2022 No. 4
Article Contents

YUAN Jianfei, LIU Huizhong, DENG Guoshi, LI Minghui. Structural characteristics of Triassic carbonate geothermal reservoir and genesis of thermal water in the Tongluo mountain anticline of Guang’an City, China[J]. Carsologica Sinica, 2022, 41(4): 623-635. doi: 10.11932/karst20220410
Citation: YUAN Jianfei, LIU Huizhong, DENG Guoshi, LI Minghui. Structural characteristics of Triassic carbonate geothermal reservoir and genesis of thermal water in the Tongluo mountain anticline of Guang’an City, China[J]. Carsologica Sinica, 2022, 41(4): 623-635. doi: 10.11932/karst20220410

Structural characteristics of Triassic carbonate geothermal reservoir and genesis of thermal water in the Tongluo mountain anticline of Guang’an City, China

  • There are abundant geothermal resources at low-medium temperature in the fold mountain areas of eastern Sichuan, and the main geothermal reservoirs are Leikoupo and Jialingjiang formations. Generally, karst geothermal reservoirs have the advantages of large water volume, easy reinjection of tail water after exploitation, and less damage to geothermal reservoirs. Recently, a great breakthrough in geothermal exploration of the Tongluo mountain anticline in fold mountain areas of eastern Sichuan has been achieved. Two deep geothermal wells with a depth of more than 1,700 m have been consecutively drilled to obtain karst geothermal resources with high development and utilization value. However, although good results have been obtained in terms of geothermal exploration, there are relatively few studies on the characteristics of geothermal reservoirs and the mechanism of geothermal water circulation.

    In the study on structure characteristics of Triassic karst geothermal reservoir, geothermal water chemistry and stable isotope composition, geothermal reservoir temperature, and mechanism of geothermal water circulation, methods including geothermal drilling, hydro-geochemistry, diagram analysis of thermal water components, and geo-thermometer assessment are used to analyze the occurrence condition of karst geothermal water and genetic model in this study area. Results show that the geothermal reservoir structure in the study area is relatively intact, and the cap layer of thermal reservoir, the thermal reservoir, and the lower water barrier layer are formed as independent geothermal hydrogeological units. Karst geothermal water is mainly SO4-Ca·Mg and SO4-Ca types and rich in contents of F, Sr, Li, B, and SiO2. The oxygen and hydrogen isotope analysis indicates that karst geothermal water is of meteoric origin, and the recharge area is located in the Daba mountainous area to the north of Tongluo mountain. The elevation of deep geothermal water recharge is more than 1,100 m; the average annual temperature of the recharge area is 9℃; the horizontal distance reaches 220 km. According to the SiO2 geo-thermometer, the karst geothermal reservoir temperature is 56-76℃; the circulation depth of geothermal water is 2,013-3,030 m, and the karst geothermal water is immature. Moreover, the dissolution of carbonate and evaporite and the mixing of cold groundwater are major hydro-geochemical processes in the geothermal water circulation path, and the mixing ratio of cold groundwater is higher than 0.8. Based on the results of geothermal geology, geothermal drilling, hydro-geochemistry, and environment isotopes, the genesis mechanism of geothermal water in this area is summarized as follows, groundwater receives water recharge from rainwater through karst depressions, sink, and pit of the Leikoupo and Jialingjiang formations in the anticline core region, heated by geothermal gradient and hot rock during the deep circulation of the anticline wing. During water circulation, major hydro-geochemical processes are water-rock interaction and thermal-cold water mixing. After then, karst geothermal water occurs along the anticline axis and wing region in forms of hot springs and geothermal wells. This study not only enriches the theory of the karst geothermal reservoirs system in the fold mountainous areas of eastern Sichuan but also provides a scientific basis for the exploration and exploitation of deep karst geothermal resources in this area.

  • 加载中
  • [1] 王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4):449-459. doi: 10.3975/cagsb.2017.04.02

    CrossRef Google Scholar

    WANG Guiling, ZHANG Wei, LIANG Wiyun, LIN Wenjing, LIU Zhiming, WANG Wanli. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4):449-459. doi: 10.3975/cagsb.2017.04.02

    CrossRef Google Scholar

    [2] 庞忠和, 黄少鹏, 胡圣标, 赵平, 何丽娟. 中国地热研究的进展与展望(1995-2014)[J]. 地质科学, 2014, 49(3):719-727. doi: 10.3969/j.issn.0563-5020.2014.03.001

    CrossRef Google Scholar

    PANG Zhonghe, HUANG Shaopeng, HU Shengbiao, ZHAO Ping, HE Lijuan. Geothermal studies in China: Progress and prospects (1995-2014)[J]. Chinese Journal of Geology, 2014, 49(3):719-727. doi: 10.3969/j.issn.0563-5020.2014.03.001

    CrossRef Google Scholar

    [3] Amatyakul P, Rung-Arunwan T, Siripunvaraporn W. A pilot magnetotelluric survey for geothermal exploration in Mae Chan region, northern Thailand[J]. Geothermics, 2015, 55:31-38. doi: 10.1016/j.geothermics.2015.01.009

    CrossRef Google Scholar

    [4] Baba A, Şaroğlu F, Akkuş I, Özel N, Yeşilnacar Mİ, Nalbantçılar MT, et al. Geological and hydrogeochemical properties of geothermal systems in the southeastern region of Turkey[J]. Geothermics, 2019, 78:255-271. doi: 10.1016/j.geothermics.2018.12.010

    CrossRef Google Scholar

    [5] Caudron C, Bernard A, Murphy S, Inguaggiato S, Gunawan H. Volcano-hydrothermal system and activity of Sirung volcano (Pantar Island, Indonesia)[J]. Journal of Volcanology and Geothermal Research, 2018, 357:186-199. doi: 10.1016/j.jvolgeores.2018.04.011

    CrossRef Google Scholar

    [6] DeRoin N, McNutt SR, Thompson G. Duration–amplitude relationships of volcanic tremor and earthquake swarms preceding and during the 2009 eruption of Redoubt Volcano, Alaska[J]. Journal of Volcanology and Geothermal Research, 2015, 292:56-69. doi: 10.1016/j.jvolgeores.2015.01.003

    CrossRef Google Scholar

    [7] Guo Q, Wang Y. Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China[J]. Journal of Volcanology and Geothermal Research, 2012, 215:61-73.

    Google Scholar

    [8] Rezaei A, Rezaeian M, Porkhial S. The hydrogeochemistry and geothermometry of the thermal waters in the Mouil Graben, Sabalan volcano, NW Iran[J]. Geothermics, 2019, 78:9-27. doi: 10.1016/j.geothermics.2018.11.006

    CrossRef Google Scholar

    [9] Zhao R, Shan X, Wu C, Yi J, Hao G, Wang P. Formation and evolution of the Changbaishan volcanic geothermal system in a convergent plate boundary back-arc region constrained by boron isotope and gas data[J]. Journal of Hydrology, 2019, 569:188-202. doi: 10.1016/j.jhydrol.2018.11.040

    CrossRef Google Scholar

    [10] Guo Q. Hydrogeochemistry of high-temperature geothermal systems in China: A review[J]. Applied Geochemistry, 2012, 27(10):1887-1898. doi: 10.1016/j.apgeochem.2012.07.006

    CrossRef Google Scholar

    [11] Li J, Sagoe G, Yang G, Liu D, Li Y. The application of geochemistry to bicarbonate thermal springs with high reservoir temperature: A case study of the Batang geothermal field, western Sichuan Province, China[J]. Journal of Volcanology and Geothermal Research, 2019, 371:20-31. doi: 10.1016/j.jvolgeores.2018.12.005

    CrossRef Google Scholar

    [12] Liu M, Guo Q, Zhang C, Zhu M, Li J. Sulfur Isotope Geochemistry Indicating the Source of Dissolved Sulfate in Gonghe Geothermal Waters, Northwestern China[J]. Procedia Earth and Planetary Science, 2017, 17:157-160. doi: 10.1016/j.proeps.2016.12.039

    CrossRef Google Scholar

    [13] Tian J, Pang Z, Guo Q, Wang Y, Li J, Huang T, et al. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax[J]. Geothermics, 2018, 74:92-105. doi: 10.1016/j.geothermics.2018.02.006

    CrossRef Google Scholar

    [14] Yuan J, Guo Q, Wang Y. Geochemical behaviors of boron and its isotopes in aqueous environment of the Yangbajing and Yangyi geothermal fields, Tibet, China[J]. Journal of Geochemical Exploration, 2014, 140:11-22. doi: 10.1016/j.gexplo.2014.01.006

    CrossRef Google Scholar

    [15] 庞忠和, 庞菊梅, 孔彦龙, 郭世炎, 王树芳, 黄永辉, 罗霁, 胡圣标. 大型岩溶热储识别方法与规模化可持续开采技术[J]. 科技促进发展, 2020, 16(3-4):299-306.

    Google Scholar

    PANG Zhonghe, PANG Jumei, KONG Yanlong, GUO Shiyan, WANG Shufang, HUANG yonghui, LUO Qi, HU Shengbiao. Large-scale karst thermal storage identification method and large-scale sustainable mining technology[J]. Science and Technology for Development, 2020, 16(3-4):299-306.

    Google Scholar

    [16] 康凤新, 隋海波, 郑婷婷. 山前岩溶热储聚热与富水机理: 以济南北岩溶热储为例[J]. 地质学报, 2020, 94(5):1606-1624. doi: 10.3969/j.issn.0001-5717.2020.05.018

    CrossRef Google Scholar

    KANG Fengxin, SUI Haibo, ZHENG Tingting. Heat accumulation and water enrichment mechanism of piedmont karstic geothermal reservoirs: a case study of northern Jinan[J]. Acta Geologica Sinica, 2020, 94(5):1606-1624. doi: 10.3969/j.issn.0001-5717.2020.05.018

    CrossRef Google Scholar

    [17] Yang P, Luo D, Hong A, Ham B, et al. Hydrogeochemistry and geothermometry of the carbonate-evaporite aquifers controlled by deep-seated faults using major ions and environmental isotopes[J]. Journal of Hydrology, 2019, 579:124116. doi: 10.1016/j.jhydrol.2019.124116

    CrossRef Google Scholar

    [18] 李明辉, 袁建飞, 黄从俊, 刘慧中, 郭镜. 四川广安铜锣山背斜热储性质及地热成因模式[J]. 水文地质工程地质, 2020, 47(6):36-46. doi: 10.16030/j.cnki.issn.1000-3665.202008038

    CrossRef Google Scholar

    LI Minghui, YUAN Jianfei, HUANG Congjun, LIU Huizhong, GUO Jing. A study of the characteristics of geothermal reservoir and genesis of thermal groundwater in the Tongluoshan anticline near Guang’ an in east Sichuan[J]. Hydrogeology and Engineering Geology, 2020, 47(6):36-46. doi: 10.16030/j.cnki.issn.1000-3665.202008038

    CrossRef Google Scholar

    [19] 杨华云, 徐静. 重庆都市圈地热资源评价及开发利用方向[J]. 中国水运(学术版), 2006, (8): 217-218.

    Google Scholar

    YANG Huayun, XU Jing. Evaluation and development of deep geothermal water geothermal resources in Chongqing Metropolitan area ]J]. China Water Transport (Academic Version), 2006, (8): 217-218.

    Google Scholar

    [20] Xiao Q, Jiang Y, Shen L, Yuan D. Origin of calcium sulfate-type water in the Triassic carbonate thermal water system in Chongqing, China: A chemical and isotopic reconnaissance[J]. Applied Geochemistry, 2018, 89:49-58. doi: 10.1016/j.apgeochem.2017.11.011

    CrossRef Google Scholar

    [21] 吕玉香, 蒋晶, 杨平恒, 谢斌, 胡伟. 地热井井间干扰模拟研究: 以重庆观音峡背斜东翼为例[J]. 重庆大学学报, 2019, 42(2):94-104.

    Google Scholar

    LYU Yuxiang, JIANG Jing, YANG Pingheng, XIE Bin, HU Wei. Simulation of interwell interference in geothermal well- take the east wing of Guangyingxia anticline in Chongqing as an example[J]. Journal of Chongqing University, 2019, 42(2):94-104.

    Google Scholar

    [22] 李东升, 刘东升. 重庆地热水资源热储构造与径流补给[J]. 河海大学学报(自然科学版), 2011, 39(4):372-6.

    Google Scholar

    LI Dongsheng, LIU Dongsheng. Geothermal reservoir structure and runoff flow recharge of geothermal water resources in Chongqing Ctiy[J]. Journal of Hohai University (Natural Science), 2011, 39(4):372-6.

    Google Scholar

    [23] 袁建飞, 刘慧中, 李明辉, 黄丛俊, 杜德伟, 郭镜. 广安铜锣山地热勘探试验井地热地质成果及意义[J]. 科学技术与工程, 2022, 22(1): 83-92.

    Google Scholar

    YUAN Jianfei, LIU Huizhong, LI Minghui, HUANG Congjun, DU Dewai, GUO Jing. Geothermal geological achievements and significance of the geothermal exploration well in Tongluo Mountain, Guangan City [J]. Science Technology and Engineering, 2022, 22(1): 83-92.

    Google Scholar

    [24] 中国地质调查局成都地质调查中心. 广安市水文地质调查及地热资源勘查[R]. 成都: 中国地调查局成都地质调查中心, 2020: 15-30.

    Google Scholar

    Chengdu Center of China Geological Survey. Hydrogeological survey and geothermal resources exploration of Guangan City [R]. Chengdu: Chengdu Center of China Geological Survey, 2020: 15-30.

    Google Scholar

    [25] 漆继红, 许模, 杨华云, 王迪,赵红梅. 川东铜锣山背斜-南温泉背斜温泉水力联系分析[J]. 人民长江, 2011, 42(11):5-9. doi: 10.3969/j.issn.1001-4179.2011.11.002

    CrossRef Google Scholar

    QI Jihong, XU Mo, YANG Huayun, WANG Di, ZHAO Hongmei. Analysis on hydraulic connection of hot springs of Tongluo Mountain anticline to South hot spring anticline in eastern Sichuan Province[J]. Yangtze River, 2011, 42(11):5-9. doi: 10.3969/j.issn.1001-4179.2011.11.002

    CrossRef Google Scholar

    [26] 肖琼, 沈立成, 袁道先, 杨雷, 陈展图, 汪智军. 利用δ18O和δ34S示踪重庆都市圈地下热水循环过程[J]. 重庆大学学报, 2011, 34(5):87-92. doi: 10.11835/j.issn.1000-582X.2011.05.016

    CrossRef Google Scholar

    XIAO Qiong, SHEN Licheng, YUAN Daoxian, YANG Lei, CHEN Zhantu, WANG Zhijun. Using δ18O and δ34S isotopic techniques to trace the recycling process of hot springs in Chongqing metropolitan[J]. Journal of Chongqing University, 2011, 34(5):87-92. doi: 10.11835/j.issn.1000-582X.2011.05.016

    CrossRef Google Scholar

    [27] 余琴, 杨平恒, 王长江, 李国, 张宇, 张媚, 谢正兰. 重庆市统景温泉水化学特征及混合作用[J]. 中国岩溶, 2017, 36(1):59-66. doi: 10.11932/karst20170107

    CrossRef Google Scholar

    YU Qin, YANG Pingheng, WANG Changjiang, LI Guo, ZHANG Yu, ZHANG Mei, XIE Zhenglan. Hydrochemical characteristics and mixing effect in Tongjing hot springs of Chongqing[J]. Carsologica Sinica, 2017, 36(1):59-66. doi: 10.11932/karst20170107

    CrossRef Google Scholar

    [28] 余浩文, 刘昭, 荣峰, 陈康, 男达瓦, 刘仕娟, 刘绍赟. 西藏错那地热田水化学特征与物源机制[J]. 地质科技通报, 2021, 40(3):34-44.

    Google Scholar

    YU Haowen, LIU Zhao, RONG Feng, CHEN Kang, NAN Dawa, LIU Shijuan, LIU Shaoyun. Characteristics and source mechanism of geothermal field in Cuona, Tibet[J]. Bulletin of Geological Science and Technology, 2021, 40(3):34-44.

    Google Scholar

    [29] 袁建飞, 邓国仕, 徐芬, 唐业旗, 李鹏岳. 川西南喜德热田地下水水文地球化学特征[J]. 现代地质, 2017, 31(1):200-208. doi: 10.3969/j.issn.1000-8527.2017.01.019

    CrossRef Google Scholar

    YUAN Jianfei, DENG Guoshi, XU Fen, TANG Yeqi, LI Pengyue. Hydrogeochemical characteristics of groundwater in the Xide geothermal field, Southwest Sichuan, China[J]. Geoscience, 2017, 31(1):200-208. doi: 10.3969/j.issn.1000-8527.2017.01.019

    CrossRef Google Scholar

    [30] 张娟, 张海庆, 黄丹, 王心义. 基于水化学特征的深部岩溶地热水循环机制研究[J]. 河南理工大学学报(自然科学版), 2010, 29(6):741-745. doi: 10.16186/j.cnki.1673-9787.2010.06.001

    CrossRef Google Scholar

    ZHANG Juan, ZHANG Haiqing, HUANG Dan, WANG Xinyi. Study on circulation mechanism of geothermal water in deep karst based on water chemical characteristics[J]. Journal of Henan Polytechinc University (Natural Science), 2010, 29(6):741-745. doi: 10.16186/j.cnki.1673-9787.2010.06.001

    CrossRef Google Scholar

    [31] Yang Pingheng, Cheng Qun, Xie Shiyou, Wang Jianli, Chang Longran, Yu Qin, Zhan Zhaojun, Chen Feng. Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China[J]. Journal of Hydrology, 2017, 549:50-61. doi: 10.1016/j.jhydrol.2017.03.054

    CrossRef Google Scholar

    [32] 罗云菊, 刘东燕, 许模. 重庆地下热水径流特征研究[J]. 地球与环境, 2006(1):49-54. doi: 10.14050/j.cnki.1672-9250.2006.01.009

    CrossRef Google Scholar

    LUO Yunju, LIU Dongyan, XU Mo. Studyon the geothermal water runoff in Chongqing[J]. Earth and Environment, 2006(1):49-54. doi: 10.14050/j.cnki.1672-9250.2006.01.009

    CrossRef Google Scholar

    [33] 潘明, 郝彦珍, 吕勇, 李波. 云南昌宁橄榄河热泉水化学特征及复合成因机制研究[J]. 中国岩溶, 2021, 40(2):281-289.

    Google Scholar

    PAN Ming, HAO Yanzhen, LV Yong, LI Po. Hydrochemical characteristics and composite genesis of a geothermal spring in Ganlanhe, Changning, Yunnan Province[J]. Carsologica Sinica, 2021, 40(2):281-289.

    Google Scholar

    [34] 徐刚, 伍坤宇, 王鹏, 陈永东, 李兴彦, 胡林, 刘子畅, 李海. 藏北温泉盆地地热田水文地球化学特征研究[J]. 中国岩溶, 2020, 39(3): 299-310.

    Google Scholar

    XU Gang, WU Kunyu, WANG Peng, CHEN Yongdong, LI Xingyan, HU Lin, LIU Zichang, LI Hai. Hydrogeochemical characteristics of the geothermal field in Wenquan basin, northern Tibet ]J]. Carsologica Sinica, 2020, 39(3): 299-310.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(1597) PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint