2023 No. 4
Article Contents

CEN Xinyu, ZHONG Jinxian, DENG Guoshi, XU Mo. Modelling the hydrological process of the dried-up karst spring based on a reservoir model for hysteretic discharge[J]. Carsologica Sinica, 2023, 42(4): 711-721. doi: 10.11932/karst20230407
Citation: CEN Xinyu, ZHONG Jinxian, DENG Guoshi, XU Mo. Modelling the hydrological process of the dried-up karst spring based on a reservoir model for hysteretic discharge[J]. Carsologica Sinica, 2023, 42(4): 711-721. doi: 10.11932/karst20230407

Modelling the hydrological process of the dried-up karst spring based on a reservoir model for hysteretic discharge

More Information
  • Karst is highly developed and widely distributed in Southwest China which is endowed with rich karst water resources but in different temporal and spatial distribution. As the main water source for the ecology and landscape of Lijiang Ancient City, Heilongtan springs have frequently dried up in recent years, which has seriously affected the production activities, daily life, and tourism quality of Lijiang Ancient City. The principle of reservoir model is to divide the karst aquifer system into different parts according to its structure or hydrological process. Based on the above division, each part has been generalized into a corresponding reservoir connected by a certain way in order to simulate the discharge of karst springs. The conventional reservoir model of continuous discharge has been widely used for reproducing the discharge of perennial springs. However, this continuous discharge model performs poorly in simulating the dry-up of karst springs. By setting the discharge law from epikarst reservoir to conduit reservoir as a hysteretic transfer function, this study reasonably reproduced the hydrological process of the dried-up springs. Several conclusions have been drawn as below. Firstly, Heilongtan spring area can be generalized as a reservoir model composed of epikarst regulation reservoir (E), matrix reservoir (M), and conduit reservoir (C). Discharge of Heilongtan springs has been successfully reproduced by the above model. Secondly, the rainy season and the normal season models can effectively simulate the spring dynamics based on the continuously discharge law. By setting the hysteretic discharge of the epikarst reservoir, the dry-up of the springs can be reproduced. To further characterize the multi-year regulation and storage characteristics of karst aquifers, additional reservoirs are needed. Thirdly, the simulation results show that the recharge from Reservoir E to Reservoir M is not sensitive to the rainfall, while the discharge from Reservoir E to Reservoir C is very sensitive to the rainfall, which indicates that the karst conduit in the Heilongtan spring area is developed and well connected, leading to the concentrated recharge and rapid increase of discharge at springs. Finally, the vast majority (82-95%) of Heilongtan spring water is recharged from Reservoir C. The threshold of rainfall required to trigger the rapid replenishment from Reservoir E to Reservoir C is relatively high. Moreover, the discharge from Reservoir C is characterized by sharp increase and decrease. The above characteristics cause uneven temporal and spatial distribution of karst groundwater, which can lead to the dry-up of springs. The research findings provide a reference for applying the hysteretic reservoir model to the simulation of karstic dried-up springs and help to understand the hydrological process of this type of karst system.

  • 加载中
  • [1] 徐永新, 张志祥, 张永波, 梁永平, 曹建华, 蒋忠诚. 山西岩溶泉研究进展与前瞻[J]. 太原理工大学学报, 2017, 48(3):413-426.

    Google Scholar

    XU Yongxin, ZHANG Zhixiang, ZHANG Yongbo, LIANG Yongping, CAO Jianhua, JIANG Zhongcheng. Research advance in karst springs of Shanxi Province[J]. Journal of Taiyuan University of Technology, 2017, 48(3):413-426.

    Google Scholar

    [2] 梁永平, 申豪勇, 高旭波. 中国北方岩溶地下水的研究进展[J]. 地质科技通报, 2022, 41(5):199-219.

    Google Scholar

    LIANG Yongping, SHEN Haoyong, GAO Xubo. Review of research progress of karst groundwater in Northern China[J]. Bulletin of Geological Science and Technology, 2022, 41(5):199-219.

    Google Scholar

    [3] CEN Xinyu, XU Mo, QI Jihong, ZHANG Qiang, SHI Haoxin. Characterization of karst conduits by tracer tests for an artificial recharge scheme[J]. Hydrogeology Journal, 2021, 29:2381-2396. doi: 10.1007/s10040-021-02398-w

    CrossRef Google Scholar

    [4] 王焰新. 我国北方岩溶泉域生态修复策略研究:以晋祠泉为例[J]. 中国岩溶, 2022, 41(3):331-344.

    Google Scholar

    WANG Yanxin. Study on ecological restoration strategy of karst spring region in North China: Taking Jinci spring as an example[J]. Carsologica Sinica, 2022, 41(3):331-344.

    Google Scholar

    [5] 康晓波, 王宇, 张华, 曹瑾. 丽江黑龙潭泉群水文地质特征及断流的影响因素分析[J]. 中国岩溶, 2013, 32(4):398-403.

    Google Scholar

    KANG Xiaobo, WANG Yu, ZHANG Hua, CAO Jin. Hydrogeological features and influence factors of zero flow of the Heilongtan spring group in Lijiang[J]. Carsologica Sinica, 2013, 32(4):398-403.

    Google Scholar

    [6] 李颂章, 荣冠, 罗琳, 侯迪. 锦屏大河湾磨房沟泉流量衰减规律研究[J]. 工程勘察, 2013, 41(12):32-36, 89.

    Google Scholar

    LI Songzhang, RONG Guan, LUO Lin, HOU Di. Dynamic study on discharge attenuation in Mofanggou spring at Jinping river bend[J]. Geotechnical Investigation & Surveying, 2013, 41(12):32-36, 89.

    Google Scholar

    [7] 郝永红, 王玮, 王国卿, 杜欣, 朱宇恩, 王学萌. 气候变化及人类活动对中国北方岩溶泉的影响:以山西柳林泉为例[J]. 地质学报, 2009, 83(1):138-144.

    Google Scholar

    HAO Yonghong, WANG Wei, WANG Guoqing, DU Xin, ZHU Yuen, WANG Xuemeng. Effects of climate change and human activities on the karstic springs in Northern China: A case study of the Liulin springs[J]. Acta Geologica Sinica, 2009, 83(1):138-144.

    Google Scholar

    [8] 袁学圣, 邢立亭, 赵振华, 李常锁, 陈奂良. 济南四大泉群流量衰减过程及其指示意义[J]. 干旱区资源与环境, 2022, 36(7):126-132.

    Google Scholar

    YUAN Xuesheng, XING Liting, ZHAO Zhenhua, LI Changsuo, CHEN Huanliang. Flow attenuation process of four spring groups in Jinan and its indicative significance[J]. Journal of Arid Land Resources and Environment, 2022, 36(7):126-132.

    Google Scholar

    [9] 林云, 曲鹏冲, 吕海新, 武亚遵. 太行山东缘典型岩溶泉流量变化特征及规律分析[J]. 中国岩溶, 2018, 37(5):671-679.

    Google Scholar

    LIN Yun, QU Pengchong, LYU Haixin, WU Yazun. Variation characteristics of typical karst springs in the eastern margin of the Taihang Mountains[J]. Carsologica Sinica, 2018, 37(5):671-679.

    Google Scholar

    [10] 徐中平, 周训, 崔相飞, 拓明明, 王昕昀, 张颖. 岩溶区地下水数值模拟研究进展[J]. 中国岩溶, 2018, 37(4):475-483.

    Google Scholar

    XU Zhongping, ZHOU Xun, CUI Xiangfei, TA Mingming, WANG Xinyun, ZHANG Ying. Research advances of numerical simulation of groundwater in karst areas[J]. Carsologica Sinica, 2018, 37(4):475-483.

    Google Scholar

    [11] Andrea Borghi, Philippe Renard, Fabien Cornaton. Can one identify karst conduit networks geometry and properties from hydraulic and tracer test data?[J]. Advances in Water Resources, 2016, 90: 99-115.

    Google Scholar

    [12] Lea Duran, Laurence Gill. Modeling spring flow of an Irish karst catchment using Modflow-USG with CLN[J]. Journal of Hydrology, 2021, 597:125971. doi: 10.1016/j.jhydrol.2021.125971

    CrossRef Google Scholar

    [13] 常勇, 齐尧勇, 刘玲. 基于改进的Vensim 模型模拟岩溶泉水文过程[J]. 地质科技通报, 2022, 41(5):301-307.

    Google Scholar

    CHANG Yong, QI Yaoyong, LIU Ling. Modelling the hydrological process of the karst spring using a revised Vensim model[J]. Bulletin of Geological Science and Technology, 2022, 41(5):301-307.

    Google Scholar

    [14] Lea Duran, Nicolas Massei, Nicolas Lecoq, Matthieu Fournier, David Labat. Analyzing multi-scale hydrodynamic processes in karst with a coupled conceptual modeling and signal decomposition approach[J]. Journal of Hydrology, 2020, 583:124625. doi: 10.1016/j.jhydrol.2020.124625

    CrossRef Google Scholar

    [15] 常勇. 裂隙–管道二元结构的岩溶泉水文过程分析与模拟[D]. 南京: 南京大学, 2015.

    Google Scholar

    CHANG Yong. Analysis and simulation of the hydrological process of the karst aquifer with fracture-conduit dual structure[D]. Nanjing: Nanjing University, 2015.

    Google Scholar

    [16] Perrine Fleury, Valérie Plagnes, Michel Bakalowicz. Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France)[J]. Journal of Hydrology, 2007, 345(1-2):38-49. doi: 10.1016/j.jhydrol.2007.07.014

    CrossRef Google Scholar

    [17] Fleury P, Ladouche B, Conroux Y, Jourde H, Dörfliger N. Modelling the hydrologic functions of a karst aquifer under active water management—The Lez spring[J]. Journal of Hydrology, 2009, 365(3-4):235-243. doi: 10.1016/j.jhydrol.2008.11.037

    CrossRef Google Scholar

    [18] Damir Jukić, Vesna Denić-Jukić. Groundwater balance estimation in karst by using a conceptual rainfall-runoff model[J]. Journal of Hydrology, 2009, 373(3-4):302-315. doi: 10.1016/j.jhydrol.2009.04.035

    CrossRef Google Scholar

    [19] Damir Jukić, Vesna Denić-Jukić, Ana Lozić. An alternative method for groundwater recharge estimation in karst[J]. Journal of Hydrology, 2021, 600:126671. doi: 10.1016/j.jhydrol.2021.126671

    CrossRef Google Scholar

    [20] Sébastien Tritz, Vincent Guinot, Hervé Jourde. Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model[J]. Journal of Hydrology, 2011, 397(3-4):250-262. doi: 10.1016/j.jhydrol.2010.12.001

    CrossRef Google Scholar

    [21] Zhou Qing, Chen Lu, Singh Vijay P, Zhou Jianzhong, Chen Xiaohong, Xiong Lihua. Rainfall-runoff simulation in karst dominated areas based on a coupled conceptual hydrological model[J]. Journal of Hydrology, 2019, 573:524-533. doi: 10.1016/j.jhydrol.2019.03.099

    CrossRef Google Scholar

    [22] 龙玉桥, 李伟, 李砚阁, 杨忠平. 疏干开采条件下晋祠岩溶水系统的水箱模型[J]. 中国岩溶, 2011, 30(1):27-33.

    Google Scholar

    LONG Yuqiao, LI Wei, LI Yange, YANG Zhongping. Tank model of the Jinci karst groundwater system under the conditions of simultaneous draining in mining[J]. Carsologica Sinica, 2011, 30(1):27-33.

    Google Scholar

    [23] Vianney Sivelle, Hervé Jourde, Daniel Bittner, Naomi Mazzilli, Yves Tramblay. Assessment of the relative impacts of climate changes and anthropogenic forcing on spring discharge of a Mediterranean karst system[J]. Journal of Hydrology, 2021, 598:126396. doi: 10.1016/j.jhydrol.2021.126396

    CrossRef Google Scholar

    [24] Nerantzis Kazakis, Konstantinos Chalikakis, Naomi Mazzilli, Chloé Ollivier, Antonios Manakos, Konstantinos Voudouris. Management and research strategies of karst aquifers in Greece: Literature overview and exemplification based on hydrodynamic modelling and vulnerability assessment of a strategic karst aquifer[J]. Science of the Total Environment, 2018, 643:592-609. doi: 10.1016/j.scitotenv.2018.06.184

    CrossRef Google Scholar

    [25] Cécile Baudement, Bruno Arfib, Naomi Mazzilli, Johan Jouves, Thierry Lamarque, Yves Guglielmi. Groundwater management of a highly dynamic karst by assessing baseflow and quickflow with a rainfall-discharge model (Dardennes springs, SE France)[J]. BSGF-Earth Sciences Bulletin, 2017, 188:40-60. doi: 10.1051/bsgf/2017203

    CrossRef Google Scholar

    [26] 王平, 刘辉龙, 罗波, 陈雪峰. 丽江东部地区黑泥哨组铜矿成矿规律及潜力分析[J]. 沉积与特提斯地质, 2017, 37(4):77-83.

    Google Scholar

    WANG Ping, LIU Huilong, LUO Bo, CHEN Xuefeng. Mineralization and potential of the copper deposits in the Heinishao Formation in the eastern part of Lijiang, northwestern Yunnan[J]. Sedimentary Geology and Tethyan Geology, 2017, 37(4):77-83.

    Google Scholar

    [27] 罗明明. 南方岩溶水循环的物理机制及数学模型研究: 以香溪河岩溶流域为例[D]. 武汉: 中国地质大学(武汉), 2017.

    Google Scholar

    LUO Mingming. The physical machanism and mathematical model of karst water circulation: A case study of the Xiangxi river karst basin, South China[D]. Wuhan: China University of Geosciences (Wuhan), 2017.

    Google Scholar

    [28] 申豪勇, 梁永平, 程洋, 黄春玲. 龙子祠泉域不同下垫面陆面蒸散量的对比研究[J]. 中国岩溶, 2017, 36(2):234-241.

    Google Scholar

    SHEN Haoyong, LIANG Yongping, CHENG Yang, HUANG Chunling. Study on the regional evapotranspiration over different surface conditions of the Longzici spring drainage[J]. Carsologica Sinica, 2017, 36(2):234-241.

    Google Scholar

    [29] 高桥浩一郎, 王长根. 根据月平均气温、月降水量推算蒸散量[J]. 气象科技, 1980(Supp.4):48-50.

    Google Scholar

    [30] Vianney Sivelle, David Labat, Naomi Mazzilli, Nicolas Massei, Hervé Jourde. Dynamics of the flow exchanges between matrix and conduits in karstified watersheds at multiple temporal scales[J]. Water, 2019, 11(3):569. doi: 10.3390/w11030569

    CrossRef Google Scholar

    [31] Mazzilli N, Guinot V, Jourde H, Lecoq N, Labat D, Arfib B, Baudement C, Danquigny C, Dal Soglio L, Bertin D. KarstMod: A modelling platform for rainfall-discharge analysis and modelling dedicated to karst systems[J]. Environmental Modelling & Software, 2019, 122:103927.

    Google Scholar

    [32] Andrea Saltelli. Making best use of model evaluations to compute sensitivity indices[J]. Computer Physics Communications, 2002, 145(2):280-297. doi: 10.1016/S0010-4655(02)00280-1

    CrossRef Google Scholar

    [33] 黄丹红, 成建梅, 刘军, 王增银, 张晓宇. 岩溶含水层降雨非线性入渗补给的处理方法[J]. 地下水, 2006(2):23-25.

    Google Scholar

    HUANG Danhong, CHENG Jianmei, LIU Jun, WANG Zengyin, ZHANG Xiaoyu. New approach for calculating nonlinear infiltration replenishment by rainfall in the karst aquifer[J]. Ground Water, 2006(2):23-25.

    Google Scholar

    [34] 杨郑秋, 杨杨, 邵景力, 苏春田, 崔亚莉, 罗飞. 基于MODFLOW-CFP的岩溶水模型降雨非线性入渗补给研究:以湖南省香花岭地区为例[J]. 中国岩溶, 2019, 38(5):691-695.

    Google Scholar

    YANG Zhengqiu, YANG Yang, SHAO Jingli, SU Chuntian, CUI Yali, LUO Fei. Study on non-linear rainfall infiltration recharge of numerical karst water model based on MODFLOW-CFP: A case study of Xianghualing area, Hunan Province[J]. Carsologica Sinica, 2019, 38(5):691-695.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(194) PDF downloads(14) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint