw/17220.html.

    Google Scholar

    [11] 许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报(信息科学版), 2020, 45(11):1651-1659.

    Google Scholar

    XU Qiang. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651-1659.

    Google Scholar

    [12] 湖南省地质环境监测总站. 地质灾害遥感调查技术规定:DD2015-01[S]. 北京:中国地质调查局, 2015.

    Google Scholar

    [13] 安徽省地质调查院. 区域地质调查中遥感技术规定(1∶50 000):DZ/T 0151-2015[S]. 北京:中华人民共和国国土资源部, 2015.

    Google Scholar

    Geological Survey of Anhui Province. Specification of remote sensing technique in regional geological survey (1: 50,000): DZ/T 0151-2015[S]. Beijing: Ministry of Land and Resources of the People's Republic of China, 2015.

    Google Scholar

    [14] 中国国土资源航空物探遥感中心. 区域环境地质勘查遥感技术规定(1∶50 000):DZ/T 0190-2015[S]. 北京:中华人民共和国国土资源部, 2015.

    Google Scholar

    China Aero Geophysical Survey and Remote Sensing Center for Natural Resources. Specification of remote sensing technology for regional environment geological exploration (1∶50,000): DZ/T 0190-2015[S]. Beijing: Ministry of Land and Resources of the People's Republic of China, 2015.

    Google Scholar

    [15] 中国地质环境监测院. 地质灾害危险性评估规范:GB/T 40112-2021[S]. 北京:中华人民共和国自然资源部, 2021.

    Google Scholar

    China Institute of Geo-Environment Monitoring. Specifications for risk assessment of geological hazard: GB/T 40112-2021[S]. Beijing: Ministry of Natural Resources of the People's Republic of China, 2021.

    Google Scholar

    [16] Rosi A, Tofani V, Tanteri L, Tacconi Stefanelli C, Agostini A, Catani F, Casagli N. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: Geomorphological features and landslide distribution[J]. Landslides, 2018, 15(1): 5-19. doi: 10.1007/s10346-017-0861-4

    CrossRef Google Scholar

    [17] Dong J, Liao M S, Xu Q, Zhang L, Tang M G, Gong J Y. Detection and displacement characterization of landslides using multitemporal satellite SAR interferometry: A case study of Danba county in the Dadu river basin[J]. Engineering Geology, 2018, 240: 95-109. doi: 10.1016/j.enggeo.2018.04.015

    CrossRef Google Scholar

    [18] 陈立权, 赵超英, 任超锋, 王佩杰, 陈雪蓉, 陈恒祎. 光学遥感用于贵州发耳镇尖山营滑坡监测研究[J]. 中国岩溶, 2020, 39(4):518-523.

    Google Scholar

    CHEN Liquan, ZHAO Chaoying, REN Chaofeng, WANG Peijie, CHEN Xuerong, CHEN Hengyi. Monitoring the Jianshanying landslide in a karst mountainous area of Guizhou by optical remote sensing[J]. Carsologica Sinica, 2020, 39(4): 518-523.

    Google Scholar

    [19] 付豪, 李为乐, 陆会燕, 许强, 董秀军, 郭晨, 谢毅, 王栋, 刘刚, 马志刚. 基于“三查”体系的丹巴县滑坡隐患早期识别与监测[J]. 武汉大学学报(信息科学版), 2024, 49(5):734-746.

    Google Scholar

    FU Hao, LI Weile, LU Huiyan, XU Qiang, DONG Xiujun, GUO Chen, XIE Yi, WANG Dong, LIU Gang, MA Zhigang. Early detection and monitoring of potential landslides in Danba county based on the space-air-ground investigation system[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 734-746.

    Google Scholar

    [20] 贺凯, 李滨, 赵超英, 高杨, 陈立权, 刘朋飞. 基于易滑地质结构与多源数据差异的岩溶山区大型崩滑灾害识别研究[J]. 中国岩溶, 2020, 39(4):467-477.

    Google Scholar

    HE Kai, LI Bin, ZHAO Chaoying, GAO Yang, CHEN Liquan, LIU Pengfei. Identification of large-scale landslide hazards based on differences of geological structure prone to sliding and multiple-source data in karst mountainous areas[J]. Carsologica Sinica, 2020, 39(4): 467-477.

    Google Scholar

    [21] 董佳慧, 牛瑞卿, 亓梦茹, 丁赞, 徐航, 何睿. InSAR技术和孕灾背景指标相结合的地灾隐患识别[J]. 地质科技通报, 2022, 41(2):187-196.

    Google Scholar

    DONG Jiahui, NIU Ruiqin, QI Mengru, DING Zan, XU Hang, HE Rui. Identification of geological hazards based on the combination of InSAR technology and disaster background indicators[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 187-196.

    Google Scholar

    [22] 许强, 董秀军, 李为乐. 基于天—空—地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966.

    Google Scholar

    XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966.

    Google Scholar

    [23] 刘传正. 论地质灾害风险识别问题[J]. 水文地质工程地质, 2017, 44(4):1-7.

    Google Scholar

    LIU Chuanzheng. Research on the risk recognition of geological disasters[J]. Hydrogeology & Engineering Geology, 2017, 44(4): 1-7.

    Google Scholar

    [24] 刘传正, 张明霞, 刘艳辉. 区域地质环境可持续利用评价体系初步研究[J]. 地学前缘, 2006, 13(1):242-245. doi: 10.3321/j.issn:1005-2321.2006.01.033

    CrossRef Google Scholar

    LIU Chuanzheng, ZHANG Mingxia, LIU Yanhui. A system of geo-environment evaluation based on sustainable land-use[J]. Earth Science Frontiers, 2006, 13(1): 242-245. doi: 10.3321/j.issn:1005-2321.2006.01.033

    CrossRef Google Scholar

    [25] 孟晖, 张若琳, 石菊松, 李春燕. 地质环境安全评价[J]. 地球科学, 2021, 46(10):3764-3776.

    Google Scholar

    MENG Hui, ZHANG Ruolin, SHI Jusong, LI Chunyan. Geological environment safety evaluation[J]. Earth Science, 2021, 46(10): 3764-3776.

    Google Scholar

    [26] 云南华昆国电工程勘察有限公司. 云南省华坪县地质灾害详细调查报告[R]. 2014: 50-98.

    Google Scholar

    [27] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3):433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    CrossRef Google Scholar

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    CrossRef Google Scholar

    [28] 刘传正, 陈春利. 中国地质灾害成因分析[J]. 地质论评, 2020, 66(5):1334-1348.

    Google Scholar

    LIU Chuanzheng, CHEN Chunli. Research on the origins of geological disasters in China[J]. Geological Review, 2020, 66(5): 1334-1348.

    Google Scholar

    [29] 张丽君. 从土地利用规划入手提高地质灾害的防治水平:兼议地质灾害风险区划的急迫性与重要性[J]. 地质通报, 2009, 28(2-3):343-347.

    Google Scholar

    ZHANG Lijun. Prevention of geological hazard starting from land use planning[J]. Geological Bulletin of China, 2009, 28(2-3): 343-347.

    Google Scholar

    [30] 刘传正. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评, 2014, 60(4):858-868.

    Google Scholar

    LIU Chuanzheng. Genetic types of landslide and debris flow disasters in China[J]. Geological Review, 2014, 60(4): 858-868.

    Google Scholar

    [31] 蒋小珍, 冯涛, 郑志文, 雷明堂, 张伟, 马骁, 伊小娟. 岩溶塌陷机理研究进展[J]. 中国岩溶, 2023, 42(3):517-527.

    Google Scholar

    JIANG Xiaozhen, FENG Tao, ZHENG Zhiwen, LEI Mingtang, ZHANG Wei, MA Xiao, YI Xiaojuan. A review of karst collapse mechanisms[J]. Carsologica Sinica, 2023, 42(3): 517-527.

    Google Scholar

    [32] 中国地质环境监测院. 地质灾害风险调查评价技术要求(1∶50 000)(试行)[S]. 北京:中华人民共和国自然资源部, 2020.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(4)

Article Metrics

Article views(63) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint