2023 No. 4
Article Contents

LI Xiaopan, NIE Guoquan, SU Chuntian, PAN Xiaodong. Distribution characteristics of iodine in karst groundwater in Xintian county, Hunan Province and the analysis on the causes of high iodine[J]. Carsologica Sinica, 2023, 42(4): 742-752. doi: 10.11932/karst2023y024
Citation: LI Xiaopan, NIE Guoquan, SU Chuntian, PAN Xiaodong. Distribution characteristics of iodine in karst groundwater in Xintian county, Hunan Province and the analysis on the causes of high iodine[J]. Carsologica Sinica, 2023, 42(4): 742-752. doi: 10.11932/karst2023y024

Distribution characteristics of iodine in karst groundwater in Xintian county, Hunan Province and the analysis on the causes of high iodine

More Information
  • Iodine is one of the essential trace elements for human body, which maintains the growth and normal metabolism of the organism. Iodine deficiency or excess will have different degrees of impact on human health. A large field of strontium-rich mineral water was discovered in Xintian county, Hunan Province. However, the iodine content in some strontium-rich groundwater is abnormal, threatening the drinking water safety of local residents. Therefore, it is important to find out the distribution characteristics of iodine in groundwater and the controlling factors of the formation of high iodine groundwater so as to implement the project for the safety of drinking water and to prevent endemic iodine diseases in the study area.

    In a hydrogeological survey, 66 groups of spring water samples and 45 groups of well water samples were collected in Xintian county to analyze their hydrochemical characteristics, identify the spatial distribution characteristics of iodine in groundwater and analyze the main factors controlling iodine content in groundwater by means of hydrochemical graphical method, principal component analysis and GIS technology. The results showed that the iodine concentration in spring water and well water ranged from 2.7 to 92.8 μg·L−1 and 4.15 to 3,861 μg·L−1, respectively, with the respective median value of 5.4 μg·L−1 and 168 μg·L−1. It can be seen that all the groundwater with high iodine was well water, and 53.3% of well water samples had iodine concentration exceeding the permitted national standard of 100 μg·L−1 (GB 19380-2016). In contrast, the iodine content in spring water was relatively low, and the overall iodine-deficient groundwater was predominant. High iodine groundwater was mainly distributed along a river valley in the northeast-southwest direction. The iodine content in groundwater showed a gradual increase from the peak-forest valley to the plain area of low-lying river valley, and the hydrochemical type also changed from water with single HCO3-Ca type to water with complex HCO3-Na, HCO3-Na·Ca type, etc.

    The marl stratum formed by marine sedimentation of Shetianqiao Formation is rich in iodine and organic matter, which provides good geological conditions for the enrichment of iodine in groundwater. The microbial degradation of organic matter occurs in the closed and partially reducible groundwater environment of the marl aquifer. CO2 generated by organic matter decomposition exists in groundwater mainly in the form of ${\rm{HCO}}_3^{-}$, which will compete with I- for adsorption. Meanwhile, the process of organic matter decomposition to form ${\rm{HCO}}_3^{-}$ is accompanied by the release and migration of iodine deposited on it, making the iodine content in the groundwater increases with the increase of ${\rm{HCO}}_3^{-}$ content. At the same time, the alkaline karst water environment can increase the electronegativity of organic matter surface to reduce the adsorption of iodine ions by organic matter. OH in groundwater also competes with I for adsorption, which accelerates the release and migration of adsorbed iodine into groundwater, and hence increases the iodine content. The distribution area of high iodine groundwater is located in a groundwater discharge area. It is also an area distributed with strata rich in iodine and organic matter. In this area, the sluggish groundwater flow due to flat topography, together with a relatively closed groundwater environment, further facilitates the enrichment of iodine. The strata rich in iodine and organic matter formed by marine sediments, closed and partial reduction chemical environment with karst water of weak alkalinity and sluggish groundwater runoff are the main factors controlling the formation of high iodine groundwater in the study area.

  • 加载中
  • [1] Velasco I, Bath SC, Rayman MP. Iodine as essential nutrient during the first 1,000 days of life[J]. Nutrients, 2018, 10(3):290. doi: 10.3390/nu10030290

    CrossRef Google Scholar

    [2] 崔生. 碘过量来源及非甲状腺损伤作用研究进展[J]. 中国地方病防治杂志, 2021, 36(1):23-25.

    Google Scholar

    CUI Sheng. Research progress on sources of iodine excess and non-thyroid injury effects[J]. Chinese Journal of Control of Endemic Diseases, 2021, 36(1):23-25.

