2022 No. 4
Article Contents

LI Jiayan, TIAN Yiping, GUANG Kaiyue, ZHU Shanying, LI Yunxia, GAO Yongli, RAO Zhiguo. Factors influencing the recrystallization of aragonite stalagmites and their implications for paleoclimate[J]. Carsologica Sinica, 2022, 41(4): 648-659. doi: 10.11932/karst20220412
Citation: LI Jiayan, TIAN Yiping, GUANG Kaiyue, ZHU Shanying, LI Yunxia, GAO Yongli, RAO Zhiguo. Factors influencing the recrystallization of aragonite stalagmites and their implications for paleoclimate[J]. Carsologica Sinica, 2022, 41(4): 648-659. doi: 10.11932/karst20220412

Factors influencing the recrystallization of aragonite stalagmites and their implications for paleoclimate

More Information
  • The karst geomorphology is widely distributed in central south and southwestern China, especially in western Hunan Province, where speleothems (especially stalagmites) have become one of the most important archives for high-resolution paleoclimatic studies. Stalagmites are mainly composed of calcite and aragonite, and aragonite stalagmites can provide precise chronology with high uranium content. However, aragonite is easily transformed to calcite if continuously infiltrating and leaching by dripping water in wet cave environment. Some stalagmites in western Hunan of China initially deposited in aragonite minerals, which are prone to recrystallization (especially transforming into calcite), and could change the relevant chemical element signals, limiting the application of some aragonite stalagmite proxy indicators in paleoclimate research. Here, we summarize and sort out the influencing factors of the recrystallization of aragonite stalagmites and their influence on the stalagmites paleoclimate from published literature to define the applications of aragonite stalagmites in paleoclimate research.

    The determination of mineral phases and recrystallization of aragonite stalagmites is the first prerequisite for stalagmites paleoclimatic research. The stalagmite profile characteristics, XRD results, microscope observations and geochemical element characteristics could be used as the basis for discriminating the recrystallization of stalagmites.

    The influencing factors of the recrystallization of aragonite stalagmites include, (1) The saturation of cave dripping water and pore water in stalagmite. When the water is in the state of unsaturation for aragonite and infiltrates into the porous aragonite stalagmites, it will dissolve aragonite and reprecipitate to calcite. (2) Aragonite crystal defects and the existence of calcite cement between crystals can facilitate aragonite transform to calcite. (3) The recrystallization of aragonite stalagmite normally occurs in lower concentration of Mg2+ in karst water. (4) Other factors, such as organic matter and α-recoil, will also affect the mineral transformation of aragonite stalagmites.

    Besides, the recrystallization of aragonite stalagmites can modify some geochemical signals initially preserved in aragonite. (1) Due to the difference of crystal fabrics of calcite and aragonite, the uranium element will be lost when aragonite is transformed to calcite, and the losing will cause abnormal or reverse chronology. (2) The recrystallization of aragonite stalagmites can result in depleted or abnormal δ18O signals, and δ13C values of recrystallized calcite present more complex characteristics, which will be depleted or similar to primary aragonite. (3) Compared with recrystallized calcite, the primary aragonite is enriched in Sr but depleted in Mg in some caves. However, trace element concentration of recrystallized calcite in other caves does not differ greatly with that of primary aragonite. In brief, the changes of these proxies before and after recrystallization may vary between caves. Consequently, the process of aragonite to calcite transformation will weaken the accuracy of dating and the reliability of these proxies as environmental indicators. (4) Due to the different precipitation conditions of aragonite and calcite, the variation of stalagmite mineral phase may indicate climate and environmental evolution, but more studies are needed to confirm for recrystallization stalagmites.

    Finally, we present results of mineral analysis and 230Th dating of RM2 stalagmite with 200 cm length from Remi cave, Longshan, Hunan Province. RM2 stalagmite has undergone inhomogeneity recrystallization process. Meanwhile, we find that recrystallization does have a certain influence on the 230Th dating. However, the mechanism of recrystallization and the effect of stalagmite recrystallization on other proxies needs further studies.

  • 加载中
  • [1] 程海, 张海伟, 赵景耀, 李瀚瑛, 宁有丰, Kathayat G. 中国石笋古气候研究的回顾与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1565-1589

    Google Scholar

    CHENG Hai, ZHANG Haiwei, ZHAO Jingyao, LI Hanying, NING Youfeng, Kathayat G . Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China Earth Sciences, 2019, 62: 1489-1513.

    Google Scholar

    [2] Frisia S, Borsato A, Fairchild I J, McDermott F, Selmo E M. Aragonite-calcite relationships in speleothems (Grotte de Clamouse, France): Environment, fabrics and carbonate geochemistry[J]. Journal of Sedimentary Research, 2002, 72(5):687-699.

    Google Scholar

    [3] Ortega R, Maire R, Devès G, Quinif Y. High-resolution mapping of uranium and other trace elements in recrystallized aragonite–calcite speleothems from caves in the Pyrenees (France): implication for U-series dating[J]. Earth and Planetary Science Letters, 2005, 237(3-4):911-923.

    Google Scholar

    [4] Domínguez-Villar D, Krklec K, Pelicon P, Fairchild I J, Cheng H, Edwards L R. Geochemistry of speleothems affected by aragonite to calcite recrystallization-potential inheritance from the precursor mineral[J]. Geochimica et Cosmochimica Acta, 2017, 200:310-329.

    Google Scholar

    [5] Perrin C, Prestimonaca L, Servelle G, Tilhac R, Maury M, Cabrol P. Aragonite-calcite speleothems: Identifying original and diagnetic features[J]. Journal of Sedimentary Research, 2014, 84(4):245-269.

    Google Scholar

    [6] Railsback L B, Dabous A A, Osmond J K, Fleisher C J. Petrographic and geochemical screening of speleothems for U-series dating: An example from recrystallized speleothems from Wadi Sannur Cavern, Egypt[J]. Journal of Cave and Karst Studies, 2002, 64(2):108-116.

    Google Scholar

    [7] Bruni S F and Wenk H R. Replacement of aragonite by calcite in sediments from the San Cassiano formation (Italy)[J]. Journal of sedimentary petrology, 1985, 55(2):159-170.

    Google Scholar

    [8] Woo K S, Choi D W. Calcitization of aragonite speleothems in limestone caves in Korea: Diagenetic process in a semiclosed system[A]//Perspectives on Karst Geomorphology, Hydrology and Geochemistry[C]. A tribute volume to Derek C. Ford and William B. White, 2006: 297-306.

    Google Scholar

    [9] Wang M, Chen S T, Wang Y J, Zhao K, Wang X F, Liang Y J, Wang Z J, Zhang Z Q, Chen G Z. Stalagmite multi-proxy evidence of wet and dry intervals in the middle Yangtze Valley during the last glacial period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586:110764.

    Google Scholar

    [10] 尹黎明, 袁志忠, 周耀渝. 湖南省岩溶地区土地石漠化现状及防治对策[J]. 中国水土保持, 2012(5):10-12. doi: 10.3969/j.issn.1000-0941.2012.05.004

    CrossRef Google Scholar

    YIN Liming, YUAN Zhizhong, ZHOU Yaoyu. Status quo and countermeasures of rock desertification in karst area of Hunan Province[J]. Soil and Water Conservation in China, 2012(5):10-12. doi: 10.3969/j.issn.1000-0941.2012.05.004

    CrossRef Google Scholar

    [11] Cosford J, Qing H R, Eglington B, Mattey D, Yuan D X, Zhang M L, Cheng H. East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China [J]. Earth and Planetary Science Letters, 2008, 275 (3-4): 296-307.

    Google Scholar

    [12] Cosford J, Qing H R, Yuan D X, Zhang M L, Holmden C, Patterson W, Cheng H. Millennial-scale variability in the Asian monsoon: Evidence from oxygen isotope records from stalagmites in Southeastern China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2008, 266:3-12. doi: 10.1016/j.palaeo.2008.03.029

    CrossRef Google Scholar

    [13] Zhang H L, Yu K F, Zhao J X, Feng Y X, Lin Y S, Zhou W, Liu G H. East Asian Summer Monsoon variations in the past 12.5ka: High-resolution δ18O record from a precisely dated aragonite stalagmite in central China[J]. Journal of Asian Earth Sciences, 2013, 73:162-175.

    Google Scholar

    [14] 张会领, 余克服, 赵建新, 俸月星, 林玉石, 周玮, 刘国辉. 文石方解石化对文石石笋δ18O记录的影响[J]. 热带地理, 2016, 36(3):457-467.

    Google Scholar

    ZHANG Huiling, YU Kefu, ZHAO Jianxin, FENG Yuexing, LIN Yushi, ZHOU Wei, LIU Guohui. Process of Calcitization of Aragonite Altering δ18O Records of Aragonite Stalagmites[J]. Tropical Geography, 2016, 36(3):457-467.

    Google Scholar

    [15] 张海伟, 蔡演军, 安芷生, 秦世江. 石笋矿物由文石转变为方解石后碳、氧同位素组成的变化[J]. 矿物岩石地球化学通报, 2014, 33(1):31-37. doi: 10.3969/j.issn.1007-2802.2014.01.004

    CrossRef Google Scholar

    ZHANG Haiwei, CAI Yanjun, AN Zhisheng, QIN Shijiang. Variation of oxygen and carbon isotope compositions in transformation of speleothem primary aragonite to secondary calcite[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):31-37. doi: 10.3969/j.issn.1007-2802.2014.01.004

    CrossRef Google Scholar

    [16] He M, Cai Y J, Zhang H W, Gang X, Cheng X, Lu Y B, Wang G Z, Qiu X L, Ma L, Wei Y Y, Huang S Y, Chang H, Yan H. The impact and implications of aragonite-to-calcite transformation on speleothem trace element composition[J]. Sedimentary Geology, 2021, 425:106010.

    Google Scholar

    [17] 林玉石, 张美良, 覃家铭, 姜光辉, 舒丽, 刘玉, 杨琰, 彭稳, 黄新跃, 黄芬. 论洞穴石笋结构构造转变[J]. 西北地质, 2009, 42(3):36-46. doi: 10.3969/j.issn.1009-6248.2009.03.003

    CrossRef Google Scholar

    LIN Yushi, ZHANG Meiliang, QIN Jiaming, JIANG Guanghui, SHU Li, LIU Yu, YANG Yan, PENG Wen, HUANG Xinyue, HUANG Fen. On the transformation of stalagmite texture and structure[J]. Northwestern Geology, 2009, 42(3):36-46. doi: 10.3969/j.issn.1009-6248.2009.03.003

    CrossRef Google Scholar

    [18] 林玉石, 黄新耀, 张美良, 覃家铭, 姜光辉, 朱晓燕, 杨琰, 向官生, 黄智勇. 中国南方发现大型文石笋[J]. 地学前缘, 2007, 14(2):236-241. doi: 10.3321/j.issn:1005-2321.2007.02.020

    CrossRef Google Scholar

    LIN Yushi, HUANG Xinyao, ZHANG Meiliang, QIN Jiaming, JIANG Guanghui, ZHU Xiaoyan, YANG Yan, XIANG Guansheng, HUANG Zhiyong. Large aragonite stalagmites found in South China[J]. Earth Science Frontiers, 2007, 14(2):236-241. doi: 10.3321/j.issn:1005-2321.2007.02.020

    CrossRef Google Scholar

    [19] 李霞, 滕晓云. X射线衍射原理及在材料分析中的应用[J]. 物理通报, 2008(9):58-59. doi: 10.3969/j.issn.0509-4038.2008.09.023

    CrossRef Google Scholar

    LI Xia, TENG Xiaoyun. X-ray diffraction principle and its application in material analysis[J]. Physics Bulletin, 2008(9):58-59. doi: 10.3969/j.issn.0509-4038.2008.09.023

    CrossRef Google Scholar

    [20] Frisia S, Borsato A, Fairchild I J, McDermott F. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland[J]. Journal of Sedimentary Research, 2000, 70(5):1183-1196. doi: 10.1306/022900701183

    CrossRef Google Scholar

    [21] Martín-García R, Alonso-Zarza A M, Frisia S, Rodríguez-Berriguete Á, Drysdale R, Hellstrom J. Effect of aragonite to calcite transformation on the geochemistry and dating accuracy of speleothems. An example from Castañar Cave, Spain[J]. Sedimentary Geology, 2019, 383:41-54.

    Google Scholar

    [22] Riechelmann S, Schröder-Ritzrau A, Wassenburg J A, Schreuer J, Richter D K, Riechelmann D F, Terente M, Constantin S, Mangini A, Immenhauser A. Physicochemical characteristics of drip waters: Influence on mineralogy and crystal morphology of recent cave carbonate precipitates[J]. Geochimica et Cosmochimica Acta, 2014, 145:13-29.

    Google Scholar

    [23] Zhang H W, Cai Y J, Tan L C, Qin S J, An Z S. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions[J]. Sedimentary Geology, 2014, 309:1-14.

    Google Scholar

    [24] Lachniet M S, Bernal J P, Asmerom Y, Polyak, V. Uranium loss and aragonite-calcite age discordance in a calcitized aragonite stalagmite[J]. Quaternary Geochronology, 2012, 14:26-37.

    Google Scholar

    [25] Berner R A. The role of magnesium in the crystal growth of calcite and aragonite from sea water[J]. Geochimica et Cosmochimica Acta, 1975, 39(4):489-504. doi: 10.1016/0016-7037(75)90102-7

    CrossRef Google Scholar

    [26] Sandberg P A and Hudson J D. Aragonite relic preservation in Jurassic calcite‐replaced bivalves[J]. Sedimentology, 1983, 30:879-892. doi: 10.1111/j.1365-3091.1983.tb00716.x

    CrossRef Google Scholar

    [27] Li H C, Lee Z H, Wan N J, Shen C C, Li T Y, Yuan D X, Chen Y H. The δ18O and δ13C records in an aragonite stalagmite from Furong Cave, Chongqing, China: A-2000-year record of monsoonal climate[J]. Journal of Asian Earth Sciences, 2011, 40(6):1121-1130.

    Google Scholar

    [28] Li T Y, Shen C C, Li H C, Li J Y, Chiang H W, Song S R, Yuan D X, Lin C D. -J., Gao P, Zhou L P, Wang J L, Ye M Y, Tang L L, Xie S Y. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China[J]. Geochimica et Cosmochimica Acta, 2011, 75(15):4140-4156.

    Google Scholar

    [29] Cosford J, Qing H R, Mattey D, Eglington B, Zhang M L. Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1-2):235-244. doi: 10.1016/j.palaeo.2009.05.020

    CrossRef Google Scholar

    [30] 殷建军, 林玉石, 唐伟. 洞穴文石石笋古气候环境变化研究进展、存在问题及研究方向[J]. 中国岩溶, 2014, 33(4):387-395. doi: 10.11932/karst20140401

    CrossRef Google Scholar

    YIN Jianjun, LIN Yushi, TANG Wei. Aragonite stalagmite use in paleoclimate and environmental change research: Progress, disadvantages and further directions[J]. Carsologica Sinica, 2014, 33(4):387-395. doi: 10.11932/karst20140401

    CrossRef Google Scholar

    [31] Shen C C, Lin K, Duan W, Jiang X Y, Partin J W, Edwards R L, Cheng H, Tan M. Testing the annual nature of speleothem banding[J]. Scientific reports, 2013, 3(1):1-5.

    Google Scholar

    [32] Richards D A, Dorale J A. U-series chron ology and environmental applications of speleothems [M]// Bourdon B, Henderson G M, Lundstrom C C, Turner S P. Reviews in Mineralogy and Geochemistry(Vol. 52): Uranium-series Geochemistry. Washington D C: Mineralogical Society of America, 2003: 407-460.

    Google Scholar

    [33] 杨琰, 袁道先, 程海, 覃嘉铭, 张美良, 林玉石, 朱晓燕. 文石-方解石石笋U/Th体系的封闭性判断及意义[J]. 地球化学, 2008, 37(2):97-106. doi: 10.3321/j.issn:0379-1726.2008.02.001

    CrossRef Google Scholar

    YANG Yan, YUAN Daoxian, CHENG Hai, QIN Jiaming, ZHANG Meiliang, LIN Yushi, ZHU Xiaoyan. Discrimination of close U/Th system in aragonite-calcite stalagmites[J]. Geochimica, 2008, 37(2):97-106. doi: 10.3321/j.issn:0379-1726.2008.02.001

    CrossRef Google Scholar

    [34] Edwards R L, Gallup C D, Cheng H. Uranium-series dating of marine an lacustrine carbonates[M]//Bourdon B, Henderson G M, Lundstrom C C, Turner S P. Reviews in Mineralogy and Geochemistry(Vol. 52): Uranium-Series Geochemistry. Washington D C: Mineralogical Society of America, 2003: 363-405.

    Google Scholar

    [35] 郑永飞, 周根陶, 龚冰. 碳酸盐矿物氧同位素分馏的理论研究[J]. 高校地质学报, 1997, 3(3):241-251. doi: 10.16108/j.issn1006-7493.1997.03.001

    CrossRef Google Scholar

    ZHENG Yongfei,ZHOU Gentao,GONG Bing. Theoretical study of oxygen isotope fractionation in carbonate minerals[J]. Geological Journal of China Universities, 1997, 3(3):241-251. doi: 10.16108/j.issn1006-7493.1997.03.001

    CrossRef Google Scholar

    [36] Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550):2345-2348.

    Google Scholar

    [37] Tarutani T, Clayton R N , Mayeda T K. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water[J]. Geochimica et Cosmochimica Acta, 1969, 33(8):987-996.

    Google Scholar

    [38] Rubinson M and Clayton R N. Carbon-13 fractionation between aragonite and calcite[J]. Geochimica et Cosmochimica Acta, 1969, 33(8):997-1002.

    Google Scholar

    [39] Lachniet M S. Are aragonite stalagmites reliable paleoclimate proxies? Tests for oxygen isotope time-series replication and equilibrium[J]. Bulletin, 2015, 127(11-12):1521-1533.

    Google Scholar

    [40] 郑立娜, 周厚云, 朱照宇. 洞穴次生碳酸盐沉积的Mg/Ca与Sr/Ca比值研究进展−兼论洞穴次生沉积物Mg/Ca与Sr/Ca的影响机制[J]. 中国岩溶, 2010, 29(2):212-218. doi: 10.3969/j.issn.1001-4810.2010.02.017

    CrossRef Google Scholar

    ZHENG Lina, ZHOU Houyun, ZHU Zhaoyu. Progress of study on Mg/Ca and Sr/Ca ratios of speleothem in caves[J]. Carsologica Sinica, 2010, 29(2):212-218. doi: 10.3969/j.issn.1001-4810.2010.02.017

    CrossRef Google Scholar

    [41] Railsback L B, Brook G A, Chen J, Kalin R, Fleisher C J. Environmental controls on the petrology of a late Holocene speleothem from Botswana with annua layers of aragonite and calcite[J]. Journal of Sedimentary Research, 1994, 64(1a):147-155.

    Google Scholar

    [42] Duan W H, Cai B G, Tan M, Liu H, Zhang Y. The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave, SW China revealed by cave monitoring[J]. Boreas, 2011:113-123.

    Google Scholar

    [43] 袁珍. 乌龙山国家地质公园岩溶地貌的形成原因研究[J]. 产业创新研究, 2018(10):66-67.

    Google Scholar

    YUAN Zhen. Study on the formation reason of Karst landform in Wulongshan National Geopark[J]. Industrial Innovation, 2018(10):66-67.

    Google Scholar

    [44] Cheng H, Edwards R L, Hoff J, Gallup C D, Richards D A, Asmerom Y. The half-lives of uranium-234 and thorium-230[J]. Chemical Geology, 2000, 169:17-33.

    Google Scholar

    [45] Cheng H, Edwards R L, Shen C-C,Polyak V J, Asmerom Y, Woodhead J, Hellstrom J,Wang Y J,Kong X G,Spötl C,Wang X F, Alexander Jr E C. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth & Planetary Science Letters, 2013, 371-372:82-91.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(1903) PDF downloads(302) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint