Citation: | DIAO Haizhong, YU Sang, LI Hongliang, YIN Xiuzhen, ZHOU Jianwei, LIU Hong, WANG Yuanxin. Analysis on the hydrochemical and sulfur isotope characteristics of the groundwater in cross-strata pollution control area of Hongshan and Zhaili coal mines in Zibo[J]. Carsologica Sinica, 2023, 42(1): 171-181. doi: 10.11932/karst20230113 |
Since the closure of Hongshan and Zhaili coal mines in Zibo City, Shandong Province, the pumping and drainage of groundwater has stopped, leading to the rise of water level in coal mines. Consequently, Ordovician limestone water was polluted to different degrees through the hydraulic connection channels such as broken well pipes. The main pollution factors, like
In order to provide a scientific basis for future remediation of groundwater pollution in Hongshan and Zhaili coal mine areas and other similar mining areas, this study was carried out on the hydrochemical and isotope characteristics of the water after treatment in the study area, and a qualitative and quantitative analysis was conducted on the quality characteristics and treatment effects of the groundwater. To conduct the hydrochemical and isotope analyses based on hydrogeological conditions, characteristics of groundwater flowing field and sampling points before treatment, a series of monitoring points were set up along the groundwater flowing direction from the upstream of the pollution source area. Sampling types include coal mine water, Ordovician limestone water, rain water, surface water, etc. Coal mine water includes mine water, goaf water and mine drainage.
Through the sampling test, the results of hydrochemical and isotope analyses show that there is a hydraulic relation and mutual influence between Ordovician limestone water and coal mine water in the study area. The sulfate in groundwater in this area mainly comes from the oxidation of sulfide minerals in coal-bearing strata, and the Ordovician limestone water is polluted by the coal mine water in cross-strata, which leads to the increase of sulfate concentration in Ordovician limestone water.
Results show that the hydrochemical type of Ordovician limestone water is complex, and some Ordovician limestone water is characterized by high
[1] | Khalil K, Hanich L, Bannari A, Zouhri L, Pourret O, Hakkou R. Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: Pre-work of geochemical process modeling with numerical models[J]. Journal of Geochemical Exploration, 2013, 125:117-129. doi: 10.1016/j.gexplo.2012.11.018 |
[2] | Bhattacharya P, Sracek O, Eldvall B, Asklund R, Barmen G, Jacks G, Koku J, Gustafsson J, Singh N, Balfors B. Hydrogeochemical study on the contamination of water resources in a part of Tarkwa mining area, Western Ghana[J]. Journal of African Earth Sciences, 2012, 66:72-84. |
[3] | Equeenuddin M D, Tripathy S, Saho P K, Panigrahi M K. Hydrogeochemical characteristics of acid mine drainage and water pollution at Makum Coalfield, India[J]. Journal of Geochemical Exploration, 2010, 105:75-82. doi: 10.1016/j.gexplo.2010.04.006 |
[4] | Rachid Hakkou, Mostafa Benzaazoua, Bruno Bussière. Acid mine drainage at the abandoned kettara mine (Morocco): 1. environmental characterization[J]. Mine Water and the Environment, 2008, 27:145-159. doi: 10.1007/s10230-008-0036-6 |
[5] | Olias M, Moral F, Galván L, Cerón J C. Groundwater contamination evolution in the Guadiamar and Agrio aquifers after the Aznalcóllar spill: Assessment and environmental implications[J]. Environmental Monitoring & Assessment, 2012, 184(6):3629-3641. doi: 10.1007/s10661-011-2212-6 |
[6] | 常允新, 冯在敏, 韩德刚. 淄博市洪山、寨里煤矿地下水污染形成原因及防治[J]. 山东地质, 1999, 15(1):41-45. CHANG Yunxin, FENG Zaimin, HAN Degang. Origin and prevention of underground water pollution in Hongshan and Zhaili coal mine areas in Zibo city[J]. Geology of Shandong, 1999, 15(1):41-45. |
[7] | 徐军祥, 徐品. 淄博煤矿闭坑对地下水的污染及控制[J]. 煤炭科学技术, 2003, 31(10):28-30. doi: 10.3969/j.issn.0253-2336.2003.10.010 XU Junxiang, XU Pin. Underground water pollution and control with mining district closed in Zibo mine[J]. Coal Science and Technology, 2003, 31(10):28-30. doi: 10.3969/j.issn.0253-2336.2003.10.010 |
[8] | 吕华, 刘洪量, 马振民, 徐品. 淄博洪山、寨里煤矿地下水串层污染形成原因及防治[J]. 中国煤田地质, 2005, 17(4):24-27, 31. LV Hua, LIU Hongliang, MA Zhenmin, XU Pin. Formation and influential factors of Zibo City Hongshan and Zhaili coalmines underground water cross strata pollution[J]. Coalfield Geology in China, 2005, 17(4):24-27, 31. |
[9] | Bottrell S, Tellam J, Bartlett R, Hughes A. Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmi-ngham, UK[J]. Applied Geochemistry, 2008, 23(8):2382-2394. doi: 10.1016/j.apgeochem.2008.03.012 |
[10] | Jezierski P, Szynkiewicz A, Jsun drysek M O. Natural and anthropogenic origin sulphate in an mountainous groundwater system: S and O isotope evidences[J]. Water, Air and Soil Pollution, 2006, 173(1/2/3/4):81-101. |
[11] | 赵春红, 梁永平, 卢海平, 唐春雷, 申豪勇, 王志恒. 娘子关泉域岩溶水SO4 2− 、δ34S特征及其环境意义[J]. 中国岩溶, 2019, 38(6):867-875. ZHAO Chunhong, LIANG Yongping, LU Haiping, TANG Chunlei, SHEN Haoyong, WANG Zhiheng. Chemical characteristics and environmental significance of SO4 2− and sulfur isotope in the karst watershed of the Niangziguan spring, Shanxi Province[J]. Carsologica Sinica, 2019, 38(6):867-875. |
[12] | 郝春明, 何培雍, 王议, 侯双林, 董建芳. 煤炭开采后峰峰矿区奥陶系岩溶水硫酸盐演化过程研究[J]. 中国岩溶, 2014, 33(4):425-431. doi: 10.11932/karst20140406 HAO Chunming, HE Peiyong, WANG Yi, HOU Shuanglin, DONG Jianfang. Study on the evolutionary process of sulfate concentration in Ordovician karst water after coal mining in Fengfeng mine[J]. Carsologica Sinica, 2014, 33(4):425-431. doi: 10.11932/karst20140406 |
[13] | 张秋霞, 周建伟, 林尚华, 魏东, 张黎明, 袁磊. 淄博洪山、寨里煤矿区闭坑后地下水污染特征及成因分析[J]. 安全环境与工程, 2015, 22(6):23-28. ZHANG Qiuxia, ZHOU Jianwei, LIN Shanghua, WEI Dong, ZHANG Liming, YUAN Lei. Characteristics and causes of groundwater pollution after Hongshan-Zhaili mine closure in Zibo[J]. Safety Environment and Engineering, 2015, 22(6):23-28. |
[14] | 张秋霞, 周建伟, 康凤新, 林尚华, 魏东, 张黎明, 袁磊. 淄博煤矿区地下水污染水动力和同位素解析[J]. 环境科学与技术, 2016, 39(8):116-122. ZHANG Qiuxia, ZHOU Jianwei, KANG Fengxin, LIN Shanghua, WEI Dong, ZHANG Liming, YUAN Lei. Hydrodynamic analysis and isotope tracing for probing into groundwater pollution of Zibo mining area[J]. Environmental Science and Technology, 2016, 39(8):116-122. |
[15] | 李建中, 周爱国, 周建伟, 柴波, 冯海波, 苏丹辉. 华北煤田矿山开采导致含水层破坏风险评估: 以淄博洪山煤矿为例[J]. 地球科学, 2020, 45(3):1027-1040. LI Jianzhong, ZHOU Aiguo, ZHOU Jianwei, CHAI Bo, FENG Haibo, SU Danhui. Risk assessment of aquifer destruction in underground mining coal of North China: A case study of Hongshan mine in Zibo City[J]. Earth Science, 2020, 45(3):1027-1040. |
[16] | 高旭波, 王万洲, 侯保俊, 高列波, 张建友, 张松涛, 李成城, 姜春芳. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3):287-298. GAO Xubo, WANG Wanzhou, HOU Baojun, GAO Liebo, ZHANG Jianyou, ZHANG Songtao, LI Chengcheng, JIANG Chunfang. Analysis of karst groundwater pollution in Northern China[J]. Carsologica Sinica, 2020, 39(3):287-298. |
[17] | 梁永平, 申豪勇, 赵春红, 王志恒, 唐春雷, 赵一, 谢浩, 石维芝. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3):363-380. LIANG Yongping, SHEN Haoyong, ZHAO Chunhong, WANG Zhiheng, TANG Chunlei, ZHAO Yi, XIE Hao, SHI Weizhi. Thinking and practice on the research direction of karst water in Northern China[J]. Carsologica Sinica, 2021, 40(3):363-380. |
[18] | 郭达鹏, 康凤新, 陈奂良, 成建梅, 罗伟. 山东淄博沣水泉域岩溶水系统模拟及水源地优化开采预测[J]. 中国岩溶, 2017, 36(3):327-338. doi: 10.11932/karst20170306 GUO Dapeng, KANG Fengxin, CHEN Huanliang, CHENG Jianmei, LUO Wei. Numerical simulation and optimal exploitation scheme for the karst groundwater recourses system of Fengshui spring basin in Zibo region, Shandong Province, China[J]. Carsologica Sinica, 2017, 36(3):327-338. doi: 10.11932/karst20170306 |
Distribution of sampling points in the study area
Piper diagram of water samples in the study area
Relational graph of concentration between the sulfate sulfur isotope and
Relationship between sulfate δ34SSO4 and Eh of groundwater
Relationship between sulfate δ34S and 1/
Hydrogeological section in the study area
Contour map of sulfate concentration in the groundwater before and after treatment(mg·L−1)
Changes of