    Google Scholar

    [3] 张万起, 陈艳婷. 碘过量对人体健康的影响[J]. 中华地方病学杂志, 2016, 35(6):449-455. doi: 10.3760/cma.j.issn.2095-4255.2016.06.013

    CrossRef Google Scholar

    ZHANG Wanqi, CHEN Yanting. Iodine excess and its effects on human health[J]. Chinese Journal of Endemiology, 2016, 35(6):449-455. doi: 10.3760/cma.j.issn.2095-4255.2016.06.013

    CrossRef Google Scholar

    [4] 申红梅. 中国水源性高碘危害防治与实践[M]. 北京: 人民卫生出版社, 2019.

    Google Scholar

    [5] 张二勇, 张福存, 钱永, 叶念军, 龚建师, 王雨山. 中国典型地区高碘地下水分布特征及启示[J]. 中国地质, 2010, 37(3):797-802. doi: 10.3969/j.issn.1000-3657.2010.03.036

    CrossRef Google Scholar

    ZHANG Eryong, ZHANG Fucun, QIAN Yong, YE Nianjun, GONG Jianshi, WANG Yushan. The distribution of high iodine groundwater in typical areas of China and its inspiration[J]. Geology in China, 2010, 37(3):797-802. doi: 10.3969/j.issn.1000-3657.2010.03.036

    CrossRef Google Scholar

    [6] 薛江凯, 邓娅敏, 杜尧, 罗义鹏, 程一涵. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示[J]. 地球科学, 2021, 46(11):4140-4149.

    Google Scholar

    XUE Jiangkai, DENG Yamin, DU Yao, LUO Yipeng, CHENG Yihan. Molecular characterization of dissolved organic matter (DOM) in shallow aquifer along middle reach of Yangtze River and its implications for iodine enrichment[J]. Earth Science, 2021, 46(11):4140-4149.

    Google Scholar

    [7] Zhang Y, Chen L, Cao S, Tian X, Hu S, Mi X, Wu Y. Iodine enrichment and the underlying mechanism in deep groundwater in the Cangzhou region, North China[J]. Environmental Science and Pollution Research International, 2020, 28(9):10552-10563.

    Google Scholar

    [8] 吴飞, 王曾祺, 童秀娟, 段磊. 我国典型地区浅层高碘地下水分布特征及其赋存环境[J]. 水资源与水工程学报, 2017, 28(2):99-104.

    Google Scholar

    WU Fei, WANG Zengqi, TONG Xiujuan, DUAN Lei. The distribution characteristics and storage environments of rich iodine in shallow groundwater of typical areas in China[J]. Journal of Water Resources and Water Engineering, 2017, 28(2):99-104.

    Google Scholar

    [9] Xue X, Li J, Xie X, Wang Y, Tian X, Chi X, Wang Y. Effects of depositional environment and organic matter degradation on the enrichment and mobilization of iodine in the groundwater of the North China Plain[J]. Science of the Total Environment, 2019, 686:50-62. doi: 10.1016/j.scitotenv.2019.05.391

    CrossRef Google Scholar

    [10] Duan L, Wang W, Sun Y, Zhang C, Sun Y. Hydrogeochemical characteristics and health effects of iodine in groundwater in Wei river basin[J]. Exposure and Health, 2020, 12(3):369-383. doi: 10.1007/s12403-020-00348-7

    CrossRef Google Scholar

    [11] 徐芬, 马腾, 石柳, 董一慧, 刘林, 钟秀, 王妍妍. 内蒙古河套平原高碘地下水的水文地球化学特征[J]. 水文地质工程地质, 2012, 39(5):8-15. doi: 10.16030/j.cnki.issn.1000-3665.2012.05.020

    CrossRef Google Scholar

    XU Fen, MA Teng, SHI Liu, DONG Yihui, LIU Lin, ZHONG Xiu, WANG Yanyan. Hydrogeochemical characteristics of high iodine groundwater in the Hetao Plain, Inner Mongolia[J]. Hydrogeology and Engineering Geology, 2012, 39(5):8-15. doi: 10.16030/j.cnki.issn.1000-3665.2012.05.020

    CrossRef Google Scholar

    [12] 王妍妍, 马腾, 董一慧, 徐芬, 闫雅妮, 刘林. 内陆盆地区高碘地下水的成因分析:以内蒙古河套平原杭锦后旗为例[J]. 地学前缘, 2014, 21(4):66-73.

    Google Scholar

    WANG Yanyan, MA Teng, DONG Yihui, XU Fen, YAN Yani, LIU Lin. The formation of inland-high-iodine groundwater: A case study in Hangjinhouqi, Hetao Plain[J]. Earth Science Frontiers, 2014, 21(4):66-73.

    Google Scholar

    [13] Li J X, Zhou H, Wang Y, Xie X, Qian K. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes[J]. Journal of Contaminant Hydrology, 2017, 201:39-47. doi: 10.1016/j.jconhyd.2017.04.008

    CrossRef Google Scholar

    [14] 张媛静, 张玉玺, 向小平, 孙继朝, 李亚松. 沧州地区地下水碘分布特征及其成因浅析[J]. 地学前缘, 2014, 21(4):59-65. doi: 10.13745/j.esf.2014.04.006

    CrossRef Google Scholar

    ZHANG Yuanjing, ZHANG Yuxi, XIANG Xiaoping, SUN Jichao, LI Yasong. Distribution characteristics and cause analysis of iodine in groundwater of Cangzhou region[J]. Earth Science Frontiers, 2014, 21(4):59-65. doi: 10.13745/j.esf.2014.04.006

    CrossRef Google Scholar

    [15] 苏春田, 黄晨晖, 邹胜章, 谢代兴, 赵光帅, 唐建生, 罗飞, 杨杨. 新田县地下水锶富集环境及来源分析[J]. 中国岩溶, 2017, 36(5):678-683.

    Google Scholar

    SU Chuntian, HUANG Chenhui, ZOU Shengzhang, XIE Daixing, ZHAO Guangshuai, TANG Jiansheng, LUO Fei, YANG Yang. Enrichment environment and sources of strontium of groundwater in Xintian county, Hunan Province[J]. Carsologica Sinica, 2017, 36(5):678-683.

    Google Scholar

    [16] 赵光帅, 苏春田, 潘晓东, 谢代兴, 罗飞, 杨杨, 巴俊杰, 李小盼, 毕奔腾. 湖南新田锶矿泉水文地球化学分带特征分析[J]. 中国岩溶, 2019, 38(6):858-866.

    Google Scholar

    ZHAO Guangshuai, SU Chuntian, PAN Xiaodong, XIE Daixing, LUO Fei, YANG Yang, BA Junjie, LI Xiaopan, BI Benteng. Hydrogeochemical zoning characteristics of the strontium mineral spring in Xintian county, Hunan Province[J]. Carsologica Sinica, 2019, 38(6):858-866.

    Google Scholar

    [17] 卢丽, 王喆, 裴建国, 杜毓超, 林永生, 樊连杰. 红水河中上游流域岩溶地下水水质影响因素的R型因子分析[J]. 中国岩溶, 2015, 34(4):415-419.

    Google Scholar

    LU Li, WANG Zhe, PEI Jianguo, DU Yuchao, LIN Yongsheng, FAN Lianjie. R-mode analysis for influencing factors of karst groundwater quality in middle and upper reaches of the Hongshuihe river[J]. Carsologica Sinica, 2015, 34(4):415-419.

    Google Scholar

    [18] Duan L, Wang W, Sun Y, Zhang C. Iodine in groundwater of the Guanzhong Basin, China: Sources and hydrogeochemical controls on its distribution[J]. Environmental Earth Sciences, 2016, 75(11):970. doi: 10.1007/s12665-016-5781-4

    CrossRef Google Scholar

    [19] 周鑫, 王璨, 郑鹏飞, 姚腾飞, 巫政卿, 米茂生, 覃佐辉, 李杨. 湘南泥盆系碳酸盐岩区富锶饮用天然矿泉水成矿规律:以新田县新圩矿泉水为例[J]. 中国岩溶, 2022, 41(2):197-209.

    Google Scholar

    ZHOU Xin, WANG Can, ZHENG Pengfei, YAO Tengfei, WU Zhengqing, MI Maosheng, QIN Zuohui, LI Yang. Metallogenic regularity of strontium-rich drinking natural mineral water in Devonian carbonate area in southern Hunan: Taking strontium-rich drinking mineral water in Xinxu town, Xintian county as an example[J]. Carsologica Sinica, 2022, 41(2):197-209.

    Google Scholar

    [20] Hu Q H, Moran J E, Blackwood V. Geochemical cycling of iodine species in soils[M]//Preedy RV, Burrow NG, Watson R. Comprehensive Handbook of Iodine: Nutritional, biochemical, pathological and therapeutic aspects. Oxford: Academic Press, 2009: 93-95.

    Google Scholar

    [21] 孙英, 周金龙, 梁杏, 周殷竹, 曾妍妍, 林丽. 塔里木盆地南缘浅层高碘地下水的分布及成因:以新疆民丰县平原区为例[J]. 地球科学, 2021, 46(8):2999-3011.

    Google Scholar

    SUN Ying, ZHOU Jinlong, LIANG Xing, ZHOU Yinzhu, ZENG Yanyan, LIN Li. Distribution and genesis of shallow high-iodine groundwater in southern margin of Tarim Basin: A case study of plain area in Minfeng county, Xinjiang[J]. Earth Science, 2021, 46(8):2999-3011.

    Google Scholar

    [22] 薛肖斌, 李俊霞, 钱坤, 谢先军. 华北平原原生富碘地下水系统中碘的迁移富集规律:以石家庄-衡水-沧州剖面为例[J]. 地球科学, 2018, 43(3):910-921.

    Google Scholar

    XUE Xiaobin, LI Junxia, QIAN Kun, XIE Xianjun. Spatial distribution and mobilization of iodine in groundwater system of North China Plain: Taking hydrogeological section from Shijiazhuang, Hengshui to Cangzhou as an example[J]. Earth Science, 2018, 43(3):910-921.

    Google Scholar

    [23] 钱永, 张兆吉, 费宇红, 陈京生, 李亚松. 华北平原饮用地下水碘分布及碘盐分区供应探讨[J]. 生态与农村环境学报, 2014, 30(1):9-14. doi: 10.3969/j.issn.1673-4831.2014.01.002

    CrossRef Google Scholar

    QIAN Yong, ZHANG Zhaoji, FEI Yuhong, CHEN Jingsheng, LI Yasong. Spatial distribution of iodine in underground drinking water and discussion on region-specific supply of iodized salt in the North China Plain[J]. Journal of Ecology and Rural Environment, 2014, 30(1):9-14. doi: 10.3969/j.issn.1673-4831.2014.01.002

    CrossRef Google Scholar

    [24] 王雨婷, 李俊霞, 薛肖斌, 田小伟, 迟秀成. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同[J]. 地球科学, 2021, 46(1):308-320.

    Google Scholar

    WANG Yuting, LI Junxia, XUE Xiaobin, TIAN Xiaowei, CHI Xiucheng. Similarities and differences of main controlling factors of natural high iodine groundwater between North China Plain and Datong basin[J]. Earth Science, 2021, 46(1):308-320.

    Google Scholar

    [25] 周海玲, 苏春利, 李俊霞, 谢先军. 大同盆地沉积物REE分布特征及其对碘富集的指示[J]. 地球科学, 2017, 42(2):298-306.

    Google Scholar

    ZHOU Hailing, SU Chunli, LI Junxia, XIE Xianjun. Characteristics of rare earth elements in the sediments of the Datong basin and its indication to the iodine enrichment[J]. Earth Science, 2017, 42(2):298-306.

    Google Scholar

    [26] 关林瑞, 钱坤, 李俊霞, 谢先军. 大同盆地地下水系统中碘迁移富集的生物标志物证据[J]. 地质科技情报, 2019, 38(1):235-242. doi: 10.19509/j.cnki.dzkq.2019.0126

    CrossRef Google Scholar

    GUAN Linrui, QIAN Kun, LI Junxia, XIE Xianjun. Mobilization and enrichment of iodine in groundwater from the Datong basin: Evidences from biomarker study[J]. Geological Science and Technology Information, 2019, 38(1):235-242. doi: 10.19509/j.cnki.dzkq.2019.0126

    CrossRef Google Scholar

    [27] 韩颖, 张宏民, 张永峰, 张欣. 大同盆地地下水高砷、氟、碘分布规律与成因分析及质量区划[J]. 中国地质调查, 2017, 4(1):57-68. doi: 10.19388/j.zgdzdc.2017.01.09

    CrossRef Google Scholar

    HAN Ying, ZHANG Hongmin, ZHANG Yongfeng, ZHANG Xin. Distribution regularity, origin and quality division of high arsenic, fluorine and iodine contents in groundwater in Datong basin[J]. Geological Survey of China, 2017, 4(1):57-68. doi: 10.19388/j.zgdzdc.2017.01.09

    CrossRef Google Scholar

    [28] Yuanjing Zhang, Yaoguo Wu, Jichao Sun, Sihai Hu, Yuxi Zhang, Xiaoping Xiang. Controls on the spatial distribution of iodine in groundwater in the Hebei Plain, China[J]. Environmental Science and Pollution Research, 2018, 25(17):16702-16709. doi: 10.1007/s11356-018-1843-3

    CrossRef Google Scholar

    [29] 朱沉静, 李俊霞, 谢先军. 大同盆地地下水中碳硫同位素组成特征及其对碘迁移富集的指示[J]. 地球科学, 2021, 46(12):4480-4491. doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112016

    CrossRef Google Scholar

    ZHU Chenjing, LI Junxia, XIE Xianjun. Carbon and sulfur isotopic features and its implications for iodine mobilization in groundwater system at Datong basin, Northern China[J]. Earth Science, 2021, 46(12):4480-4491. doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112016

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(920) PDF downloads(144) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint