2024 No. 4
Article Contents

CHEN Xuejun, XUE Mingming, SONG Yu. Influence of water level dropping rates on the collapse of karst soil caves[J]. Carsologica Sinica, 2024, 43(4): 922-936. doi: 10.11932/karst20240409
Citation: CHEN Xuejun, XUE Mingming, SONG Yu. Influence of water level dropping rates on the collapse of karst soil caves[J]. Carsologica Sinica, 2024, 43(4): 922-936. doi: 10.11932/karst20240409

Influence of water level dropping rates on the collapse of karst soil caves

    Fund Project: This research is supported by National Key Research and Development Grogram(Grant No. 2019YFC507502)and the National Natural Science Foundation of China(Grant No. 41967037).
More Information
  • The change of water-gas pressure caused by the rise and fall of water level will lead to the collapse of karst soil caves. In this study, we combined the physical model test and FLAC3D numerical simulation to simulate the soil cave collapse caused by water level fluctuation under the same water supply rate and different drainage rates. Besides, we also analyzed the influence of different drainage rates on the variation of water-gas pressure, soil pressure of the overlying soil layer and deformation of soil caves during the fluctuation. We also established the relationship between water-gas pressure and variables such as drainage rates, overburden deformation and cave, and put forward the action law of water level fluctuations on the collapse of soil cave. The results show as follows. (1) The influence of drainage rates on the variation of water-gas pressure is basically the same, but with different degrees. The change degree and response time of water-gas pressure are positively correlated with the drainage rate. (2) The change of overburden deformation and soil pressure is positively correlated with the change of water-gas pressure, but with different influence degrees. The drainage rate can only accelerate the change degree. (3) Degrees of deformation and collapse of soil caves are caused by comprehensive factors. The speed of the drainage rate and the number of water level fluctuations influence the changes of water-gas pressure in different degrees in soil caves and also influence the soil deformation caused by water level fluctuations. (4) The numerical simulation results are basically consistent with the results of laboratory model test. These results provide important theoretical support for further research on the laws of hydrodynamic factors affecting karst collapse and provide a basis for rational prevention and prediction of karst collapse.

  • 加载中
  • [1] 李喜安, 黄润秋, 彭建兵, 陈志新. 关于物理潜蚀作用及其概念模型的讨论[J]. 工程地质学报, 2010, 18(6):880-886.

    Google Scholar

    LI Xi'an, HUANG Runqiu, PENG Jianbing, CHEN Zhixin. Establishment of conceptual models of physical sub-ground erosion[J]. Journal of Engineering Geology, 2010, 18(6): 880-886.

    Google Scholar

    [2] 罗小杰, 罗程. 岩溶地面塌陷三机理理论及其应用[J]. 中国岩溶, 2021, 40(2):171-188.

    Google Scholar

    LUO Xiaojie, LUO Cheng. Three-Mechanism Theory (TMT) of karst ground collapse and its application[J]. Carsologica Sinica, 2021, 40(2): 171-188.

    Google Scholar

    [3] 王建秀, 杨立中, 何静. 岩溶塌陷演化过程中的水-土-岩相互作用分析[J]. 西南交通大学学报, 2001, 36(3):314-317.

    Google Scholar

    WANG Jianxiu, YANG Lizhong, HE Jing. The coupling interaction of groundwater-soil-rock mass in karst collapse evolution[J]. Journal of Southwest Jiaotong University, 2001, 36(3): 314-314.

    Google Scholar

    [4] He K Q, Liu C L, Wang S J. Karst collapse related to over-pumping and a criterion for its stability[J]. Environmental Geology, 2003, 43(6): 720-724.

    Google Scholar

    [5] He K Q, Wang B, Zhou D Y. Mechanism and mechanical model of karst collapse in an over-pumping area[J]. Environmental Geology, 2004, 46(8): 1102-1107. doi: 10.1007/s00254-004-1099-8

    CrossRef Google Scholar

    [6] Guo R J, Chen X J, Tang L M, Zhang X C. Study on ground collapse of covered karst soil caves by sudden drop of groundwater[J]. Advances in Civil Engineering, 2021, 2021: 7796401.

    Google Scholar

    [7] 郭锐剑, 陈学军, 段建, 唐灵明, 张晓宸. 考虑空间形状的覆盖型岩溶土洞降水致陷分析[J]. 西南交通大学学报, 2023, 58(2):453-461.

    Google Scholar

    GUO Ruijian, CHEN Xuejun, DUAN Jian, TANG Lingming, ZHANG Xiaochen. Study on precipitation-induced subsidence of covered karst soil caves regarding spatial shape[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 453-461.

    Google Scholar

    [8] 陈学军, 周明芳, 陈富坚, 肖明贵. 岩溶地区破坏性抽水致塌试验研究:以广西桂林西城区为例[J]. 地质科技情报, 2002, 21(1):79-82.

    Google Scholar

    CHEN Xuejun, ZHOU Mingfang, CHEN Fujian, XIAO Minggui. Destructive pumping test to study the characteristics of karst collapses in limestone region: A case study in the western urban area of Guilin City[J]. Geological Science and Technology Information, 2002, 21(1): 79-82.

    Google Scholar

    [9] Jiang X Z, Lei M T, Gao Y L. Formation mechanism of large sinkhole collapses in Laibin, Guangxi, China[J]. Environment Earth Sciences, 2017, 76(24): 810-823.

    Google Scholar

    [10] Jia L, Li L J, Meng Y, Wu Y B, Pan Z Y, Yin R C. Responses of cover-collapse sinkholes to groundwater changes: A case study of early warning of soil cave and sinkhole activity on Datansha island in Guangzhou, China[J]. Environmental Earth Sciences, 2018, 77(13): 1-11.

    Google Scholar

    [11] 沈佳, 简文彬, 苏添金, 洪儒宝, 张少波. 岩溶区土洞塌陷演化过程研究:以龙岩市樟坑自然村土洞塌陷为例[J]. 水利与建筑工程学报, 2020, 18(3):1-8, 64. doi: 10.3969/j.issn.1672-1144.2020.03.001

    CrossRef Google Scholar

    SHEN Jia, JIAN Wenbin, SU Tianjin, HONG Rubao, ZHANG Shaobo. Soil cave collapse process in karst area: A case study of soil cave collapse in Zhangkeng natural village, Longyan[J]. Journal of Water Resources and Architectural Engineering, 2020, 18(3): 1-8, 64. doi: 10.3969/j.issn.1672-1144.2020.03.001

    CrossRef Google Scholar

    [12] Shi H, Li Q M, Zhang Q L, Yu Y Z, Xing Y J, Yu Kun. Mechanism of shallow soil cave–type karst collapse induced by water inrush in underground engineering construction[J]. Journal of Performance of Constructed Facilities, 2020, 34(1): 1-8.

    Google Scholar

    [13] 雷明堂, 蒋小珍, 李瑜. 岩溶塌陷模型试验:以武昌为例[J]. 地质灾害与环境保护, 1993, 4(2):39-44.

    Google Scholar

    [14] Xiao X X, Xu M, Ding Q Z, Kang X B, Xia Q, Du F. Experimental study investigating deformation behavior in land overlying a karst cave caused by groundwater level changes[J]. Environment Earth Sciences, 2018, 77(3): 64-77. doi: 10.1007/s12665-017-7102-y

    CrossRef Google Scholar

    [15] Xiao X X, Gutiérrez F, Guerrero J. The impact of groundwater drawdown and vacuum pressure on sinkhole development, physical aboratory models[J]. Geology, 2020, 279: 1-10.

    Google Scholar

    [16] 张鑫. 覆盖型岩溶塌陷模型试验与数值模拟研究[D]. 合肥:合肥工业大学, 2017.

    Google Scholar

    ZHANG Xin. Model test and numerical simulation of overburden karst collapse[D]. Hefei: Hefei University of Technology, 2017.

    Google Scholar

    [17] 张少波, 简文彬, 洪儒宝, 黄鹏, 陈鸿志, 刘奔. 水位波动条件下覆盖型岩溶塌陷试验研究[J]. 工程地质学报, 2019, 27(3):659-667.

    Google Scholar

    ZHANG Shaobo, JIAN Wenbin, HONG Rubao, HUANG Peng, CHEN Hongzhi, LIU Ben. Experimental study on collapse of covered karst under water-level fluctuation[J]. Journal of Engineering Geology, 2019, 27(3): 659-667.

    Google Scholar

    [18] 洪儒宝, 简文彬, 陈雪珍. 覆盖型岩溶土洞对地下水升降作用的响应及其塌陷演化过程研究[J]. 工程地质学报, 2023, 31(1):240-247.

    Google Scholar

    HONG Rubao, JIAN Wenbin, CHEN Xuezhen. Study on the response of covered karst soil cave to groundwater fluctuation and its collapse evolution process[J]. Journal of Engineering Geology, 2023, 31(1): 240-247.

    Google Scholar

    [19] Lin H, Liu T Y, Li J T, Cao P. A simple generation technique of complex geotechnical computational model[J]. Mathematical Problems in Engineering, 2013, 2013: 1-8.

    Google Scholar

    [20] Liu H L, Li L C, Li Z C, Yu G F. Numerical modelling of mining-induced inrushes from subjacent water conducting karst collapse columns in Northern China[J]. Mine Water and the Environment, 2018, 37(4): 652-662. doi: 10.1007/s10230-017-0503-z

    CrossRef Google Scholar

    [21] 邢宇健. 岩溶区地下水位动态变化诱发地表塌陷的机理研究[D]. 北京:北京交通大学, 2018.

    Google Scholar

    XING Yujian. Study on the mechanism of overburden collapse induced by groundwater fluctuation in karst area[D]. Beijing: Beijing Jiaotong University, 2018.

    Google Scholar

    [22] 熊启华, 高旭, 徐庆, 王芮琼, 李祖春, 陶良. 覆盖型岩溶塌陷动态演化数值模型研究[J]. 安全与环境工程, 2022, 29(1):85-92.

    Google Scholar

    XIONG Qihua, GAO Xu, XU Qing, WANG Ruiqiong, LI Zuchun, TAO Liang. Dynamic evolution numerical model of cover-collapse sinkholes[J]. Safety and Environmental Engineering, 2022, 29(1): 85-92.

    Google Scholar

    [23] 熊启华, 高旭, 涂婧, 王芮琼, 晏鄂川, 李祖春. 负压作用下土洞型岩溶塌陷机理及力学模型研究[J]. 人民长江, 2022, 53(9):163-168, 180.

    Google Scholar

    XIONG Qihua, GAO Xu, TU Jing, WANG Ruiqiong, YAN E'chuan, LI Zuchun. Mechanism of soil-cave type karst collapse under negative pressure and its mechanical model[J]. Yangtze River, 2022, 53(9): 163-168, 180.

    Google Scholar

    [24] 薛明明, 陈学军, 宋宇, 高晓彤, 李辉, 甘小卉, 张铭致, 潘宗源, 唐灵明. 基于FLAC3D不同降雨速率下土洞致塌规律研究[J]. 中国岩溶, 2022, 41(6):905-914.

    Google Scholar

    XUE Mingming, CHEN Xuejun, SONG Yu, GAO Xiaotong, LI Hui, GAN Xiaohui, ZHANG Mingzhi, PAN Zongyuan, TANG Lingming. A study on collapse law of soil cave with different rainfall rates based on FLAC3D[J]. Carsologica Sinica, 2022, 41(6): 905-914.

    Google Scholar

    [25] Fumagalli E. Model simulation of rock mechanics problem. rock mechanics in engineering practice[M]. London, J. Wiley Bulletin Ismes Nr. 38, 1968: 46-78.

    Google Scholar

    [26] 贾龙, 蒙彦, 管振德. 岩溶土洞演化及其数值模拟分析[J]. 中国岩溶, 2014, 33(3):294-298.

    Google Scholar

    JIA Long, MENG Yan, GUAN Zhende. Evolution and numerical simulation of a karst soil cave[J]. Carsologica Sinica, 2014, 33(3): 294-298.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Tables(4)

Article Metrics

Article views(151) PDF downloads(21) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint