2023 No. 5
Article Contents

MO Jianfei, CHEN Yanli, MO Weihua. Multi-scaled analysis of spatial-temporal evolution of vegetation ecological quality in the karst area of Guangxi[J]. Carsologica Sinica, 2023, 42(5): 1117-1130. doi: 10.11932/karst2023y037
Citation: MO Jianfei, CHEN Yanli, MO Weihua. Multi-scaled analysis of spatial-temporal evolution of vegetation ecological quality in the karst area of Guangxi[J]. Carsologica Sinica, 2023, 42(5): 1117-1130. doi: 10.11932/karst2023y037

Multi-scaled analysis of spatial-temporal evolution of vegetation ecological quality in the karst area of Guangxi

More Information
  • The karst area in Guangxi is characterized by its extensive and typical landform development, covering a total area of 8.334 million hectares, 18.9% of the total karst area in Southwest China and 35.1% of the total land area in Guangxi. This area is marked by poor and shallow soil, dominated by shrubs, shrub-grass, and grasslands as its vegetation. Therefore, it is subject to climate changes and meteorological disasters with a weak disaster-bearing capacity. The area is a typical ecologically vulnerable region in the southwest of China, and it is also the focus area for the Guangxi government to carry out ecological protection and restoration and rural revitalization. The scientific and rational assessment of vegetation ecological quality and its spatial-temporal evolution in the karst area is crucial for ecological restoration and governance, and the achievement of the "dual-carbon" goal.

    In order to monitor and assess the status of vegetation ecological quality in karst areas more objectively, and to clarify the spatial-temporal heterogeneity of vegetation ecological quality at different time scales, this study took the vegetation in the karst area of Guangxi as object. Based on the principle of "similar habitat" for vegetation ecological restoration, the "3S" technology was used to monitor and assess the vegetation ecological quality in the study area at different spatial and temporal scales. Firstly, the climate data was used to calculate the multi-year moisture index (MI) of the study area and delineate the climate gradient. Secondly, the maximum net primary productivity (NPPm) of the vegetation in the corresponding period was calculated. The correlation between MI and NPPm of the vegetation was analyzed, and the NPPm edge function of different vegetation types was constructed to determine the natural "baseline" of the potential productivity of vegetation within the climate gradient. Then a comprehensive vegetation quality model (MQI) for the karst area of Guangxi was built. Finally, the ecological quality index of vegetation was respectively calculated at monthly, quarterly, annual, and interannual scales to conduct a multi-scaled analyze of spatial-temporal evolution of vegetation ecological quality in the study area from 2000 to 2019.

    The results showed that: (1) There were obvious differences in the potential of vegetation ecological restoration under different climatic conditions in the karst area of Guangxi. The NPPm was a dynamic value that changes with climatic conditions, and different vegetation types responded differently to climatic conditions. Among these types, farmland vegetation was the most sensitive, followed by shrub-grass, and forest was the least affected. (2) There were significant temporal and spatial differences in the vegetation ecological quality at monthly, quarterly, annual, and interannual scales in the karst area of Guangxi. Temporally, the ecological quality indexes of vegetation at monthly and quarterly scales followed a parabolic pattern, and the annual index showed an increasing trend with fluctuation. The interannual evolution of vegetation ecological quality experienced four stages: slow growth, gradual growth, rapid growth, and significant growth. Spatially, vegetation ecological quality gradually increased from the northeastern to the southwestern part and from the northern to the southern part of the study area, with an overall high ecological quality. (3) There was a significant improvement in vegetation ecological quality in the karst area of Guangxi. From 2000 to 2019, the index of vegetation ecological improvement was 0.71/20a in the study area, with 98.83% of the regional vegetation ecological quality showing an upward trend over the 20-year period. Most of the improvement of regional vegetation ecology was favorable, primarily attributed to the national policies of returning farmland to forests, projects of rocky desertification control, and the favorable climate conditions in Guangxi. (4) The model for vegetation ecological quality of the study area exhibits high regional suitability and is able to finely and accurately reflect the spatial-temporal evolution characteristics of vegetation ecological quality in the study area.

  • 加载中
  • [1] Yuan Fei, Bauer M E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery[J]. Remote Sensing of Environment, 2007, 106(3):375-386. doi: 10.1016/j.rse.2006.09.003

    CrossRef Google Scholar

    [2] Wright C K, De Beurs K M, Henebry G M. Combined analysis of land cover change and NDVI trends in the Northern Eurasian grain belt[J]. Frontiers of Earth Science, 2012, 6(2):177-187. doi: 10.1007/s11707-012-0327-x

    CrossRef Google Scholar

    [3] 吕妍, 张黎, 闫慧敏, 任小丽, 王军邦, 牛忠恩, 顾峰雪, 何洪林. 中国西南喀斯特地区植被变化时空特征及其成因[J]. 生态学报, 2018, 38(24):8774-8786.

    Google Scholar

    LYU Yan, ZHANG Li, YAN Huimin, REN Xiaoli, WANG Junbang, NIU Zhongen, GU Fengxue, HE Honglin. Spatial and temporal patterns of changing vegetation and the influence of environmental factors in the karst region of Southwest China[J]. Acta Ecologica Sinica, 2018, 38(24):8774-8786.

    Google Scholar

    [4] 毛留喜, 李朝生, 侯英雨. 2006年上半年全国生态气象监测与评估研究[J]. 气象, 2006, 32(12):88-95, 141-142. doi: 10.3969/j.issn.1000-0526.2006.12.015

    CrossRef Google Scholar

    MAO Liuxi, LI Chaosheng, HOU Yingyu. China meteorologically-driven ecological monitoring and assessment in the first half of 2006[J]. Meteorological Monthly, 2006, 32(12):88-95, 141-142. doi: 10.3969/j.issn.1000-0526.2006.12.015

    CrossRef Google Scholar

    [5] 毛留喜, 钱拴, 侯英雨. 2006年夏季川渝高温干旱的生态气象监测与评估[J]. 气象, 2007, 33(3):83-88, 132-133. doi: 10.3969/j.issn.1000-0526.2007.03.012

    CrossRef Google Scholar

    MAO Liuxi, QIAN Shuan, HOU Yingyu. Study on the meteorologically-driven ecological monitoring and assessment of high temperature and drought of Sichuan-Chongqing area in summer 2006[J]. Meteorological Monthly, 2007, 33(3):83-88, 132-133. doi: 10.3969/j.issn.1000-0526.2007.03.012

    CrossRef Google Scholar

    [6] 钱拴, 毛留喜, 侯英雨. 北方草地生态气象综合监测预测技术及其应用[J]. 气象, 2008, 34(11):62-68, 130. doi: 10.7519/j.issn.1000-0526.2008.11.009

    CrossRef Google Scholar

    QIAN Shuan, MAO Liuxi, HOU Yingyu. Technology and application of ecology meteorological synthetic monitoring and predicting for northern grassland in China[J]. Meteorological Monthly, 2008, 34(11):62-68, 130. doi: 10.7519/j.issn.1000-0526.2008.11.009

    CrossRef Google Scholar

    [7] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862.

    Google Scholar

    XU Hanqiu. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24):7853-7862.

    Google Scholar

    [8] 钱拴, 延昊, 吴门新. 植被综合生态质量时空变化动态监测评价模型[J]. 生态学报, 2020, 40(18):1-11.

    Google Scholar

    QIAN Shuan, YAN Hao, WU Menxin. Dynamic monitoring and evaluation model for spatio-temporal change of comprehensive ecological quality of vegetation[J]. Acta Ecologica Sinica, 2020, 40(18):1-11.

    Google Scholar

    [9] 宋美杰, 罗艳云, 段利民. 基于改进遥感生态指数模型的锡林郭勒草原生态环境评价[J]. 干旱区研究, 2019, 36(6):1521-1527. doi: 10.13866/j.azr.2019.06.22

    CrossRef Google Scholar

    SONG Meijie, LUO Yanyun, DUAN Limin. Evaluation of ecological environment in the Xilin Gol Steppe based on modified remote sensing ecological index model[J]. Arid Zone Research, 2019, 36(6):1521-1527. doi: 10.13866/j.azr.2019.06.22

    CrossRef Google Scholar

    [10] 邓晨晖, 白红英, 高山, 刘荣娟, 马新萍, 黄晓月, 孟清. 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应[J]. 自然资源学报, 2018, 33(3):425-438. doi: 10.11849/zrzyxb.20170139

    CrossRef Google Scholar

    DENG Chenhui, BAI Hongying, GAO Shan, LIU Rongjuan, MA Xinping, HUANG Xiaoyue, MENG Qing. Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities[J]. Journal of Natural Resources, 2018, 33(3):425-438. doi: 10.11849/zrzyxb.20170139

    CrossRef Google Scholar

    [11] 陈燕丽, 黄敏堂, 莫伟华. 基于MODIS NDVI的广西西南典型生态区植被变化对比监测[J]. 气象科学, 2015, 35(1):93-99. doi: 10.3969/2014jms.0017

    CrossRef Google Scholar

    CHEN Yanli, HUANG Mintang, MO Weihua. Vegetation variation in typical ecological sections of southwest Guangxi based on MODIS NDVI data[J]. Journal of the Meteorological Sciences, 2015, 35(1):93-99. doi: 10.3969/2014jms.0017

    CrossRef Google Scholar

    [12] 童晓伟, 王克林, 岳跃民. 桂西北喀斯特区域植被变化趋势及其对气候和地形的响应[J]. 生态学报, 2014, 34(12):3425-3434.

    Google Scholar

    TONG Xiaowei, WANG Kelin, YUE Yuemin. Trends in vegetation and their responses to climate and topography in northwest Guangxi[J]. Acta Ecologica Sinica, 2014, 34(12):3425-3434.

    Google Scholar

    [13] 叶骏菲, 陈燕丽, 莫伟华, 莫建飞, 樊俏丽. 典型喀斯特区植被变化及其与气象因子的关系: 以广西百色市为例[J]. 沙漠与绿洲气象, 2019, 13(5):106-113.

    Google Scholar

    YE Junfei, CHEN Yanli, MO Weihua, MO Jianfei, FAN Qiaoli. Vegetation variation and its relationship with meteorological factors in typical karst area: A case study in Baise City of Guangxi[J]. Desert and Oasis Meteorology, 2019, 13(5):106-113.

    Google Scholar

    [14] 董丹, 倪健. 利用CASA模型模拟西南喀斯特植被净第一性生产力[J]. 生态学报, 2011, 31(7):1855-1866.

    Google Scholar

    DONG Dan, NI Jian. Modeling changes of net primary productivity of karst vegetation in Southwestern China using the CASA model[J]. Acta Ecologica Sinica, 2011, 31(7):1855-1866.

    Google Scholar

    [15] 莫建飞, 莫伟华, 陈燕丽. 基于净初级生产力的广西喀斯特区生物多样性维护功能评价[J]. 科学技术与工程, 2019, 19(29):371-377. doi: 10.3969/j.issn.1671-1815.2019.29.060

    CrossRef Google Scholar

    MO Jianfei, MO Weihua, CHEN Yanli. Evaluation of biodiversity maintenance function in karst area of Guangxi based on NPP[J]. Science Technology and Engineering, 2019, 19(29):371-377. doi: 10.3969/j.issn.1671-1815.2019.29.060

    CrossRef Google Scholar

    [16] 马炳鑫, 靖娟利, 徐勇, 何宏昌, 刘兵. 2000—2019年滇黔桂岩溶区植被NPP时空变化及与气候变化的关系研究[J]. 生态环境学报, 2021, 30(12):2285-2293. doi: 10.16258/j.cnki.1674-5906.2021.12.002

    CrossRef Google Scholar

    MA Bingxin, JING Juanli, XU Yong, HE Hongchang, LIU Bing. Spatial-temporal changes of NPP and its relationship with climate change in karst areas of Yunnan, Guizhou and Guangxi from 2000 to 2019[J]. Ecology and Environmental Sciences, 2021, 30(12):2285-2293. doi: 10.16258/j.cnki.1674-5906.2021.12.002

    CrossRef Google Scholar

    [17] 苏宗明, 李先琨. 广西岩溶植被类型及其分类系统[J]. 广西植物, 2003, 23(4):289-293. doi: 10.3969/j.issn.1000-3142.2003.04.001

    CrossRef Google Scholar

    SU Zongming, LI Xiankun. The types of natural vegetation in karst region of Guangxi and its classified system[J]. Guihaia, 2003, 23(4):289-293. doi: 10.3969/j.issn.1000-3142.2003.04.001

    CrossRef Google Scholar

    [18] 林辉. 林业遥感[M]. 北京: 中国林业出版社, 2011.

    Google Scholar

    LIN Hui.Remote sensing of forestry[M].Beijing:China Forestry Press,2011.

    Google Scholar

    [19] Yan H, Wang S Q, Billesbach D, Oechel W, Bohrer G, Meyers T, Martin T A, Matamala R, Phillips RP, Rahman F . Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C3 and C4 plants[J]. Ecological Modelling, 2015, 297:42-59. doi: 10.1016/j.ecolmodel.2014.11.002

    CrossRef Google Scholar

    [20] 郭铌. 植被指数及其研究进展[J]. 干旱气象, 2003, 21(4):71-75.

    Google Scholar

    GUO Ni. Vegetation index and its advances[J]. Arid Meteorology, 2003, 21(4):71-75.

    Google Scholar

    [21] 张学玲, 张莹, 牛德奎, 张文元, 李志, 李真真, 郭晓敏. 基于TM NDVI的武功山山地草甸植被覆盖度时空变化研究[J]. 生态学报, 2018, 38(7):2414-2424.

    Google Scholar

    ZHANG Xueling, ZHANG Ying, NIU Dekui, ZHANG Wenyuan, LI Zhi, LI Zhenzhen, GUO Xiaomin. Spatial-temporal dynamics of upland meadow coverage on Wugong mountain based on TM NDVI[J]. Acta Ecologica Sinica, 2018, 38(7):2414-2424.

    Google Scholar

    [22] Laughlin D C. Applying trait-based models to achieve functional targets for theory-driven ecological restoration[J]. Ecology Letters, 2014, 17(7):771-784. doi: 10.1111/ele.12288

    CrossRef Google Scholar

    [23] 王红岩. 基于NPP和植被降水利用效率土地退化遥感评价与监测技术研究[D]. 北京: 中国林业科学研究院, 2013.

    Google Scholar

    WANG Hongyan. Assessment and monitoring of land degradation using NPP and vegetation rain efficency[D]. Beijing: China Academy of Forestry, 2013.

    Google Scholar

    [24] Thornthwaite C W. An approach toward a rational classification of climate[J]. Geograhpical Review, 1948, 38(1):55-94. doi: 10.2307/210739

    CrossRef Google Scholar

    [25] 张月丛, 赵志强, 李双成. 基于SPOT NDVI的华北北部地表植被覆盖变化趋势[J]. 地理研究, 2008, 27(4): 745-754, 973.

    Google Scholar

    ZHANG Yuecong, ZHAO Zhiqiang, LI Shuangcheng. Indicating variation of surface vegetation cover using SPOT NDVI in the northern part of North China[J]. Geographical Research, 2008, 27 (4): 745-754, 973.

    Google Scholar

    [26] 全国农业气象标准化技术委员会. 陆地植被气象与生态质量监测评价等级: QX/T 494-2019[S]. 北京: 中国标准出版社, 2019.

    Google Scholar

    National Technical Committee of Agricultural Meteorology Standardization. Grade of monitoring and evaluating for terrestrial vegetation meteorology and ecological quality: QX/T 494-2019[S]. Beijing: Standard Press of China, 2019.

    Google Scholar

    [27] 王冰, 杨胜天. 基于NOAA/AVHRR的贵州喀斯特地区植被覆盖变化研究[J]. 中国岩溶, 2006, 25(2):157-162.

    Google Scholar

    WANG Bing, YANG Shengtian. Change in vegetation cover in Guizhou karst regions based on NOAA/AVHRR[J]. Carsologica Sinica, 2006, 25(2):157-162.

    Google Scholar

    [28] 熊康宁, 黎平, 周忠发. 喀斯特石漠化的遥感—GIS典型研究: 以贵州省为例[M]. 北京: 地质出版社, 2002.

    Google Scholar

    XIONG Kangning, LI Ping, ZHOU Zhongfa. Remote sensing—GIS model of rocky desertification in karst: A case study of Guizhou[M]. Beijing: Geology Press, 2002.

    Google Scholar

    [29] 王剑波, 吴柏海, 曾以禹. 林业与极端天气灾害:走基于生态系统的综合风险管理之路[J]. 林业经济, 2012, 11(11):24-29.

    Google Scholar

    WANG Jianbo, WU Baihai, ZENG Yiyu. Forestry and natural disaster: Toward the ecosystem-based approaches for integrate risk management[J]. Forestry Economics, 2012, 11(11):24-29.

    Google Scholar

    [30] 陈燕丽, 蒙良莉, 黄肖寒. 基于SPEI的广西喀斯特地区1971—2017 年干旱时空演变[J]. 干旱气象, 2019, 37(3):353-362.

    Google Scholar

    CHEN Yanli, MENG Liangli, HUANG Xiaohan. Temporal and spatial distributions of drought in Guangxi karst area during 1971–2017 based on standardized precipitation evapotranspiration index[J]. Journal of Arid Meteorology, 2019, 37(3):353-362.

    Google Scholar

    [31] 王祝雄, 闫宏伟, 莫沫. 做好灾后调查评估科学组织灾后重建:广西壮族自治区灾后林业恢复重建调研报告[J]. 林业经济, 2008, 4(4):21-24.

    Google Scholar

    WANG Zhuxiong, YAN Hongwei, MO Mo. Do a good job in post-disaster assessment survey scientific organizations reconstruction: Research report on forestry restoration after Guangxi Zhuang nature reserve disaster[J]. Forestry Economy, 2008, 4(4):21-24.

    Google Scholar

    [32] 马华, 王云琦, 王力. 近20 a广西石漠化区植被覆盖度与气候变化和农村经济发展的耦合关系[J]. 山地学报, 2014, 32(1):38-45.

    Google Scholar

    MA Hua, WANG Yunqi, WANG Li. Vegetation cover and climate change and rural economic development in relations during last 20 years in karst region of Guangxi[J]. Mountain Research, 2014, 32(1):38-45.

    Google Scholar

    [33] 黄文华, 刘家开. 2012年广西林业10件大事及最具影响力的10项工作[J]. 广西林业, 2013(4):7. doi: 10.3969/j.issn.1004-0390.2013.04.005

    CrossRef Google Scholar

    HUANG Wenhua,LIU Jiakai. 10 major events and 10 most influential tasks of Guangxi forestry in 2012[J]. Forestry of Guangxi, 2013(4):7. doi: 10.3969/j.issn.1004-0390.2013.04.005

    CrossRef Google Scholar

    [34] 陈燕丽, 莫建飞, 莫伟华. 近30年广西喀斯特地区石漠化时空演变[J]. 广西科学, 2018, 25(5):625-631. doi: 10.13656/j.cnki.gxkx.20181031.001

    CrossRef Google Scholar

    CHEN Yanli, MO Jianfei, MO Weihua. Temporal and spatial distributions of rocky desertification in Guangxi karst area in the past 30 years[J]. Guangxi Sciences, 2018, 25(5):625-631. doi: 10.13656/j.cnki.gxkx.20181031.001

    CrossRef Google Scholar

    [35] Tong X W, Brandt M, Yue Y M. Increased vegetation growth and carbon stock in China karst via ecological engineering[J]. Nature Sustainability, 2018, 11(1):44-50. doi: 10.3390/su11010044

    CrossRef Google Scholar

    [36] Chen Yanli, Mo Weihua, Huang Yonglin, MO Jianfei, Huang Xiaohan, Wen Xiumei. Changes in vegetation and assessment of meteorological conditions in ecologically fragile karst areas[J]. Journal of Meteorological Research, 2021, 35(1):172-183.

    Google Scholar

    [37] 冯国艳, 马明国. 西南地区2001—2014年植被变化时空格局[J]. 中国岩溶, 2018, 37(6):866-874.

    Google Scholar

    FENG Guoyan, MA Mingguo. Spatial-temporal pattern of vegetation changes in Southwest China during 2001–2014[J]. Carsologica Sinica, 2018, 37(6):866-874.

    Google Scholar

    [38] 盛叶子, 曾蒙秀, 林德根, 彭海军, 朱丽东, 李凤全, 余奕泓, 王能静. 2000—2014 年人类活动对贵州省植被净初级生产力的影响[J]. 中国岩溶, 2020, 39(1):62-70. doi: 10.11932/karst2020y01

    CrossRef Google Scholar

    SHENG Yezi, ZENG Mengxiu, LIN Degen, PENG Haijun, ZHU Lidong, LI Fengquan, YU Yihong, WANG Nengjing. Impacts of human activities on net primary productivity of vegetation in Guizhou Province from 2000 to 2014[J]. Carsologica Sinica, 2020, 39(1):62-70. doi: 10.11932/karst2020y01

    CrossRef Google Scholar

    [39] 吴跃, 周忠发, 赵馨, 但雨生, 黄登红. 基于遥感计算云平台高原山区植被覆盖时空演变研究:以贵州省为例[J]. 中国岩溶, 2020, 39(2):196-205. doi: 10.11932/karst2020y16

    CrossRef Google Scholar

    WU Yue, ZHOU Zhongfa, ZHAO Xin, DAN Yusheng, HUANG Denghong. Spatiotemporal variation of vegetation coverage in plateau mountainous areas based on remote sensing cloud computing platform: A case study of Guizhou Province[J]. Carsologica Sinica, 2020, 39(2):196-205. doi: 10.11932/karst2020y16

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(4)

Article Metrics

Article views(1104) PDF downloads(412) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint